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This paper addresses the problem of torque and v t  
locity ripple elimination in AC permanent magnet (PM) 
motor control systems. A gain scheddd (GS) robust 
two degree of freedom (2DOF) speed regulator based 

currents 

Figure 1: An AC P M  motor control system. 
1 Introduct ion 

Precision speed control systems such as fecd control 
of machine tools in the mannfacturing indimtry are cru- 
cial in numerou indimtrial applications [l]. AC perma- 
nent magnet (PM) motors are attractive candidates for 
high performance industrial control applications as the 
maintenence of AC PM motors is minimal due to  the 
brushless rotor construction. However, the torque ripple 
generation in AC PM motor systems limits the appli- 
cations of AC PM motors in high performance speed 
and position control systems. In general, the distm- 
hence torque ripples of AC P M  motor control systems are 
composed of cogging torque, reluctance torque, mutual 
torque and the DC current offset torque that is caused 
by the DC offsets of the current sensors in the motor 
driver and the digital-to-analog converters in the m e  
tion controllcr. For optimally designed AC Pbl motors, 
cogging, reluctance and mutual torque ripples can bene- 
glcctd (2, 31. The torque ripples due to current offsets 
are dominant among the above four types of ripples in a 
typical AC PM motor control system as the offsets from 
the current sensors and digital-teanalog converters are 
difficult to eliminate. 

In a practical high performance AC Pbl motor con- 
trol systcm, the hasic components consist of a motion 
controller, a cnrrent tracking amplifier, a feedback en- 
coder and an AC PM motor as shown in Fig. 1. DC 
offsets tire always present a t  the motor terminals due to 
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the digital-to-analog converter offsets of the motion con- 
troller and the current sensor offsets of the current track- 
ing amplifier. These current offsets generate sinusoidal 
torque disturbances and hence produce velocity ripples 
at the system output. In the pest, the way to eliminate 
these torque ripples was to purchase high-grade and ex- 
pensive current sensors and digital-to-analog converters 
to minimize the DC offset values rcspectively; the total 
cost of an automation machine is thus much increased. 
To replace the above inefficient and high-cost solutions, 
the development of a novel and cost-effective speed con- 
trol algorithm to eliminate the torque ripples caused by 
DC current offsets is discused in this paper. 

The AC PM motor used in our motor control sys- 
tern is assumed to be well designed so that the cogging 
torque, reluctance torque and mutual torque can be n e  
glected, and this assumption is often valid in high per- 
formance applications [2]. On the other hand, we focus 
on the elimination of the torque ripples caused by DC 
current offsets. The internal model principle (IMP) is 
applied in the motor controller design to  eliminate the 
torque ripples without cstimatiug the amplitude and the 
phase values of the sinuoidal disturbance. A gain sched- 
uled (GS) robust two degree of freedom (ZDOF) speed 
regulator based on the IMP and the poltzero placcment 
algorithm is designed so as to achieve a desirable and v e  
locity ripplefree output response for a timevarying step 
rcference input. 
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2 Vector Control of A C  PM motors and  
Disturbance Modeling 

In this sect,ion the vector control of AC PM motors 
is rcviewed and the modcling of the torque ripple dis- 
turbance caused by the DC current offsets is discimed. 
With a current controlled AC Phl motor, the d - q frame 
currcnt, i d ( t )  and is(t) are the system inputs. Vector 
control technique suggests to set i d ( t )  = 0. This con- 
verts the nonlinear AC PM motor system into a linear 
system 151: 

3 P  
2 2  

T,(t) = --Ami&) 

where Te( t )  is the generated torque, n( t )  is the load 
torque, J ,  is thc moment of inertia, B, is the friction 
coastant, A, is the constant magnetic flux and P is the 
nuniber of poles. 

