From Singular Values to Canonical Angles

Li Qiu
Hong Kong University of Science and Technology

Sept 2016

Outline

(1) Singular values
(2) Canonical angles
(3) Recap
(4) Application

Singular value decomposition (SVD)

- For matrix $A \in \mathbb{C}^{m \times n}$, there are unitary matrices U and V such that

$$
A=U \operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\min \{m, n\}}\right) V^{*}
$$

where $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\min \{m, n\}} \geq 0$.

- We call $\sigma_{i}, i=1, \ldots, \min \{m, n\}$, the singular values of A, denoted by $\sigma_{i}(A)$.

Unitarily invariant norms

- We say a norm $\|\cdot\|$ on $\mathbb{C}^{m \times n}$ is unitarily invariant if $\left\|U^{*} A V\right\|=\|A\|$ for all unitary matrices U and V.
- Clearly a unitarily invariant norm depends only on the singular values.
- We say a function $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a symmetric gauge function if it satisfies the following conditions.
- Φ is a norm on \mathbb{R}^{n}.
- $\Phi(P x)=\Phi(x)$ for any permutation matrix P.
- $\Phi(|x|)=\Phi(x)$.
- There is a one-one correspondence between a symmetric gauge function Φ and a unitarily invariant norm:

$$
\|A\|=\Phi\left(\sigma_{1}(A), \sigma_{2}(A), \ldots, \sigma_{\min \{m, n\}}(A)\right)
$$

(Von Neumannn)

Low rank approximation

- We have

$$
\inf _{\operatorname{rank}(X) \leq k}\|A-X\|=\Phi\left(\sigma_{k+1}(A), \sigma_{k+2}(A), \ldots, \sigma_{\min \{m, n\}}(A)\right) .
$$

- The minimum is achieved at

$$
X=U \operatorname{diag}\left(\sigma_{1}(A), \ldots, \sigma_{k}(A), 0, \ldots, 0\right) V^{*}
$$

- Principal Component Analysis (PCA).

Definition

- Let $\mathcal{G}_{m, n}$ denote the set of m dimensional subspaces of \mathbb{C}^{n}.
- The set $\mathcal{G}_{m, n}$ is usually called as a Grassmannian or a Grassmann space.
- For two subspaces $\mathcal{X}, \mathcal{Y} \in \mathcal{G}_{m, n}$, define m canonical angles recursively as

$$
\begin{aligned}
\theta_{m}(\mathcal{X}, \mathcal{Y})= & \min _{x \in \mathcal{X}, y \in \mathcal{Y}} \angle(x, y)=\angle\left(x_{m}, y_{m}\right), \\
\theta_{m-1}(\mathcal{X}, \mathcal{Y})= & \min _{x \in \mathcal{X} \ominus\left\{x_{m}\right\}, y \in \mathcal{Y} \ominus\left\{y_{m}\right\}} \angle(x, y)=\angle\left(x_{m-1}, y_{m-1}\right), \\
& v d o t s \\
\theta_{1}(\mathcal{X}, \mathcal{Y})= & \min _{x \in \mathcal{X} \ominus\left\{x_{m}, \ldots, x_{2}\right\}, y \in \mathcal{Y} \ominus\left\{y_{m}, \ldots, y_{2}\right\}} \angle(x, y)=\angle\left(x_{1}, y_{1}\right),
\end{aligned}
$$

where $\angle(x, y)=\cos ^{-1} \frac{\left|y^{*} x\right|}{\|x\|\|y\|}$ represents the angle between two nonzero vectors x and y.

Computation

- From now on we assume $n=2 m$ without loss of generality.
- Let the columns of $X, Y, X_{\perp}, Y_{\perp}$ form orthonormal bases of $\mathcal{X}, \mathcal{Y}, \mathcal{X}^{\perp}, \mathcal{Y}^{\perp}$ respectively. Then

$$
\begin{aligned}
\cos \theta_{i}(\mathcal{X}, \mathcal{Y}) & =\sigma_{m-i+1}\left(X^{*} Y\right)=\sigma_{m-i+1}\left(X_{\perp}^{*} Y_{\perp}\right) \\
\sin \theta_{i}(\mathcal{X}, \mathcal{Y}) & =\sigma_{i}\left(X^{*} Y_{\perp}\right)=\sigma_{i}\left(X_{\perp}^{*} Y\right)
\end{aligned}
$$

for $i=1, \ldots, m$.

- Canonical correlation analysis (CCA).
- Clearly $\theta_{i}(U \mathcal{X}, \cup \mathcal{Y})=\theta_{i}(\mathcal{X}, \mathcal{Y})$ for all $U \in \mathcal{U}(n)$.

