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Abstract

This paper addresses the problem of torque and ve-
locity ripple elimination in AC permanent magnet (PM}
motor control systems. A gain scheduled (GS) robust
two degree of freedom (2DOF) speed regulator based
on the internal model principle (IMP) and the pole-zero
placement is developed to eliminate the torque and ve-
locity ripples and achieve a desirable tracking response.

1 Imtroduction

Precision speed control systems such as feed control
of machine t00ls in the manufacturing industry are cru-
cial in numerous industrial applications [1]. AC perma-
nent magnet (PM) motors are attractive candidates for
high performance industrial control applications as the
maintenence of AC PM motors is minimal due to the
brushless rotor construction. However, the torque ripple
generation in AC PM motor systems limits the appli-
cations of AC PM motors in high performance speed
and position control systems. In general, the distur-
bance torque ripples of AC PM motor control systems are
composed of cogging torque, reluctance torque, mutual
torque and the DC current offset torque that is caused
by the DC offsets of the current sensors in the motor
driver and the digital-to-analog converters in the mo-
tion controller. For optimally designed AC PM motors,
cogging, reluctance and mutual torque ripples can be ne-
glected [2, 3]. The torque ripples due to current offsets
are dominant among the above four types of ripples in a
typical AC PM motor control system as the offsets from
the current sensors and digital-to-analog converters are
difficult to climinate.

In a practical high performance AC "M motor con-
trol system, the basic components consist of a motion
controller, a current tracking amplifier, a feedback en-
coder and an AC PM motor as shown in Fig. 1. DC
offsets are always present at the motor terminals due to
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Figure 1: An AC PM motor control system.

the digital-to-analog converter offsets of the motion con-
troller and the current sensor offsets of the current track-
ing amplifier. These current offsets generate sinusoidal
torque disturbances and hence prodnce velocity ripples
at the system output. In the past, the way to eliminate
these torque ripples was to purchase high-grade and ex-
pensive current sensors and digital-to-analog converters
to minimize the DC offset values respectively; the total
cost of an automation machine is thus much increased.
To replace the above inefficient and high-cost solutions,
the development of a novel and cost-effective speed con-
trol algorithm to eliminate the torque ripples caused by
DC current offsets is discussed in this paper,

The AC PM motor used in our motor control sys-
tem is assumed to be well designed so that the cogging
torque, reluctance torque and mutwnal forgue can be ne-
glected, and this assumption is often valid in high per-
formance applications [2]. On the other hand, we focus
on the elimination of the torque ripples caused by DC
current offsets. The internal model principle (IMP) is
applied in the motor controller design to eliminate the
torque ripples without cstimating the amplitude and the
phase values of the sinuscidal disturbance. A gain sched-
uled (GS) robust two degree of freedom (2DOF} speed
regulator based on the IMP and the pole-zere placement
algorithm is designed so as to achieve a desirable and ve-
locity ripple-free output response for a time-varying step
reference input.
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2 Vector Control of AC PM motors and
Disturbance Modeling

In this section the vector control of AC PM motors
is reviewed and the modeling of the torque ripple dis-
turbance caused by the DC current offsets is discussed.
With a current controlled AC PM motor, the d — ¢ frame
current, iq(t) and i,{(t) are the system inputs. Vector
control technique suggests to set ¢4(t) = 0. This con-
verts the nonlinear AC PM motor system into a linear
gystem [5]: P

welt) = 35 Amiol®)

duw(t)

dit
where 7.(t) is the generated torque, 7;(t) is the load
torque, J,, is the moment of inertia, By, is the friction
constant, Ay, is the constant magnetic flux and P is the
number of poles.

Te(t) = nt) = Jm + Bwl(t)

When the motor current amplifier is connected to
the power source and the two current reference com-
mands from the motion controller are kept at zero, a DC
offset current induced by the current sensor offsets and
the digital-to-analog converter offsets may be present in
one or both of the closed loop controlled phases and,
thus, also in the third one [3]. Let I, Ir be the two
DC current offsets present at the motor terminals due
to the digital-to-analog converter offsets of the motion
controller and the current sensor offsets of the current
amplifier. Then the torque ripples, 7,5 (¢}, for AC PM
motors with Ly = L is given by [4]

To(t) = gf\mfa [—g sin(@e(t)) + ? COS(BE(t))] +

P
=Amiy

5 [\/‘?I cos(Ge(t))]

where 6,(¢) is the rotor electrical angle. When the out-
put mechanical speed tracks closely with the reference
input at the steady state, it follows that the relation-
ship wq(t) = we(t)= Lwr(t) can be assumed where wylt)
is defined as the disturbance frequency. The disturbance
Tog(t) can then be further simplified and approximated
by a sinusoidal function:

Tapr (8) = Ag coslwa(t)t — ¢a) (1)

where Ay is the magnitude of the disturbance while ¢4 is
the phase of the disturbance. The disturbance frequency,
wa(t), is a slowly time-varying function in comparison to
the cosine function.

In summary, after employing the vector control and
the forinulation of the sinusoidal disturbance, the model
of a vector controlled AC PM motor with the torque rip-
ple disturbance is given by Fig. 2. Here, u{t) = i4(t) is
the input current, y(t) = w(t) is the output mechanical
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speed, K3 = %g/\m is the equivalent torque constant,
d(t) = ﬁ’ﬂ(%g:ﬁ where 7{t) is the load torque which
can be considered as an unknown constant disturbance,
Tog (£} is the torque disturbance due to DC current off-
sets, and can be approximated by a sinusoidal function
with a known frequency wg(f) and an unknown magni-
tude and phase. Qur goal is to design a speed controller
so that the output speed tracks a constant reference or a
time-varying step reference and rejects the disturbance
Tog{t) and 7{(¢). Such a controller is required to be ro-
bust, i.e. to perform the tracking and disturbance rejec-
tion even when the system parameters vary slightly, to
have a good transient response, and to have low com-
plexity, i.e. to have an order as low as possible.

To eliminate completely and robustly the sinusoidal
disturbance with the known frequency, the use of the
IMP is necessary. The IMP calls the use of the modes
of the disturbance in the controller as internal modes of
the feedback loop. The estimation of the amplitude and
the phase values of the disturbance is not necessary in
the elimination of the sinusoidal disturbance.

3 Controller Design

The problem of accomplishing robust tracking and
disturbance rejection is called the robust regulator prob-
lem. The key idea to solve a robust regulator problem is,
based on the IMP, to have the controller to include the
modes of the reference and disturbance. We also pro-
pose to use a 2DOF controller structure to achieve bet-
ter transient responses and simpler designs. One of its
advantages, in comparison with the usual one degree of
freedom or unity feedback structure, is that the tracking
performance and the disturbance rejection performance
can be designed with different considerations.

In this section we first investigate the design of a
linear time invariant (LTI) robust 2DOF controller for
a constant speed reference. Then a GS robust 2DOF
controller for a slowly thne-varying speed step reference
is designed by modifying the LTT controller.

3.1 Controller Design for a Constant Reference
In this section the input reference is assumed to be

a constant value w, so that wy = }—;rw,n. Robust 2DOF

regulators were discussed in [6], in which the disturbance

d
u T K ¥
Jms+Bm

Figure 2: The system model with disturbance.
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and reference are assuined to have the same modes. In by Im ( 83— w? Bm ) (5)

the following we assume that they may have different K ¢ m
modes. The main purpose of this section is to develop ng "
a siple pole-zero placement design method for robust hs = KoY (6)

2DOF regulators.
Finally, as m,(s) = s, we can arbitrarily assign the roots
The 2DOF regulator structure employed in our of g(s}. Here we choose the three roots of g(s) to be
analysis is shown in Fig. 3 with n denotes the sensor exactly the same as three roots of 4(s) subject to the
noise. The detail design procedure for the robust 2DOF constraint gg = hg,
regulator using pole-zero placement technique is given

in [4]. For our PM motor control system, in reference 5) = ha s+ ay)fe+anls+a 7
to Fig. 3, we have a(s) = s+ %ﬂ- and b(s) = JKL a(s) C!1'32013( 1 2 2 @)

Since the reference r(t) is a step reference, it follows that
mr(s) = . Since the disturbance d(t) contains a sinu-
soidal function of frequency wy = %wr and a constant _ hs
function, it2follows that mg(s) = s(s? + wg) Therefore, o = arasas
m(.s) = s5(s® +wi). It follows that m(s)a(s) and b(s} are ha(on + a + ag)
coprime and a solution to the robust regulator problem W =

. R 12 Cx3
based on the IMP exists. Since n, = 1, we can choose ha(e1az + ages + aga)
ng = 0. This leads to a controller of order equal to n,, @ = o behic 273 Ehal
which is the lowest possible to achieve robust regulator. x10203
Hence = hs

= —oa(a2 g 2
k(s) =m(s) = s(s" +wg) ) In this way, the system from r to y is turned to a first
and h(s) and ¢(s) have the following forms: order system with a pole determined by the remaining
root of 5(s) and the transfer function is given by

where

I

h(s)
q(s)
Choose the closed loop poles oy, as and a3 according to

the disturbance rejection specification and the remaining . . .
closed loop pole a4 according to the transient tracking 3.2 Controller Design for a Time-Varying Step

h053 + h182 + has+ hs

q5° + q15% + gas + g3 Y(s) | o
R(S) s+ ay,

response specification so that the closed loop character- Reference .
istic polynomial is The robust 2DOF regulator described in the previ-
ous section is designed for a constant speed reference so
8(s) = (s+on)(s+oe)(s+ad(s+ay) that the tracking error is zero at the steady state. How-
= st 488+ Gys® 4 0as + 04 ever, there are many industrial applications that require
' a varying speed operation. In this case, the sinusoidal
Then by equating the coefficients of both sides of disturbance has a varying frequency. In order to achieve
zero steady state error, we need to include an internal
8(s) = k{s)a(s) + b(s)h(s) mode which varies with the disturbance frequency; other

parameters of the controller in general also need to be

we can obtain changed with time to ensure that the closed loop sys-

tem, which is time-varying, is internally and externally

I By, i .
ho = e & - 7 3) stable. In this section the development of & GS robust
4 ¢ ™ 2DOF regulator for a time-varying step reference to elim-
h = = (52 - wg) {4) inate the torque and velocity ripples of AC PM motors,

K is discussed.
d The idea behind the GS robust 2DOF pole-zero
+ placement regulator is to replace the disturbance fre-
T () e , vt bs Y quency wy in (2) and (3)-(6) by wa(t) = Lw,.(t) as fol
.8} 0! w(s) 2
- lows:
Fon kolt) = wilt) (8)
h(s ¥ hot) = I (5 Fn )
RO e
J,
Figure 3: The 2DOF regulator structure. hi(t) = ?n: (82 — W?z(t)) (10)
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halt) — ﬂz(%_wﬂﬂBm) anp ) w20 25) s @) =) d@) n@) and

K, I #(t) = [u®) y(#)]', the closed loop state space squations
Jm can be written as follows in reference to Fig. 3:
ha(ty = ?54 (12) :
.]t () = A@RE(E) + B(t)ult)
m Bm ~ -~ -
folt) = 7 (51 - T) —qo (13) gty = C@)z(t)+ D)u(t)
¢ ko
T ' where the system matrices are defined in (16).
AG = Ee-w0)-a a9

The above system matrices can be transformed into
flt)y = 22 (53 _ wg(t)% ) —gs (15) an observer canonical form so as to facilitate the stabil-

Im ity analysis by small gain theorem., A transformation
matrix P(t) is chosen accordingly to perform the task.
Let z(t) = [21{t) 22(t) za{t) z(t)] be the new state
variables. With the following transformation,

where wq(t) is now the time-varying frequency of the
disturbance. The coefficients of g(s) are constants as
in (7). Fig. 4 shows the block diagram of the GS robust

2DOF speed regulator. Let £(£) = [x1(t) 2(2) za(t)]’ 001 0
and @{t) = [r(t) y(#) + ()], the regulator can be im- ) = P(8)2(t) — 01 0 —wit) 2(8)
plemented using the following observer canonical realiza- 1 00 0 ’
tion: 000 b
m(t) = Ag(t)i(t) + J: Bi1(t) Bya(t) the closed loop system state space equations can be

transformed into the following equations,
(t) Ay (8)x{t) + Bi{t)u(t)
g(t) = Ca(t)2(t) + D.()ilt)

u(f)

where

| aft)
Cx (t)2(t) + [ Dr1{t) Dxo(t) ] aft)

Ax(t) l B}(l(t) BKg(t)
= where
|: CK(t) | D}{l(t) DKQ(t)
A:(t) | Ba(t)
20 0 1|ao WA GAG RPXG)
—wi(t) 0 1|go— qowi(t) —ha(t) + ho (s (t) R »
0 0 0 @ —hs(t) _ | PTHOAQPE) — PTHOPE) | PTLH(E)B()
T 0 0] “Told) _ ) C(t)P(t) | D(t)
[0 ¢ 0 - —hg(t
Since we need to deal with time-varying controller para- 10 0 —duat é:z( £y’ 33 wgo( H - h3 Et;
meters, the transfer function argument is no longer valid 01 0 3 _5 d 2 dO _ h2 @)
and instead, the state space theory has to be invoked [8]. =g 0 1 _ 52 & o _ hl )
In the following, the stability of the time-varying closed 0 0 1 s hl(t) & 0 = ho(t)
loop system under the control by the proposed GS ro- 00 0 lbln %’ 0 3

bust speed regulator is studied. The linearized AC PM - .
motor system plant can be represented by the following "The polynomial §(s) = s* + 6,53 + 6252 + d35 + 64 is the

state space equations: desired closed loop characteristic equation. According to
. the small gain theorem [7], the associated autonomous
E4{t) = —a124(0) + by {ul) + d(t) system
t) = 1
o0 = ) ) = Ay -
where a1 = Bu/Jm, b1 = Ki/Jn, 54(t) is the state 00 0 —4& 0 gl
variable, u(t) is the control input, d(t) is the distur- 1 0 0 —& 1 N :
bance input and y(#) is the control output. Let #(t) = 01 0 6 2 B (wit)) 0 #(t)
0 01 -4 0 1
is internally uniformly exponentially stable if the follow-
r [ Ag(t) | Bii(t) Bio(t) u ing condition is satisfied:
Cr(t) | D1(t) Dgs(t
)| Dia® Dres(t) (30
' -1 -1
0 0 0 0 —4 0
0 1 ¢ 0 —d3 1
v+n Mol ls {010 -4 0
1 0 01 —§& 0
(o]
s -1
Figure 4: The GS robust 2DOF speed regulator. 1 015% 1 0262 F Gas 1 0, N =75 (17}
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0 1 0 —hl(f) q1 0 -hl(t)
—w?(t) 0 1 —ha(t) + ho()wd(®) | @2 — qowl(t) O —ha(t) + ho({thw3(t)
A(f) B(t) o 0 00 —ha(t) q3 0 —hg(t) 16
c)i D t) - [} g 0 —ay — blhg(t) bigo b —blhg(t) ( )
1 0 0 —ho(f) o 0 *ho(f)
0 0 0 1 0 0 0

where rg is defined as the stability radius. Therefore, as
long as the input reference does not change too fast, the
condition in (17) is satisfied, and the internal stability of
the closed loop system is preserved. Since the matrices
B.{t), C.(t) and D.(t) associated with the closed loop
system are bounded, it follows from [§], the closed loop
system is also bounded input bounded output {BIBO)
stable if (17) is satisfied.

As wy(t) = Zw,.(t), if the differentiation of the in-
put speed reference w,(t)’, or the acceleration profile, is
avaliable to the controller, then the stability radius can
be further enlarged. By modifying the feedback gain
ho(t) in (11) as:

b = 3 [6-ai0l - @] 09

Now the closed loop system matrices are given by

{ A.(t) | B:(t) }

C.) | D=0ty |
0 0 0 —54 a3 0 *hg(t)
1 00 3§ |g wit) —ht)
01 0 —&a M 0 —hl(t)
0 01 —61 do 1 —hg(t)
0 01 —blho(t) 70} 0 —h[)(‘tr
0 00 b 0 0 0

As now A.(t) is a constant matrix and the other system
matrices B,(t), C,(¢) and D.(t) are bounded, the system
is internally stable and BIBO stable.

In summary, the GS robust 2DOF regulators based
on the IMP and the pole-zero placement algorithm can
be implemented with an infinity stability radius provided
that the differentiation of the input speed reference w,{¢)’
is avaliable for the input of the GS robust 2DOF regu-
lators. In this case, the new gain scheduled terms are
given by (8)-(12) except that ho(?) is given by (18).

4 Simulation and Experimental Results

Simulations are first performed to test the proposed
control algorithm. A 50W AC PM motor is used in our
simulations and experimental tests. The motor parame-
ters are listed in Table 1. In the simulation, we assume
that a —0.08A current offset is present at the current sen-
sor of phase 1 and a 0.05A current offset at the current
sensor of phase 2.
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The GS robust 2DOF speed regulator with the time-
varying gain (8)-(12) is tested with a time-varying step
reference. With the addition of the acceleration profile
input, the improved G8 robust 2DOF speed regulator
with the new time-varying gain (18) can be implemented
so as to enlarge the stability radius.

The GS robust 2DOF speed regulator is first de-
signed to satisfy a step rise time < 60ms. According to
the design procedure listed in Section 3, one of the pos-
sible solutlons is to choose the four closed loop poles at
—40, —50, —60 and —80, and the three closed loop ze-
ros at —50, —60 and —80. Hence the overall system is a
first order system with a single pole at —40, the slowest
closed loop pole. With this selection, the rise time of the
closed loop system is around 54ms< 60ms. The stability
of this GS robust 2DOF speed regulator depends on the
stability radius rg and the differentiation of the input
reference |(P72w3(t))’ | in (17). An input profile with the
condition [(E2w2())'| > rs = 557x10°, is tested with
the proposed GS robust 2DOF speed regulator.

Without the acceleration profile input, the speed re-
sponse is shown in the upper section of Fig. 5; the ontput
speed response is not good in general and at ¢ = 3s, as
the value of |(PTzw$ (#))'| > rg, the output speed becomes
unstable and oscillatory. However, if the improved G3
robust 2DOF speed regulator is implemented with the
acceleration profile input, a comparatively good speed
response is obtained and shown in the lower section of
Fig. 5, and the stability of the whole system remains.
Smooth transitions can still be maintained during the
high speed turning corners at ¢ = 2s and ¢t = 3s. This
simulation result shows the stability radius of the over-
all system can be enlarged with the availability of the
acceleration input profile.

Table 1: Motor parameters.

I 0.144 x 10~ kg -m®

B 5.416 x 10~*Nm/rad-s~!
Am 0.0283Whb

La, Ly 11.5mH

P 8

Ke=§8M, 0.1698Nm/A

Encoder resolution | 8000 counts/rev

Rated speed 1000rpm
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The GS rebugt 2DCF spead regulator without the ageeleration profile inprt
— T T T

Speod - rad/sac

Tha imprivéd GS robust 2DGF speed reguiatat with the acosia ration pecfile inpul
y

Speed - ratsec

Figure 5; The simulation output speed responses.

In the practical experiment, another input profile
with the maximum value of |(%2—wg(t))’| < rg Is em-
ployed. Fig. 6 depicts the experimental speed response
when the improved GS robust 2DOF speed regulator is
used; the output speed does not contain any ripple and
achieves a desirable tracking response. The time-varying
sinusoidal modes inside the regulator can generate an
equal but opposite signal to eliminate the torque and
velocity ripples cause by the DC current offsets.

The sirmulation and experimental results shown in
this section demonstrated that the improved GS robust
2DOF speed regulator based on the IMP is an effective
solution to eliminate the torque ripples in an AC PM
motor control system.

The improved GS robust 2DOF speed tegulator with the accele ration profilg inpa

140 T T T —T T T T

Speod - radisec

Torque command = Hm

Figure 6: The experimental output speed response.
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5 Conclusions

In this paper the use of IMP to eliminate the torque
and velocity ripples caused by DC current offsets in AC
PM control systems is demonstrated to be an novel and
effective solution. The model of the torque ripples caused
by DC current offsets is developed. Then a GS robust
2DOF speed regulator based on the IMP is designed
to eliminate the torque and velocity ripples for a time-
varying speed step reference. The stability of this speed
regulator depends on the closed loop system poles and
the availability of the acceleration input profile. Another
improved GS robust 2DOF speed regulator with the ad-
dition of the acceleration profile input, is constructed so
as to maintain the stability of the closed loop system all
the time.

Simulation and experimental results reveal that the
improved GS robust 2DOF speed regulator can elimi-
nate the torque and velocity ripples successfully without
estimating the amplitude and phase values of the distur-
bance directly.

References

[} D.Chen and B. Paden, “Adaptive linearization of hy-
brid step motors: stability analysis,” JEEE Trans. Autematic
Control, vol. 38, no. 6, pp. 874-887, 1993.

[2] V. Petrovic, R. Ortega, A. M. Stankovic and G. Tad-
mor, “Design and implementation of sn adaptive controller
for torque ripple minimization in PM synchronous motors,”
IEEE Trans. Pewer Electronics, vol. 15, no. 5, pp. 871-880,
Sep. 2000.

[3] G. Ferretti, G. Magnani and P. Rocco, “Modeling,
identification, and compensation of pulsating torque in per-
manent magnet AC motors,” IEEE Trans. Industrial Elec-
tronics, vol. 45, no. 6, pp. 912-920, Apr. 1998.

[4]  W. C. Gan and L. Qiu, “Robust two degree of free-
dom regulators for velocity ripple elimination of AC perma-
nent magnet motors,” Proc. of the Ninth IEEE International
Conference on Control Applications, vol. 1, pp. 156-161, Sep.
2000,

[65] D. W. Novotny and T. A. Lipo, Vector Control and
Dynamiics of AC Drives, Oxford, 1998,

[6] W. A. Wolovich, Automatic Control Systems, Sauders
College Publishing, 1994.

[7]  C. A. Desoer and M. Vidyasagar, Feedback Systems:
Input-Quitput Properties, Academic Press, New York, 1975.

[8] W. J. Rugh, Linear System Theory, Prentice Hall,
1996.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 14,2021 at 06:34:23 UTC from IEEE Xplore. Restrictions apply.