When the motor cilrrent ampliiicr is connected to 
the power source and the two current reference com- 
mands from tho motion controller are kept at zero, a DC 
offset current induced by the current sensor offsets and 
the digital-toanalog converter offsets may be present in 
onc or both of the closed loop controlled phases and, 
thus, also in the third one [3]. Let L ,  I6 he the t N O  

DC ciurent offsets present at the motor terminals due 
to  the digital-toanalog converter offsets of thc motion 
controller and t,he current sensor offspt,s of the currcnt 
amplificr. Then the torque ripples, T,,a(t), for AC PM 
motors with L d  = L,  is given hy (41 

where &(t)  is the rotor electrical angle. When the out- 
put mechanical speed tracks closely with the reference 
input at the steady state, it follows that the relation- 
ship q ( t )  = we(t)=$wr(t) can be assumed where w ( t )  
is defined as the disturbance frequency. The disturbance 
~ ~ a ( t )  can then he furthcr simplified and approximated 
hy a sinusoidal function: 

Tog( t )  = A d C O S ( W d ( t j t  ~ P d )  (1) 

where Ad is the magnitnde of the disturbance while & is 
the phase of the disturbance. The disturbance frequency, 
wd(t ) ,  is a slowly timc-varying function in comparison to 
the cosine funct,ion. 

In sumnmry, after employing the vector cont,rol and 
the formulation of the sinusoidal disturbance, the model 
of a vector controlled AC PM motor with the torque r i p  
plc disturbancc is given by Fig. 2. Hcre, u(t )  = ia(t) is 
the input currcnt, y(t) = u(t) is the output mechauical 

speed, Kt = ;$Am is bhe equivalent torque constant, 
d(t) = i 'a(trtr,(t) where q( t )  is the load torque which 
can bc considered as an unknown constant disturbance, 
~,,a(t) is the torque disturbance due to  DC current off- 
sets, and can bc approximated by a sinusoidal function 
with a known frequency wd(t )  and au unknown magni- 
tude and phase. Om goal is to  design a speed controller 
so that the output speed tracks a constant reference or a 
timevarying step reference and rejects the disturbance 
Toa(t) and q(t). Such a controller is required to he r e  
bust, i.e. to perform the tracking and disturbance rejec- 
tion even when the system parameters vary slightly, to 
have a good transient response, and to have low com- 
plexity, i.e. to have an order as low as possible. 

To eliminate completely and robustly the sinusoidal 
disturbance with the known freqnency, the use of the 
IMP is necessary. The IMP calls the use of the modes 
of the disturbance in the controller as internal modes of 
the feedback loop. The estimation of the amplitude and 
the phase values of the disturbancc is not necessary in 
the elimination of the sinusoidal disturbance. 

3 Controller Design 

The problem of accomplishing robust tracking and 
disturbance rejection is called the robust regulator proh- 
lem. The key idea to solve a robilst regulator problem is, 
based on the IMP, to have the controller to include the 
modes of the reference and disturbance. We also p r e  
pose to use a 2DOF controller structnre to achieve bet- 
ter transient respomcs aiid simpler desigrls. One of its 
advantages, in comparison with the usual one degree of 
freedom or unity feedback structnrc, is that the tracking 
performance and the disturbance rejection performance 
can be designed with different considerations. 

In this section we first investigate the design of a 
linear time invariant (LTI) robust 2DOF controller for 
a constant speed reference. Then a GS rohnst 2DOF 
controller for a slowly tiruevarying speed step reference 
is designed by modifying the LTI controller. 

3.1 Controller Design for a Constant  Reference 
In this section the input reference is assumed to be 

a constant value ur so that ud = $U,. Robilst 2DOF 
regulators were discussed in [6], in which the disturhance 

I d  

F igure 2: The system model with disturbance. 
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and reference are assumed to  have the same modes. In 
the following we assume that they may have different 
modes. The main purpose of this section is to develop 
a simple polezero placement design method for rohmt 
2DOF regulators. 

The 2DOF regulator structure employed in our 
analysis is shown in Fig. 3 with u denotes the semor 
noise. The detail design proccdure for the rob& 2DOF 
regulator using pole-zero placement technique is given 
in [4]. For oiu Phl motor control system, in reference 
to  Fig. 3, we have a(.) = s + 9 and b(s )  = 2. 
Since the reference r(t) is a step reference, it follows that 
mv(s) = s. Since the disturbance d ( t )  contains a sinu- 
soidal function of frequency wd = gw, and a constant 
function, it follows that m d ( s )  = s(s2 +.a). Therefore, 
m(s) = s(sz +U:). It follows that m(s)a(s) and b(s)  are 
coprime and a solution to the robust regulator problem 
hased on the IMP exists. Since no = 1, we can choose 
ng = 0. This leads to a controller of order equal to nm, 
which is the lowest possihle to achieve robust rcgulator. 
Hcnce 

k ( s ) = m ( s ) = s ( s Z + w 2 )  ( 2 )  
and h(s )  and q(s)  have the following form: 

h ( s )  = hos3 + his2 + h2.s + h3 
q(3)  = qOs3 + qls2 + q2s + q3. 

Choose the closed loop poles al, a2 and a3 according to 
the disturbance rcjcction specification and the remaining 
closed loop pols a4 according to  the transient tracking 
response specification so that  the closed loop character- 
istic polynomial is 

6 ( s )  = ( s+a1)(s+a*)(s+a3)(s+aa)  
= s4 + &s3 + &s2 + &S + 64 

Then by equating the coefficients of both sides of 

6(s) = k ( s ) a ( s )  + b(s)h(s)  

we can obtain 

(3) 

Finally, as m,(s) = s, we can arbitrarily assign the roots 
of q ( s ) .  Herc we choose the three roots of q(s)  to be 
exactly the same as three roots of 6 ( a )  subject to the 
constraint q3 = h3, 

where 

ht 
40 = ~ 

ala2a3 

h s ( ~  + a2 + 03) 

hs(aia2 + a z a 3  + a3ai) 

41 = 
a I a 2 a 3  

42 = 
ala2a3 

43 = h3. 

In this way, the system from r to y is turned to a first 
order system with a pole dctermined by the remaining 
root of 6(s) and the transfer function is given by 

3.2 Controller Design for a Time-Varying Step 
Reference 

The robust 2DOF regulator described in the previ- 
ous section is designed for a constant speed reference so 
that the tracking error is zero at the steady state. How- 
ever, there are many industrial applications that require 
a varying speed operation. In this care, the sinusoidal 
disturbance has a varying frequency. In order to  achieve 
zero steady state error, we need to  include an internal 
mode which varies with the disturbance frequency; other 
parameters of the controller in general also need to  be 
changed with time to eusure that the closed loop sys- 
tem, which is timevarying, is internally and externally 
stable. In this section the development of a GS robust 
2DOF regulator for a timevarying step reference to elim- 
inate the torque and velocity ripples of AC Phl motors, 
is discussed. 

The idea hehind the GS robust 2DOF polc-zcro 
placement regulator is to  replace the disturbance he 
qucncy wd in (2) and (3) - (6)  by w ( t )  = f w y ( t )  as fol- 
lows: 

Figure 3: The 2DOF regulator structure. 
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where wd( t )  is now the timovarying frequency of the 
disturbance. The coefficients of q(s) are constants as 
in (7). Fig. 4 shows the block diagram of the GS robust 
2DOF speed regulator. Let 2( t )  = [ q ( t )  z2(t)  z3(t)]’ 
and 6 ( t )  = [?(t) y ( t )  + n(t)]‘, the regulator can be im- 
plemented using the following observer canonical realiza- 
tion: 

= AK(t)e( t )  + [ B ~ i ( t )  Bm(t )  ] 6(t)  
4 t )  = C ~ ( t ) i ( t )  + [ DKi( t )  D K Z ( ~ )  ] 6(t)  

where 

Sincc we need to deal with timevarying controller para- 
meters, the transfer function argument is no longcr valid 
and instead, the state space theory has to be invoked [8]. 
In the following, the stability of the timevarying closed 
loop system under the control by the proposed GS I- 
bust speed regulator is studied. The linearized AC PM 
motor system plant can he represented hy the following 
state space equations: 

where a1 = B,/J,, bl = Kt/J,, xa(t) is the state 
variable, u(t)  is t,he control input, d ( t )  is the distur- 
bance input and y(t) is the control output. Let Z ( t )  = 

Figure 4: The GS robust 2DOF speed regulator 

[zi(t) zz(t) z 3 ( t )  2 4 ( t ) ] ’ ,  6 ( t )  = [r(t) d ( t )  n(t)]’ and 
Q(t) = [u(t) y ( t ) ] ‘ ,  the closed loop state space equations 
can be written as follows in reference to  Fig. 3: 

i ( t )  = A(t ) i ( t j  + B(t)ii(t) 
Q(t)  = C( t ) i ( t )  + D(t)6( t )  

where the system matrices are defined in (16) 

The above system matrices can be transformed into 
an ohserver canonical form so as to facilitate the stahil- 
ity analysis by small gain theorem. A transformation 
matrix P(t )  is chmen accordingly to perform the task. 
Let z ( t )  = [ z ~ ( t )  z z ( t )  z3(t)  a( t ) ] ’  be the new state 
variables. With the following transformation, 

0 0 1  0 
i ( t )  = P( t ) z ( t )  = [ 0 1 0 1 0 0 -wi(t) ; ] 4t ) :  

0 0 0  

the closed loop system state space equations can be 
transformed into the following equations, 

i ( t )  = Ai(t)z(t) + BZ(t)iL(t) 
!Xt) = C,(t)z(t) + Dz(t)iL(t) 

where 

P ( t ) A ( t ) P ( t )  - P ( t ) P ( t )  j F ’ ( t ) B ( t )  

~ - 
0 0 1  

o o t i  . .. 

The polynomial b(s) = s4 + 61s3 + 62s’ + 63s + 64 is the 
desired closed loop characteristic equation. According to 
the small gain theorem [i’], the associated autonomoiu 
system 

i ( t )  = A,(t)z(t) = 

is internally uniformly exponcntialty stable if the follow- 
ing condition is satisfied 

I(w:(t))‘l 

0 0 0 -64 

0 1 0 
0 0 1 

-1 

m 

(17) 
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-h i ( t )  1 -&t) -hz(t) + hv(t)w;(t) 
I 0 0 0  -h.iti 

1 0  0 0  1 

where 7s is defined as the stability radius. Therefore, as 
long as the input reference does not change too fast, the 
condition in (17) is satisfied, and the internal stability of 
the closed loop system is preserved. Since the matrices 
B,(t), C,(t)  and D,(t) associated with the closed loop 
systeni are bounded, it fallows from [8], the closed loop 
system is also hounded iuput hounded output (BIBO) 
stable if (17) is satisfied. 

As wd(t) = fw.(t), if the differentiation of the in- 
put speed reference wv(t) ' ,  or the acceleration profile, is 
avaliahle to the controller, then the stability radius can 
be further enlarged. By modifying the feedback gain 
hz( t )  in (11) as: 

Now the closed loop system matrices are given hy 

1 0 0 0 -J4 43 0 -h3(t)  
1 0 0 -63 q2 w;(t)  -hz(t) 
0 1 0 -62 41 0 - h i ( t )  

1 0  0 0 *I ' 1 0  0 

As now A,(t) is a constant matrix and the other system 
matrices B,(t) ,  C,(t) and D,(t) are hounded, the system 
is internally stable and BIB0 stable. 

In summary, the GS r o h u t  2DOF regulators hased 
on the IMP and the pole-zero placement algorithm can 
he implemented with an infinity stability radius provided 
that the differentiation of the input speed reference wF(t)' 
is avaliable for the input of the GS robust 2DOF regu- 
lators. In this case, the new gain scheduled terms are 
given by (8)-(12) except that hz(t) is given by (18). 

4 Simulation and Experimental  Results 

Simulations are first performed to test the proposed 
control algorithm. A 50W AC PM motor is used in our 
simnlatious and experimental tesqs. The motor parame- 
ters are listed in Table 1.  In the simulation, we assume 
that a -0.08A current offset is present at the current sen- 
sor of phase 1 and a 0.05A current offset at the current 
sersor of phase 2. 

The GS robust 2DOF speed regulator with the time- 
varying gain (8)-(12) is tested with a timevarying step 
reference. With the addition of the acceleration profile 
input, the improved GS robust 2DOF speed regulator 
with the new timevarying gain (18) can he implemented 
so as to  enlarge the stability radius. 

The GS robust 2DOF speed regulator is first de- 
signed to satisfy a step rise time < 60111s. According to  
the design procedure listed in Section 3, one of the pos- 
sible solutions is to choose the four closed loop pales at 
-40, -50, -60 and -80, and the three closed loop ze- 
10s at -50, -60 and -80. Hencc the overall system is a 
fist order system with a single pole at -40, the slowest 
closed loop pole. With this selection, the rise time of the 
closed loop system is around 54m< 60ms. The stability 
of this GS rohust 2DOF speed regulator depends on the 
stability radius TS and the differentiation of the input 
reference I(%w:(t))' in (17). An input profile with the 
condition l ($w:( t ) ) '  > 7s = 5.57x105, is tested with 
the proposed GS robust 2DOF speed regulator. 

Without the acceleration profile inpnt, the speed r e  
sponse is shown in the uppcr section of Fig. 5; the output 
speed response is not good in general arid at t = 3s, ils 
the valueof l($w:(t))( > TS, the output speed becomes 
unstable and oscillntory. Howcver, if the improvcd GS 
robust 2DOF speed regulator is implemented with the 
acceleration profile input, a comparatively good speed 
response is ohtained and shown in the lower section of 
Fig. 5 ,  and the stability of the whole system remains. 
Smooth transitions can still be maintained during the 
high speed turning corners at t = 2s and t = 3s.  This 
simulation result shows the stability radius of the over- 
all system can be cnlarged with the availahility of the 
acceleration input profile, 

Table 1: Motor parameters. 

5.416 x 10-'Nm/rad.s-' 
0.0283Wh 

Ldr Lq 11.5mH 
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Figure 5: The simulation output speed responses. 

In the practical expcriment, another input profile 
wit,h the maximum value of l ($w;( t ) ) '  < 1's is ern- 
ployed. Fig. G depicts thc experimental speed response 
when the improved GS robust 2DOF speed regulator is 
used; the output speed does not contain any ripple and 
achieves a desirable trxking response. The timevarying 
sinusoidal modes inside the regulator can generate an 
equal but opposite signal to  climinate t,hc torque and 
velocity ripples cause hy the DC current offsets. 

The simulation and experimental results shown in 
this section demonstrated that the improved GS robust 
2DOF speed regulator based on the IMP is an effective 
solution to  eliminate the torque ripples in an AC PM 
motor control system. 
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Figure 6: The expenmental output speed response 

5 Conclusions 

In this paper the use of IMP to eliminate the torque 
and velocity ripples cawed by DC current offsets in AC 
PM control systems is denlorstrated to he an novel and 
effective solution. The model of the torque ripples caused 
by DC current offsets is developed. Then a GS robust 
2DOF speed regulator based on the IMP is designed 
to eliminate the torque and velocity ripples for a time- 
varying speed step reference. The stability of this speed 
regulator depends on the closed loop system poles and 
the availahility of the acceleration input profile. Another 
improved GS robust 2DOF spced regulator with the ad- 
dition of the acceleration profile input, is constructed so 
as to maintain the stability of the closed loop system all 
the time. 

Simulation and experimental results reveal that the 
improved GS robust 2DOF speed regulator can elimi- 
nate the torque and velocity ripples successfully without 
estimating the amplitude and phase values of the distw- 
bance directly. 
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