Unitarily invariant metrics on $\mathcal{G}_{m, n}$

- We say a metric ρ on $\mathcal{G}_{m, n}$ is unitarily invariant if $\rho(U \mathcal{X}, \cup \mathcal{Y})=\rho(\mathcal{X}, \mathcal{Y})$ for all $U \in \mathcal{U}(n)$.
- We say a metric on $\mathcal{G}_{m, n}$ is intrinsic if for each $\mathcal{X}, \mathcal{Y} \in \mathcal{G}_{m, n}$, there exists a continuous function $\phi:[0,1] \rightarrow \mathcal{G}_{m, n}$ such that $\phi(0)=\mathcal{X}, \phi(1)=\mathcal{Y}$, and

$$
\rho(\mathcal{X}, \mathcal{Y})=\rho(\mathcal{X}, \phi(\lambda))+\rho(\phi(\lambda), \mathcal{Y})
$$

for all $\lambda \in[0,1]$.

- Let Φ be a symmetric gauge function. Then

$$
\rho(\mathcal{X}, \mathcal{Y})=\Phi\left(\theta_{1}(\mathcal{X}, \mathcal{Y}), \ldots, \theta_{m}(\mathcal{X}, \mathcal{Y})\right)
$$

defines an unitarily invariant intrinsic metric.

- Does this give all unitarily invariant intrinsic metric?
- Conjecture: Yes.

Perturbation of subspaces

- Let $\mathcal{X}, \mathcal{Y} \in \mathcal{G}_{m, n}$ and $\mathcal{X} \cap \mathcal{Y}=\{0\}$, i.e., $\theta_{m}(\mathcal{X}, \mathcal{Y})>0$. The perturbed versions $\tilde{\mathcal{X}}, \tilde{\mathcal{Y}}$ satisfies

$$
\rho(\tilde{\mathcal{X}}, \mathcal{X}) \leq \alpha \quad \text { and } \quad \rho(\tilde{\mathcal{Y}}, \mathcal{Y}) \leq \beta
$$

How can we ensure $\tilde{\mathcal{X}} \cap \tilde{\mathcal{Y}}=\{0\}$?

- $\tilde{\mathcal{X}} \cap \tilde{\mathcal{Y}}=\{0\}$ if (and only if)

$$
\alpha+\beta<\Phi\left(0, \ldots, 0, \theta_{m}(\mathcal{X}, \mathcal{Y})\right) .
$$

- In general, we may ask how to ensure

$$
\operatorname{nullity}(\tilde{\mathcal{X}}, \tilde{\mathcal{Y}}):=\operatorname{dim} \tilde{\mathcal{X}} \cap \tilde{\mathcal{Y}}<k
$$

C-S decomposition

- Let $W \in \mathcal{U}(n)$. Then there exist $U_{1}, U_{2}, V_{1}, V_{2} \in \mathcal{U}(m)$ such that

$$
W=\left[\begin{array}{cc}
U_{1} & 0 \\
0 & U_{2}
\end{array}\right]\left[\begin{array}{cc}
C & -S \\
S & C
\end{array}\right]\left[\begin{array}{cc}
V_{1}^{*} & 0 \\
0 & V_{2}^{*}
\end{array}\right]
$$

where

$$
\begin{aligned}
& C=\operatorname{diag}\left\{c_{1}, c_{2}, \ldots, c_{m}\right\} \\
& S=\operatorname{diag}\left\{s_{1}, s_{2}, \ldots, s_{m}\right\} .
\end{aligned}
$$

- Clearly $c_{i}^{2}+s_{i}^{2}=1$ and $C^{2}+S^{2}=I$.

Direct rotation

- Let the columns of $X, Y, X_{\perp}, Y_{\perp}$ form orthonormal bases of $\mathcal{X}, \mathcal{Y}, \mathcal{X}^{\perp}, \mathcal{Y}^{\perp}$ respectively.
- The unitary matrix

$$
M=\left[\begin{array}{ll}
Y & Y_{\perp}
\end{array}\right]\left[\begin{array}{ll}
X & X_{\perp}
\end{array}\right]^{*}
$$

has the property

$$
M\left[\begin{array}{ll}
X & X_{\perp}
\end{array}\right]=\left[\begin{array}{ll}
Y & Y_{\perp}
\end{array}\right]
$$

In particular, $M \mathcal{X}=\mathcal{Y}$.

