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Abstract-This paper presents a readily computable formula 
for the real stability radius with respect to an arbitrary 
stability region in the complex plane. 

1. INTRODUCITON 

In many engineering applications it is required 
that a square matrix have all of its eigenvalues in 
a prescribed area in the complex plane. We shall 
use the word stability to describe such an 
eigenvalue clustering property. Furthermore, it is 
often desired that the matrix should maintain 
this stability property when its elements are 
subject to certain perturbations. The real 
stability radius measures the ability of a matrix 
to preserve its stability under a certain class of 
real perturbations. 

Let us partition the complex plane @ into two 
disjoint subsets cg and Ci,, i.e. Q= = Q=, W &, such 
that Cg is open. A matrix is said to be stable if its 
eigenvalues are contained in C,. Denote the 
singular values of M E fl?xm, ordered nonin- 
creasingly, by vi(M), i = 1, 2, . . , min {p, m}. 
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Also denote al(M) by c+(M) and U,in(p,m)(M) 
by g(M). Let (F be either the real field R or the 
complex field @. Following Hinrichsen and 
Pritchard (1986b) we define the (structured) 
stability radius of a matrix triple (A, B, C) E 
lF nxn x [F”“” x [FP”” as 

rF(A, B, C) := inf {@(A) : A E lFmxp and 

A + BAC is unstable}. 

We abbreviate rF(A, I, I) by r,(A) and call it the 
(unstructured) stability radius of A. For real 

(A, B> C), r&4 B, C) is called the real stability 
radius, and for complex (A, B, C), r&A, B, C) is 
called the complex stability radius. The stability 
radius problem concerns the computation of 
r,(A,B,C) when (A,B,C) is given. 

Let X, denote the boundary of C9. By 
continuity. we can easily show that for stable A, 

rdA,B. C) 

= inf {a(A) : A E lFmxp and A + BAC 

has an eigenvalue on X& 

= inf inf {a(A) : A E lFmxp and 
\EX$ 

det (sl -A - BAC) = 0) 

= inf inf {a(A) : A E [Fmxp and 
J t dCp 

det [I - AC(sl - A)-'B] = 0) 

Hence the key issue in the computation of the 
stability radius is to solve the following linear 
algebra problem: given M E UZp”“, compute 

pIF(M) := [inf {G(A) : A E Fmxp 

and det (I - AM) = O}]-‘. 

Simple singular value arguments show that 
p.,(M)=c+(M). Hence 

rc(A, B, C) = (,“,“,p, @[C(sl - A)-‘B]]-I, (1) 
8 
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which was essentially obtained by Doyle and 
Stein (1981). Chen and Desoer (1982) and 
Hinrichsen and Pritchard (1986b). Equation (1) 
relates the complex stability radius to the 
concept of the XX norm. 

This paper concerns the computation of 
rR(A, B, C). As we have seen. 

rn(Aq B, C) = {,sul /.+[C(sl - A)~‘$‘. (2) 

Our main result is a simple formula for pw that 
allows computation of the real stability radius 
using (2). Let us denote the real and imaginary 
parts of a complex matrix M by Re M and im M 
respectively. i.e. Re M and Im M are real 
matrices such that M = Re M + j Im M. 

Main result 

pR(M) = inf ![ Re M 
cr7 

_ yt(o.~l y-‘Im M 

(3) 
The function to be minimized is a unimodal 
function on (0, 11. 

Since the function to be minimized in (3) is 
unimodal, any local minimum is a global 
minimum. Many standard search algorithms, 
such as golden section search. can be used with 
guaranteed convergence to a global minimum. 

In a sense. the stability radius problem, 
although not having been called so, has been 
studied for decades. It is difficult to trace the 
exact history. partly because it has been treated 
by several authors in different fields indepen- 
dently. A theorem in Rudin (1973, p. 239) and 
its proof immediately leads to 

Various versions of this inequality have ap- 
peared in many textbooks. The fact that this 
inequality is actually an equality when iF = c 
follows from the classical Schmidt/Mirsky 
theorem (often also attributed to Eckart and 
Young) of approximating a matrix by one of 
lower rank (see e.g. Stewart and Sun, 1990, p. 
208, Theorem 4.18). For contributions to various 
aspects of the complex unstructured stability 
radius rb(A), see also Van Loan (1985), 
Hinrichsen and Pritchard (1986a). Martin (1987) 
and Byers (1988). 

The stability radius r,(A, B, C) has been 
motivated from several different viewpoints. It 
arises in the stability robustness analysis of a 
feedback loop consisting of a fixed linear 
time-invariant system and a norm-bounded 
uncertain gain representing uncertain para- 
meters. It can also be posed from a pure matrix 

perturbation point of view, in which the matrices 
B and C reflect the structural information of the 
perturbation matrix BAC. as in Hinrichsen and 
Pritchard (1986b). The solution to the structured 
complex stability radius problem. again. is a 
simple application of the Schmidt/Mirsky lower- 
rank matrix approximate theorem. 

When the stability radius is used to analyze 
the stability of a linear time-invariant system 
under parametric perturbation. the real stability 
radius is more natural than its complex 
counterpart. This turns out. however, to be a 
much more difficult problem. Obviously, 
r&A, B, C) 2 r,(A, B, C). The ratio rBB(A, B, C)/ 
r&A, B, C) can actually be arbitrarily large 
(Hinrichsen and Motscha, 1988). Hinrichsen. 
Pritchard and associates studied various pro- 
perties of the real stability radius, and surveyed 
their results in Hinrichsen and Pritchard (1990). 
Several lower bounds on rR(A) were obtained by 
Qiu and Davison (1991) using tensor product 
techniques. Conditions under which rR(A) = 
r,(A) were investigated by Hinrichsen and 
Pritchard (1986a) and Lewkowicz (1992), though 
the conditions obtained were in general difficult 
to verify. 

The specialization of the right-hand sides of 
(2) and (3) to the case where B = C = I was 
shown to be a lower bound on rR(A) by Qiu and 
Davison (1992). and was also conjectured to be 
actually equal to rR(A). Our main result stated 
above completely solves the general real 
structured stability radius problem. In particular, 
it shows that the conjecture of Qiu and Davison 
is indeed true. 

It is well known that p&M) is easy to 
compute if M is either a row vector or a column 
vector. Formulas obtained using Euclidean space 
geometry that do not involve the minimization 
over y were given in Biernacki et al. (1987). 
Hinrichsen and Pritchard (1988) and Qiu and 
Davison (1989). In Section 2 we shall show that 
this special advantage can be generalized a bit 
further: if rank (Im M) 5 1 then the minimization 
over y can be eliminated and p(M) can be 
computed according to a simple explicit formula, 
which reduces to the formulas in the literature 
when specialized to the case where M is either a 
row vector or a column vector. 

The paper is organized in the following way. 
Section 2 gives a proof of the main result. It also 
gives a more complete statement of that result 
and a procedure to construct a smallest real 
matrix A such that I - AM is singular. Section 3 
addresses the sensitivity of p.,(M) to the changes 
in M. In Section 4 we specialize the results to the 
unstructured real stability radius and also 
generalize the definition of the structured 
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stability radius so that it covers linear fractional 
perturbations. Section 5 presents several ex- 
amples that illustrate different possible behaviors 
of the function on the right-hand side of (3) at its 
minimum and also illustrate the extra sweep over 
X, needed for the real stability radius 
computation. Section 6 presents some concluding 
remarks. 

2. PROOF OF T’HE MAIN RESULT 

The proof is long and involved. The idea is to 
rewrite the mixed problem involving a complex 
matrix and a realness constraint into a purely 
real problem. It is then easy to prove using the 
Schmidt/Mirsky theorem that the left-hand side 
of (3) is less than or equal to the right-hand side. 
To prove the opposite inequality, we construct a 
specific real A such that I - AM is singular and 
[O(A)]-’ is equal to the right-hand side of (3). 
To this end, we first investigate the properties 
possessed by the singular vectors of the matrix 
on the right-hand side of (3) corresponding to its 
second singular value at a minimum: then we 
construct the required A, separately for three 
different cases, in terms of these singular vectors. 

Let M E Cpxm be given. Introduce X := Re M 
and Y := Im M. The case when Y = 0 is trivial; 
we then have pn(M)= pc(M) = C(X). Hence 
we assume Y f0 in the following proof. For 
A E [Wmxp, the matrix I - AM is singular if and 
only if there are u,, u? E R” with (v,, u?) # (0, 0) 
such that 

(I - A(X + jY)](u, + ju,) = 0. 

An equivalent form of (4) is 

(4) 

The advantage of (5) is that only real numbers 
are involved. Since (I),, UJ # (0.0). the columns 

are linearly independent: therefore 

To proceed. we need a version of the 
Schmidt/Mirsky theorem, tailored according to 
our need. 

Lemma 1. Let E E IF”‘~I’ and F E P”“‘. Then for 
i==I ,... ,min{p,m}, 

inf {c+(E) : rank (Z,,, -. EF) 5 m - i} = [a,(F)]-‘. 

Proor If e(E) <[a,(F)]-’ then a,(EF)s a 
(E)a,(F)< 1 (Stewart and Sun, 1990. p. 34. 

Theorem 4.5). By the Schmidt/Mirsky theorem, 
rank (I,, - EF) >m - i. This shows ‘2’. Now let 
a singular value decomposition of F by LTV*, 

where Li and I/ are unitary matrices over lF and 

1 = diag {r~i(F), a,(F). . . , urn,, ~p,mdF)l 

E w * n’. 

Define 

E = V diag {[a,(F)]-‘, . , 

[a,(F)]-‘, 0,. , O}U*. 

Then G(E) = [a,(F)]-’ and rank (I,,, - EF) = 

m - i. This shows ‘5’. ci 

To reduce the conservatism caused by 
applying Lemma 1 directly to (6), we resort to 
the widely used technique of scaling. It turns out 
that this scaling completely eliminates the 
conservatism. Let y E IX!\(O). From (6), we get 

=rank!Z- [t J[,_~, -:‘I) 

52m-2. 

Let us introduce the notation 

(7) 

P(Y) = [ ,I, -YY I x . 

Lemma 1 and the inequality (7) imply that 

G(A) = CT 
A 0 

[ 1 0 A 

2 &[P(r)l 
Consequently, 

VyfO. 

Here the search over y has been restricted to 
(0.11 because P(y), P( - y) and P( y-i) all have 
the same singular values. 

The rest of this section is devoted to the proof 
of the reverse inequality: 

/+-a(M) 2 rf:ofll az[fYr)l =: u*, (8) 

which is significantly more difficult. We only 
need to prove this for the case when U* > 0. The 
proof is done by an explicit construction of a real 
A such that Z - AM is singular and G(A) = 0*-r. 
Let us use (.)’ to denote the Moore-Penrose 
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generalized inverse. The following lemma is 
needed in the construction. 

Lemma 2. Let U E lRpxk and V E Rmxk. If 
UTU = VTV # 0 then @(VU’) = 1 and VU’U = 
V. 

Proof Since UTU = VTV, it follows that there 
exists an orthogonal matrix W such that 
V = WU. Hence 

and 

VVU = WUVU = wu = v 

*(vu’) = a( WUu+) = a( uu+) = 1. 

Here we have used the fact that UUt is a 
nonzero orthogonal projection. 0 

First we shall treat the case when 

inf,.(O.l~ uz[P(y)] is attained for some y* E 

(0, 11. Let u = [I:] and u = [::I be a pair of 

left and right singular vectors of P(y*) 
corresponding to (T*, with ui, u2 E Rp and 
u,, u2 E IF?“, and set 

A = (T*-~[LJ~ uZ][uI u$. 

If u and u can be chosen so that 

(9) 

]Ui hlT[& 4 = [Lb %lTbI 4 (10) 

then it follows from Lemma 2 that O(A) = a*-l 
and that 

[I - AN + jY)l(u, + jy*d 
= u, + jy*uz - Au*u, - Ajy*g*u? = 0, 

which means that I - AM is singular. Hence A 
given by (9) is the desired construction. What 
follows is a long elaboration showing that the 
singular vectors u and u can always be chosen so 
that (10) is satisfied when y* E (0, 11. 

The proof for the case when infv,(,,,, aJP(y)] 
is attained as y-, 0, which occurs if and only if 
rank (Y) = 1, is carried out in a different way, in 
which an explicit formula for pn(M), involving 
no minimization, and a more direct construction 
of A are available. 

We start with several claims on the singular 
vectors of P(y). The first is of a purely algebraic 
nature. 

Claim 1. Let y E lR\{-l,O, 1) and let ‘I 
[ 1 and 

u2 

Ul 

[ 1 be a pair of left and right singular vectors 
u2 

of P(y) corresponding to some nonzero singular 
value o. Then UTU~ = uTuz. 

Proof. The singular vectors satisfy 

The difference between [UT UT] times (11) and 
[UT UT] times (12) gives 

(y + y-l)(uTYu, - &YuJ = 2a(u:‘uZ - UfU2). 

(13) 

Similarly, the sum of [u: -UT] times (11) and 
[UT -UT] times (12) gives 

(y - y-‘)(uTYu, - u:yu2> = 0. (14) 

Since (T # 0 and y f 0 or rtl, the claim follows 
from (13) and (14). 0 

The second claim concerns the singular vectors 
of P(y) corresponding to singular values at 
extrema. We need several lemmas. 

Lemma 3. Let F(y) E Rpxm be a (real) analytic 
matrix function on an open set I c R. Then 
there exist an analytic diagonal matrix function 
J?(y) = diag (cl(y), . . . , 5m,ntp.m,(y)) E Rp”” and 
analytic orthogonal matrix functions o(y) = 
[C,(y) . . G,(y)] E lP”P and P(Y) = 
[E,(y) . . E,,(Y)] E R”““, all of which are 
defined on I. such that 

Z(Y) = ~T(Y)F(Y)~(Y). 
Furthermore. 

de,(r) dF(y) -= ii:(y)- 
dy dy 

6(Y)? (15) 

for i = 1, . , min {p, m}. 

Proof. The first statement above follows from a 
similar result for Hermitian matrices in 
Baumgartel (1985, p. 149, Corollary 3), see also 
Kato (1966. Section 11.6.2). To prove (15), 
differentiate F( y)a,( y) = @;( y)fii(y). This gives 

~(YMY) + F(Y) ‘:(Y) 

dc-, 
= G(Y)&(Y) + 5,(Y) d$(Y). 

Multiplying both sides by n:(y) from the left and 
noting that iZT(y)F(y) = cT,(y)fi’(y), we obtain 

ii:(y) g(y)ai(Y) + ui(Y)fiT(Y) z(Y) 

de, 
= dy (Y) + 5,(YK(Y) dz(Y). 
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From GT(y)G,(y) = 1 and fir(-y)fi,(y) = 
follows that 

Hence (15) follows. 

Apparently, Iel(y i = 1,. . , min 

, it 

= 0. 

q 

p, ml, are 
singular values of F(y). However, they are not 
in any particular order. In the following, we shall 
also use the ordered singular values al(y) 2 

. . P CT,,,,” IP,m)( y) 10 of F( 7). The differences 
between d,(y) and a;(y) are that the former are 
analytic whereas the latter are generally not, and 
the latter are nonnegative and ordered nonin- 
creasingly whereas the former are generally not. 
Despite its lack of analyticity on the whole of I, 
a,(y) is continuous and piecewise-analytic. 

Lemma 4. Let F(y) E Rp”” be an analytic 
matrix function on an open set I C R. Let 

al(r) 2 . , 1 ~min(p,m)(y)2 0 be its ordered 
singular values. If a,(y) has a nonzero local 
extremum y* E I then there exists a pair of left 
and right singular vectors u E Iwp and u E R” of 
F(y*) corresponding to cr,(y*) such that 
uT dFld y( y*)u = 0. 

Proof. If c,(y) is analytic at y* then we can 
assume, without loss of generality, that a,(y) = 
e,(y) in an open neighborhood of y*. Thus y* is 
also a stationary point of e,(y). Let G,(y) and 
fil(y) be a pair of left and right analytic singular 
vectors corresponding to d,(y). The lemma then 
follows, since (15) gives 

ii: E (y*)6 ,(y*) = 0. 

If, instead, vi(y) is not analytic at y* then we 
can assume, without loss of generality, that in an 
open neighborhood of Y*, ai = eI(Y) for 
y % y* and a,(y) = sZ(y) for y 2 y*. Let fik(y) 
and bJy), k = 1,2, be the pair of left and right 
analytic singular vectors corresponding to @.k( y). 
Then (15) gives 

dc, 
dy (Y*) = QT(r*> E(r’iC *(Y*)T 

dC_, 
dy (Y*) = G(r*) $(Y*)u:(Y*). 

Put u, = (~ti~ + (1 - ~?)~‘*fi~ and u, = as, + (1 - 
CX*)“‘& for IY E [0, l]. Then u=(=y*) and u,(y*) 
also form a pair of singular vectors of F(y*) 

corresponding to the singular value o,(y*). 
Define 

f(a) = uf(Y*)g(Y*)v,(Y*). 
dy 

Since y* is an local extremum of a,(y), we must 
have 

f(O)f(l) =d$(y*)d~(y*)~o. 

By continuity, f(a) = 0 has a solution in (0.11. 
This proves the lemma. 0 

For the matrix P(y), the singular vectors 
described in Lemma 4 satisfy some pleasant 
alignment conditions. 

Claim 2. Let y E R\{O} 

v= 

and let u = and 

left and right singular 

vectors of P(y) corresponding to a nonzero 
singular value CT. If the extra condition 
uT dP/dy(y)u = 0 is satisfied then u:u, = u~ufvl 
and u:uZ = uzu2. 

Proof The singular vectors satisfy (11). (12) and 

id 4 _y!2y -,‘101] =o. [ (16) 

Equation (16) gives 

UTYU* + y-%;Yu, = 0. 

Multiplying (11) by [UT -ua from the left and 

(12) by [UT -ua from the left, we obtain 

u;xL+ - yuTYuz - y-‘u;Yu, - u;xuz 

= u:xLJ, - u;xu, 

= a(& - u&J 

and 

UfXTU, + y-GfyTuz + yuyUTYTU, - L$x%* 

= u:x=u, - u;XTu2 

= a(ufu, - u:uz). 

Since (+ > 0, we get 

T 
UlUl -l&d* = UTIJ, - l&J,. 

Claim 2 now follows from UTU, + uTu2 = u:u, + 
U&Z = 1. q 

We are now ready to show the inequality (8). 
We need to treat three different cases separately. 
Note that these three cases are not mutually 
exclusive. 

Case 1: CT* = u2[P(y*)] for some y* E 
(0, 1). Lemma 4 together with Claims 1 and 2, 

AUTO 31-6-F 
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tells us that a pair of singular vectors 

[::1 and [:;I 
of P(y*) corresponding to (T* can 

be&chosen to satisfy (10). Then (8) follows as 
discussed previously. 

Case 2: (T* = cr,[P(l)]. We have to treat this 
case separately. since Claim 1 is not valid for 
y = 1. We know, however. that the singular 
values of P(1) are paired so that c+,,_,[P(l)] = 
aZj(P(l)] = a,(M) for all i. In particular, the 
largest and the second largest singular values of 
P(1) are equal to cr*. We need to consider two 
possibilities. The first is that the multiplicity of 
the largest singular value of P(1) is two. Without 
loss of generality, assume a,[P(l)] = a,[P(l)] = 
5,(l)= fiZ(l), where 5,(y) and cl(y) are 
analytic singular values of P(Y). Note also that if 
(T(Y) is a singular value then so is [~(y~‘). Since 
y = 1 is a minimum of a*(y) that is equal to 
min {e,(y), &(y)} locally around y = 1, it 
follows that y = 1 must be a local minimum of 

i 1 ” form a pair of singular vectors of P(1) 
% 

corresponding to a nonzero singular value (+ of 
multiplicity 2 if and only if ur + ju, and u, + jv, 
form a pair of singular vectors of M 
corresponding to the same singular value of 

multiplicity 1. Now 
ii , 

suppose 
i I 

and 
11 2 

VI 
11 I 

are another such pair. Then, since D is a 
u2 

distinct nonzero singular value of M, we have 

6, + jzZ, = (u, + ju&?, 6, + jfi, = (v, + jv,)&” 

for some 6 E [O. 2~). These can be rewritten as 

[a, a21= [u, u21 L cos e sin e 
I _sin e cos e 9 

[fi, c21 = [VI 4 
1 

cos 8 sin e 
-sin8 1 c0se 

We immediately see that if and 

[u,] 
satisfy (10) then so do “’ I‘1 and 

u2 fi2 
e,(Y) and c?(y). Let [:I{;;] and [ii:::] be a 

pair of analytic singular vectors 
corresponding to e2( y). By Claim 1, 
that 

of P(Y) 
we know VI [I I u2 

0 

d(r)u2(r) = d(Yh2(Yh Y f 0, 

By continuity, we must therefore have 

uf(1)112(1) = t$(l)u*(l). 

*l. 

Using the fact that d6Jdy(l) = 0, we conclude 
from the derivative relation (15) and Claim 2 
that 

i:(l)u,(l) = v~(l)v,(l), 

l4;(1)&(1) = v;(l)u2(1). 

follows that (10) holds. 
We have completed the proof for the first 

possibility of Case 2. However. the construction 
above is not quite readily implementable 
numerically. Here we pause for an interesting 
observation that renders surprising numerical 
advantages. 

Remark. If (10) holds for a pair of left and right 

/AT./_4 - vTv = 0 then [::]:=[P,e:] and 

singular vectors 
[ ;;;I and [;;I of P(1) [I;] := [E :J form a pair of left and right 

singular vectors of P(1) corresponding to g*, 
and the condition (lo), which is equivalent to 
pTp - vTv = 0, is satisfied. The inequality (8) 
now follows as discussed previously. To show the 
existence of such a desired 5, one needs to study 
how pTp - vTv varies with 5. This can be done 

The second possibility of Case 2 is that the 
multiplicity of the largest singular value is 
greater than two. This means that the largest 
four singular values of P(1) are equal to o*, i.e. 
the two (or more) largest singular values of 
M = X + jY are equal to (T*. This possibility is 
related to a problem considered by Lewkowicz 
(1992). which inspired our solution. Bring in a 
singular value decomposition 

M = a*(/~, v!’ + 11.2~7) + c c,(M)/&‘, 

,:3 

where (.)” means conjugate transpose. Introduce 

(17) 

where 5 E C=’ is a vector of unit length. Then p 
and v also form a pair of singular vectors of M 
corresponding to (T*. If 5 can be found so that 

corresponding to a nonzero singular value o of 
multiplicity 2 then it holds for every such pair. 

and 
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straightforwardly with elementary calculus as in 
Qiu et al. (1993) but an alternative is to 
introduce the Takagi factorization (Horn and 
Johnson, 1985, pp. 204-205, Corollary 4.4.4): 

._ -T 
--’ 

where Z is a unitary matrix and hl 2 AZ L 0. 
Clearly, a desired 5 can be chosen as follows: 

any vector of unit length in C2 
if A, =O, 

Case 3: 17* = lim y_0 a,[P(y)]. It follows from 
e.g. Stewart and Sun (1990, p. 33, Theorem 4.4) 
that a,[P(y)] 2 az(y-~‘Y), so Case 3 is relevant 
only if rank Y = 1. We need a lemma to proceed. 

Lemma 5. Let F(,y) = G(y) + y-‘H E W”“, 
where G(y) is analytic on an open interval r 
around 0 and H is a constant matrix with 
rank (H) =: r < min {p, m}. Let cr,(y) Z., . Z- 
CT,,,,,,(~, mt(y) 2 0 be the ordered singular values 
of F(y) defined on R(O). Assume that a singular 
value decomposition of H is given by 

H = [U, &][“d ; [VI VJ’ 
I 

where Z, E R’“‘. Then 

lim (T,+,(Y) = a,[UTG(0)V2] 
y -0 

for i= 1,. . ,min{p,m}-r. 

Proof Without loss of generality, assume that 
an analytic singular value decomposition of 

yP(y) is 

YFY) = u%(Y) 02~Y)l[t’:;y~ z ;,,1 
2 

x [C(Y) V2’z(Y)l’? 

where z,(O) E R’“’ and &(O) = 0. Then 

y-‘%(y) = WY)ew2’,(Y) 

and 
= O;(r)G(r)%;(r) + Y-‘K(YW%;(Y). 

H = [o,(O) &(O)][ ‘;O) o”] 

x [V*(O) V2(0)]‘. 

Since both uT(y)U,(O) and vT(O)V,(y) are 
analytic and vanishing at y = 0, it follows that 

t’“x Y-‘~;(Y)H&;(Y) 

= lim y-‘0~(y)i~,(O)~,(O)V’:(O)V~(y) = 0. 
y-o 

Therefore 

lJ”o Y-‘~~(Y) = ti;(0)G(O)~2(O). 

Since all singular values of y-‘&(y) go to 
infinity as y -+ 0, 

lim a,+,(Y) = v; fli[Y-l%(Y)] 
y-0 

= q,[~;(O)G(O)&(O)] = a;[U:G(O)V,]. 

Note that I!?*(O) and v*(O) can be replaced by iJ2 
and V,, since they have the same ranges 
respectively. 0 

Following the notation in the lemma. put 

G(Y)= [; -;‘I, H=[; ;], 
and let a real singular value decomposition of Y 
be 

Uylzy(vY)T = [UY u:1[ y’ ,“I 
x [VT lqT. 

Then a singular value decomposition of H is 

Applying Lemma 5, we obtain 

lim a2[P(r)l 
Y-+0 

=4L$ iT[t XT 3) = max {I?[( U2y)TX], *(XV,‘)). 

Now we want to show that lim,,, ~~[P(y)l= 

infY.(O.lj a,[P(y)]. If u and u are a pair of left 
and right real singular vectors of (UF)=X 
corresponding to G[(U:)‘X] then the choice 

A=- 
UUT( u:,= 

mx>‘x1 (18) 

satisfies [I + A(X + jY)]u = 0 and I?(A)_’ = ~7 
[(U:)‘X]. Similarly, if u and u are a pair of left 
and right real singular vectors of Xv,’ 
corresponding to a(XVr) then the choice 

(19) 

satisfies uT[Z + (X + jY)A] = 0 and (T(A)-’ = ~7 
(XV,‘). Together, this shows that 

max {@[(U,Y)TXl, 6(xV,‘)ls j.k(M). 
so 

= max (6]( U2y)‘X], r?(XV,‘>} 

5 KR(M) 5 i:nflI fl#YY)I, 

and therefore the inequalities above can be 
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replaced by equalities. This also shows that 
a* = lim y_0 az[P(y)] if and only if rank Y = 1. 

Note that if min {p, m} = 1 then UT or V: will 
be empty. We define the largest singular value of 
an empty matrix to be zero. 

We have completed the proof of the equality 
(3). Now suppose that (TJP(~)] has a local 
extremum (either minimum or maximum) 

Y ** E (0, 1) such that crJP(y**)] > u*. Then, 
using exactly the same arguments as in Case 1, 
one can construct a real A such that I - AM is 
singular and ?(A) = {aJP(y**)]}-’ < o*-‘. This 
contradicts (3) and therefore cannot happen. 
This shows that crJP(y)] is a unimodal function 
on (0, 11. 

To recap, we summarize what we have proved 
in this section in the following theorem. 

Theorem. If X, Y E Rpx”’ and M = X + jY then 

pR(M) = inf u2 X 
-YY 

I) 
(20) 

y=(O.ll y-lY x . 

The function to be minimized is a unimodal 
function on (0, 11. If rank Y = 1 then, 
furthermore, 

pR(M) = lim g2 ([ X -YY 
y-0 y-lY X 11 

= max {(T[( Ur)=X], @(XV,‘)} 

where U,’ and Vr come from any singular value 
decomposition of Y: 

Y=[UT a[ “by’ gp: if:]‘. 

Note that the theorem implies that pR(M) = 

pC(M) if and only if the minimum value of 
aJP(-y)] is attained at y = 1. 

We also summarize a procedure to construct a 
worst A. 

Construction of a worst A 

1. If Y = 0, find a pair of left and right real 
singular vectors u and u of X corresponding 
to a(X) and set A = uu’/O(X). 

2. If rank (Y) = 1, compute a real singular value 
decomposition 

Y=[UT 
C(Y) 0 u:1[ o o [v: GIT. 

1 

l If 6[(Ur)TX] 2 (XV:), find a pair of left 
and right real singular vectors u and u of 
(U,‘)‘X corresponding to pR(M) and set 

A = _ uuT(uZY)* 
(T[( uy)‘x]. 

l If c?(XV,‘) > G[(U:)TX], find a pair of left 

and right real singular vectors u and u of 
XV: corresponding to F~(M) and set 

VZYUUT A _ 
a(Xv;)’ 

3. If rank (Y) > 1, find a minimum y* E (0, l] of 

az[P(r)l. 
If -y* E (0, 1) and aJP(y*)] has multi- 
plicity 1 or of y* = 1 and a*[P(l)] has 
multiplicity 2. find a pair of left and right 

real singular vectors 
[::I and [:;I Of 

P(y*) corresponding to pR(M). 

If y* E (0, 1) and a2[P(y*)] has multi- 
plicity r > 1, find matrices U E RZmx’ and 
v E R2P”’ with orthonormal columns such 
that 

p(Y*)v = ~*[p(Y*)lu. 

Carry out a real Schur decomposition 

lF$(r’)V + v*$u 
= W diag(A,, h2,. . . , A,)W’, 

where W is orthogonal and Al 1 A2 2. . . 2 
A,. Lemma 4 implies that A, A, 5 0. Take 

any unit length vector in R 

if A, = A, = 0, 

w= W[vq 0 . . . 0 VciJ’ 
a 

I if A, #A,, 

and 
ui L I =Uw and ” =Vw. 
u2 [ I U2 

If y* = 1 and a2[P(1)] has multiplicity 
2r >2, find matrices [p, ,u2] E Cmx2 and 
[VI v2] E CPX2 with orthonormal columns 
such that 

M]v, v21 = fl2IP(l)lIPI I-4. 

Carry out the Takagi factorization 

= == AI 0 4 I 0 A2 ” 

where Z is a unitary matrix and Al 2 A2 2 0. 
Take 

any unit length vector in 43’ 

if Al =O, 

I if Al ZO, 
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Finally set 

A = ~,[P(Y*)I[~, v21[u, ~21,. 

Note that the worst A constructed in the above 
procedure has rank no more than two. 

3. CONTINUln PROPERTIES 

In computing the real stability radius, it is of 
interest to know how sensitive Z_+(M) is to 
changes in M. The example 

shows that pn(M) can be discontinuous at 
certain M. Upper-semicontinuity of the map 
M ~pn(M). however, follows from the follow- 
ing general argument: if I - AM is invertible for 
all A E X, where X is compact, then I - Afi is 
invertible for all A E .X and all &f in an open 
neighborhood of M. 

In addition; M w pCLoa(M) is continuous at any 
M with rank (Im M) > 1, as the following 
relative error bound shows. 

Proposirion. If rank (Im M) > 
EeCpxm, 

then, for all 

IPIWW + E) - /&WI cr 69 
PR(W a,(Im M)’ 

Proof Let y* E (0, l] be a minimum of 

~#(y)I. Then 

K&M + E) 

5 /+(M) + 3 (I ReE -y*ImE 

y*--l Im E ReE I) 

5 p.,(M) + y*-‘a 
ReE -1mE 

ImE ReE I) 
= /Lo + y*-‘@(E). 

Noting that y*-’ c+,(Im M) 5 &M) gives 

PRW + El 4~9 
pIW(M) s ’ + a2(Im M) 

To obtain the other half of the inequality, we 
exchange the roles of M and M + E and invert: 

PRW + El ( c+(E) -I 

p&M) z ’ ’ a,[Im (M + E)] 

= I-. c(E) 

a,[Im (M + E)] + c?(E) 

?l-- g(E) 

o,(Im M) 
cl 

The only possible discontinuity points are 

therefore at M with rank (Im M) 5 1. For 
Im M = 0, we have shown the existence above, 
but we have not been able to find any example 
of a discontinuity at any M with rank (Im M) = 

1. 

Note added in proof, After the manuscript was 
sent to the press, we proved that actually F~(M) 

are discontinuous only at real M. 

4. A SPECIALIZATION AND A GENERALIZATION 

It is well known that a more convenient 
formula for the complex unstructured stability 
radius is given by 

r,:(A) = min (T(A - sl). 
ssac, 

Analogously, an alternative formula for the real 
unstructured stability radius is available, which 
might sometimes be simpler to apply. 

Corollary. Assume that A E [w”“” (n > 1) is 
stable. Then 

r,(A) 

i[ 

A-ReSZ -yImSZ 
= mm max flzn-] 

y-‘ImSZ A-Resl I) ’ sSaC* yE(o.1) 

For each fixed s E K,, the function to be 
maximized is quasiconcave. 

We leave it to the reader to derive this from 
(2) and (3) and to justify the use of ‘max’ and 
‘min’ instead of ‘sup’ and ‘inf’. Note that, 
because of the proposition in the previous 
section, the only possible discontinuity of the 
function to be minimized occurs at the 
intersection of a@, with the real axis. 

In the definition of r,(A, B, C), the perturbed 
matrix A + BAC depends on the perturbation 
matrix A in an affine way. In applications, 
however, a perturbed matrix may depend on the 
perturbation in a linear fractional way. This 
motivates a more general definition of the 
structured stability radius. For (A, B. C, D) E 

IF”“” X [Fnx” X (Fp”” X [Fpxm, introduce 

0, B, C, D) 

:= inf {6(A) : A E [Fmxp, det (I - AD) = 0 

or A + B(Z - AD))‘AC is unstable}. 

Again we leave it to the reader to show that if Cb 
is unbounded and A is stable then 

r&4 B, C, D) 
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5. EXAMPLES 

Example 1. Recall from Section 2 the notation 

,[ 
-YY 

A B P(y)= x 
I 

C D 
I: ’ ylY 1 x . 

In this example we illustrate various behaviors of 
aJP(y)] at its minimum y*. The data and 
computed results are listed in Table 1. There are 

A essentially five possibilities: 

Fig. 1. Feedback interpretation of the generalized stability (i) y* E (0. 1) and aJP(y)] is smooth at y*; 
radius. (ii) y* E (0, 1) and az[P(y)] is nonsmooth at 

In the case when Cg = {s E @ : Re @)-CO} or 
Cg = {S E @ : IsI < l}, r,(A, B, C, D) gives the 
smallest norm of a complex (ff = C) or real 
(E = [w) perturbation A that destabilizes the 
feedback system shown in Fig. 1. 

y*; 
(iii) y* = 1 and c+,[P(l)] has multiplicity 2; 
(iv) ,y,*,; : and o,[P(l)] has multiplicity greater 

(v) inf b2]P(Y)] is attained as ye o, 
Y~vJ.ll 
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The construction of a smallest A such that 
I - AM is singular has to be carried out in 
different ways for these different possibilities. as 
was done in Section 2. 

Example 2. Assume Q:, = {s E C : Re s < 0). Find 
r,(A, B. C) for 

r 79 20 -30 -201 

-41 --12 17 
A= 

167 40 -60 

33.5 9 -14.5 -11 

B= 

0.0346 
C= 

0.0535 

0.2 190 0.9347 

0.0470 0.3835 

0.6789 0.5194 

0.6793 0.8310 

0.5297 0.0077 

0.6711 0.3834 

occurs at y = 0.2267. Its corresponding left and 
right singular vectors are 

L$E]~ :‘1=[-igj. 

A smallest real A is given by 

A = r,(A, B, C)[u, uz][u, uz]’ 

i 

-0.4996 0.1214 = 
I 0.1214 0.4996 

Example 3. Assume C=g = {s E @ : (s/ < l}. Find 
r,(A, B. C) for 

We plot ~_~~[C(jwl-- A))‘B], computed using 
golden section search, and we[C(jol - A)-‘B] in 
Fig. 2. Their maximum values are 1.9450 and 
2.5546 respectively. These maxima occur at 
o = 1.38 and w = 9.9 respectively. We get 
rR(A, B. C) = 0.5141 and r&A, B. C) = 0.3914. 
Note that the critical frequencies for 
,u~[C(jw/ - A)- *BJ and p,c(CcjwZ - A)-‘B] are 
dramatically different. 

To obtain a smallest real perturbation A such 
that A + B_?tC is unstable, we need to find a 
smallest A such that I - AC(jwI -A)-‘B is 
singular at o = 1.38. At this frequency, the 
minimum of the second singular value of 

4.7527 X 10-r 7.5787 x lo- ’ 

A= -4.1523 x lo-* 8.9051 x IO-’ 

-7.5787 x lo-* -4.1523 x lo-* 

7.9939 
7.5787 x 10-l 

1 
, 

Re C(jol - A).-‘B -y Im Ccjwl - A)-‘B 

7-l Im C(jwl- A)-‘B Re C(jwl - A)-‘B 

3r 

+- 5.5 
Fig. 2. For Example 2: the solid line is wR[C(jw/ - A) 

and the dashed line is j~,[C(joI - A-‘B]. 

w 

‘Bl 

4.7527 x lo-’ J 

8.0086 x 10-I 4.2994 x 1O-2 

B= -1.4704 x lo-’ 9.4791 x lo-2 , 

-4.2994 x 1O-3 -1.4704 x lo-” 

1 
C= 

1 0 0 1 1 0 1 0’ 

We plot pn[C(e@Z - A)-‘B], computed using 
golden section search, and pc[C(e@Z - A)-‘B] 
in Fig. 3. Their maximum values are 9.6395 X 

lo-’ and 1.3384 respectively. Both maxima occur 
at 8 = 1.0053. We get rR(A, B, C) = 1.0374 and 
r,(A, B, C) = 7.4715 X 10-l. 

To obtain a smallest real perturbation A such 
that A + BAC is unstable, we need to find a 
smallest A such that I - AC(e@l- A)-‘B is 

1 V- 

Fig. 3. For Example 3: the solid line is p,JC(e@I - A)-‘B] 
and the dashed line is fiLc(C(eJel - A) -‘B]. 
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singular at 8 = 1.0053. At this frequency, the 
minimum of the second singular value of 

[ 

Re C(e@Z - A)-‘B - y Im C(e@Z - A)-‘B 

y-’ Im C(e@Z - A)-‘B Re C(eieZ - A)-‘B I 

occurs at y = 2.5158 X 10-l. Its corresponding 
left and right singular vectors are 

[I[ 

-9.6237 x 10-l 

Ul -1.1778 x 10-l = 
’ u2 3.0436 x lo-’ 

-2.4299 x 10-l 1 

-8.5474 x 10-l 

u1 

[I[ 

4.5765 x 10-l = 
-1.1498 x 10-l 

1 

’ u2 

-2.1621 x 10-l 

A smallest real A is given by 

A = r,(A, B, C)[u, VZ][U~ u21+ 

8.4830 x 10-r 5.9714 x 10-I = 
-5.9715 x 10-i 8.4829 x 10-l 1 ’ 
6. CONCLUDING DISCUSSION 

This paper has presented a formula for 
computation of the real stability radius. The 
basic problem is a pure linear algebra problem: 
given a complex matrix M, find the smallest real 
matrix A such that Z - AM is singular. Our main 
result reduces this problem to the minimization 
of a unimodal function in the interval (0.11. Our 
proof also gives a way to construct a worst A 
such that Z - AM is singular. This then gives a 
computationally efficient way to compute the 
real structured stability radius and to construct a 
smallest destabilizing A. 

The real stability radius problem is only one 
application of the linear algebra problem solved 
in this paper. We expect more applications of 
our main result, which is of fundamental 
importance, in other scientific and engineering 
disciplines. 

Finally, it is of interest to note that the linear 
algebra problem that we have considered in this 
paper has rather deep and rich connections to 
many other problems in linear algebra, in 
particular the theory of complex symmetric 
matrices (Horn and Johnson, 1985, Chapter 4). 
The first three authors have recently shown the 
following extension of Lemma 1 (the 
Schmidt/Mirsky approximation theorm): for 
M E P”“, the smallest spectral norm of a real A 
such that rank (I - AM) s:m - k is given by (3) 
with u2 replaced by uZk. This result will be 
published elsewhere. 
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