- Apply C-S decomposition to

$$
W=\left[\begin{array}{ll}
X & X_{\perp}
\end{array}\right]^{*}\left[\begin{array}{ll}
Y & Y_{\perp}
\end{array}\right]=\left[\begin{array}{cc}
U_{1} & 0 \\
0 & U_{2}
\end{array}\right]\left[\begin{array}{cc}
C & -S \\
S & C
\end{array}\right]\left[\begin{array}{cc}
V_{1}^{*} & 0 \\
0 & V_{2}^{*}
\end{array}\right] .
$$

- Define

$$
\begin{gathered}
{\left[\begin{array}{ll}
\hat{X} & \hat{X}_{\perp}
\end{array}\right]=\left[\begin{array}{lll}
X U_{1} & X_{\perp} & U_{2}
\end{array}\right] \text { and }\left[\begin{array}{ll}
\hat{Y} & \hat{Y}_{\perp}
\end{array}\right]=\left[\begin{array}{ll}
Y V_{1} & Y_{\perp} \\
V_{2}
\end{array}\right]} \\
\hat{W}=\left[\begin{array}{ll}
\hat{X} & \hat{X}_{\perp}
\end{array}\right]^{*}\left[\begin{array}{ll}
\hat{Y} & \hat{Y}_{\perp}
\end{array}\right]=\left[\begin{array}{cc}
C & -S \\
S & C
\end{array}\right] \\
\hat{M}=\left[\begin{array}{lll}
\hat{Y} & \hat{Y}_{\perp}
\end{array}\right]\left[\begin{array}{ll}
\hat{X} & \hat{X}_{\perp}
\end{array}\right]^{*}=\left[\begin{array}{ll}
\hat{X} & \hat{X}_{\perp}
\end{array}\right]\left[\begin{array}{cc}
C & -S \\
S & C
\end{array}\right]\left[\begin{array}{ll}
\hat{X} & \hat{X}_{\perp}
\end{array}\right]^{*}
\end{gathered}
$$

- The matrix \hat{M} is called the direct rotation from \mathcal{X} to $\mathcal{Y}_{\text {. }}$

Direct rotation squared

- Let $P_{\mathcal{X}}$ and $P_{\mathcal{X} \perp}$ denote the orthogonal projection onto \mathcal{X} and \mathcal{X}^{\perp} respectively. Then

$$
P_{\mathcal{X}}-P_{\mathcal{X}_{\perp}}=\hat{X} \hat{X}^{*}-\hat{X}_{\perp} \hat{X}_{\perp}^{*}=\left[\hat{X} \hat{X}_{\perp}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\hat{X} \hat{X}_{\perp}\right]^{*}
$$

which is called the reflexion with respect to \mathcal{X}.

- Similarly we have

$$
P_{\mathcal{Y}}-P_{\mathcal{Y} \perp}=\left[\begin{array}{ll}
\hat{Y} & \hat{Y}_{\perp}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
\hat{Y} & \hat{Y}_{\perp}
\end{array}\right]^{*}
$$

- Direct computation gives

$$
\left(P_{\mathcal{Y}}-P_{\mathcal{Y}^{\perp}}\right)\left(P_{\mathcal{X}}-P_{\mathcal{X}^{\perp}}\right)=\hat{M}^{2}
$$

A "Pythagorean theorem"

- Let
- \hat{M} be the direct rotation from \mathcal{X} to \mathcal{Y},
- \hat{N} be the direct rotation from \mathcal{Y} to \mathcal{Z},
- \hat{L} be the direct rotation from \mathcal{X} to \mathcal{Z}.

Then

$$
\hat{L}^{2}=\hat{N}^{2} \hat{M}^{2}
$$

- A four-line proof:

$$
\begin{aligned}
\hat{N}^{2} \hat{M}^{2} & =\left(P_{\mathcal{Z}}-P_{\mathcal{Z}^{\perp}}\right)\left(P_{\mathcal{Y}}-P_{\mathcal{Y}^{\perp}}\right)\left(P_{\mathcal{Y}}-P_{\mathcal{Y}^{\perp}}\right)\left(P_{\mathcal{X}}-P_{\mathcal{X}^{\perp}}\right) \\
& =\left(P_{\mathcal{Z}}-P_{\mathcal{Z}^{\perp}}\right)\left(P_{\mathcal{Y}}+P_{\mathcal{Y}^{\perp}}\right)\left(P_{\mathcal{X}}-P_{\mathcal{X}^{\perp}}\right) \\
& =\left(P_{\mathcal{Z}}-P_{\mathcal{Z}^{\perp}}\right)\left(P_{\mathcal{X}}-P_{\mathcal{X}^{\perp}}\right) \\
& =\hat{L}^{2} .
\end{aligned}
$$

Recap

- Matrices vs pairs of subspaces.
- Singular values vs canonical angles.
- Unitarily invariant norms vs unitarily invariant intrinsic metrics.
- Rank of a matrix (with perturbation) vs nullity of a pair of subspaces (with perturbation).
- Some key tools: C-S decomposition, direct rotation, multiplicative Pythagorean theorem, ...

Application

- Secure robust control through networks.
- An architecture:

