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Abstract

This paper considers the robust stability of a linear time-invariant state
space model subject to real plant data perturbations. The problem is to find the
distance of a given stable matrix from the set of unstable matrices. A new
method, based on the properties of Kronecker product and two other composite
matrices, is developed to achieve this aim; this new method makes it possible to
distinguish real perturbations from complex ones. Explicit bounds on the dis-
tance of a stable matrix to the set of unstable matrices are obtained for both the
continuous time and discrete time case. The bounds are applicable only for the
case of real plant perturbations; hence they are less conservative to apply than
for the case when complex perturbations are allowed. Several examples are
given to demc the new bounds; in general, the bounds obtained are
“tighter” than results previously reported.

1. Introduction

In the past decade, a great deal of research has been done on the robust
stability problem. However, most of the results obtained are based on the
transfer function representation of a system, and use frequency domain argu-
ments. Some attention, however, has been paid to the time domain approach of
the robust stability problem, e.g. {11-[5). Two major methods are used in these
papers. One is based on Lyapunov’s stability theory [1], [5]; the other is based
on frequency domain stability criterion [2]-[4].

This paper develops a new method for the stability robustness analysis of
a state space model subject to real perturbations. Specifically, it is desired to
determine the distance of a given stable matrix Ae R™" from the set of all
unstable matrices in R™*, where the distance in R™* is defined by the spectral
norm. This problem has been previously considered, e.g. [1]-[3], and some
lower bounds of the distance have been obtained. These bounds are derived
without assuming that the matrix space is real; therefore they are applicable for
both real and complex perturbations. If only real perturbations are present how-
ever, the bounds obtained are conservative. In this paper, bounds are obtained
assuming that only real perturbations are present. The approach used is based
on some properties of the Kronecker product and two other composite matrices,
and examples show that the new bounds obtained are less conservative than pre-
vious reported ones. The new bounds are easy to compute numerically if A is
modest in size.

The structure of this paper is as follows. Section 2 describes the problem
to be studied and reviews some existing results on this problem. Section 3 con-
tains some preliminary results on properties of the Kronecker product. The new
perturbation bounds are given in Section 4 in terms of the singular values of
matrices formed by the Kronecker product and sum. Section 5 discusses various
special cases, where it is shown that the new bounds become exact bounds in
certain special cases. Section 6 provides an alternative way to view the matrices
described in Section 4, which leads to some useful properties of these matrices.
Two new composite matrices are defined in Section 7, and their properties are
described. In Section 8 several new perturbation bounds are obtained in terms
of the composite matrices defined in Section 7. Some numerical examples are
given in Section 9. Due to the space limit, some of the proofs are omitted.
Readers are referred to [13] for a complete treatment.

The following notation will be used throughout this paper. For an mxn
matrix A, A" is the transpose of A and A* the conjugate transpose of A. o;(4),
i=1,2,..,min(m,n), denotes the i-th singular value of A with order
01(A)202(A)2 " * * 20pin(my(A); in particular, 6(4) and Opingmny(A) are
denoted by 6(A) and g(A) respectively. IlAll, denotes the spectral norm of A and
lAllr denotes the F bleélius norm of A, which have the property that llA1,=6(4),

min(m,n)
Allp=

Y oi4
i=t

A are denoted by tr(A), det(A) and sp(A) respectively, and the i-th eigenvalue of

A is denoted by A;(A) with no specific order imposed.

. If A is square, the trace, determinant and spectrum of
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2. Development
Let JF be the field R or€. Let€, and €, be the stable regions in the com-

plex plane for continuous and discrete time systems, respectively, i.e.
€ =(seC, Re(s)<0},C=(seC, |s1<1}. A matrix Ae F™* is said to be stable
in the continuous (or discrete) time case if sp(A)cC, (or €y); if this is not the
case A is said to be unstable. It is desired to find the distance of a given stable
matrix A€ F™* from the set of all unstable matrices in JF™**, which is defined
for the continuous and discrete time cases by

Wr(A) = inf {IAANl:AAe F™* and sp(A +AA)¢C, ) @1
and .

VE(A) = inf (IAAl,:AAe F™* and sp(A+AA)EC,)
respectively.

Let the boundary of €, and€, be denoted by I’ and T respectively. Then
itis not hard to see that

Wr(A) = inf (IAANl,:AA€ F™ and sp(A +AA)AT; #B)
Vp(A) = inf (IAAN,:AAe F™* and sp(A+AA)NT =D}

2

@23)
24
An immediate consequence of (2.1)-(24) is that pr(A)2pe(A) and
VR(A)2Vg(A) if Ae R™®,
The problem of computing jr(A) given A was first considered in [1]. A
lower bound of j1z(A) was obtained as

HR(A)> =

=, 2.
E) @3)
where P satisfies the Lyapunov equation
AP+PA=-2I 2.6)

It is observed that if A" is replaced by A° in (2.6), % becomes a lower
bound of pg(A), ie. if AeR™", the bounds obtained for pg(A) and pr(A) are
the same.

References [2], [3] studied this problem using a frequency domain
approach and found that

le(A) = inf g(jal-A). @n
oeR
Clearly, (2.7) gives a lower bound to pg(4), i.e.
ug(4)2 ‘;g‘f! o(jwl-A). 2.8)

Since (2.7) gives the exact expression for pg(A) but (2.5) gives only a
lower bound for i¢(A) (when A" is replaced by A "), bound (2.8) is tighter than
bound (2.5). This is proved in [2] using another approach. If Ae R™* is a nor-
mal matrix, bounds (2.5) and (2.8) give the exact value of pg(A) which is equal
to the distance between sp(A) and the imaginary axis [2].

The discrete time version of bounds (2.5)-(2.8) can be obtained using
exactly the same approach,

The exact expression of pg(A) for general real matrices has not yet been
obtained. Bounds (2.5) and (2.8) share a disadvantage in that they cannot distin-
guish between real and complex perturbations; this is because the methods used
to derive them are not able to make the distinction. In order to reduce the con-
servatism, a new method which can make the distinction has to be developed.
In this paper, such a method is established using the properties of the Kronecker
product and other matrix compositions. Lower bounds of jLg(A) are found. The
new bounds are applicable only to the real matrix space and in general are
tighter than (2.5) and (2.8). The new bounds are easy to compute if A is modest
in size, do not require a one-dimensional search as required by (2.8), and the
computations required are numerically well-defined.
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3. Preliminaries
Let A=[a;;}e F™, B=[b;]eFP. Then the Kronecker product of A and
B, denoted by A®B, is defined as follows:
ayB - a,B
A®B = :

GpiB e

© e PN, @a.n
GmaB

If m=n and p=q, the Kronecker sum of A and B, denoted by A®B, is
defined by

A®B = A®I, +1,8B € F™. - (32)

The following theorem gives a list of properties of Kronecker product and
sum, which will be used in the development.

Theorem 3.1 [6]

(@) Ifo,BeF,then
A®(0B+BC) = 0((A®B)+BABC)
(0A+BB)®C = (ABC) +BBEC).

(A®B)' =A"®B".

(A®B) =A"®B’.

(A®B)(D®C)=AD®BC.

(A®B)Y ' =A"'®B, if A,B are nonsingular.

If Ac F™™, BelF™™, sp(A®B) = (A, (A)A;(B), i=1

If AcF™™ BeF™, sp(A®B) = {A:(A)+A;(B), i=1

®)
©
@
)
®

W, j=1,..,m}.

yeenlly j=1,0,m).

The following theorem can be easily developed from Theorem 3.1

Theorem 3.2

(@) If U,VeF™* are unitary matrices then so is UeVv.

®) If ABeF™ have singular value decompositions A=U,§ 1Vi and

B=U,S,V;, then A®B has a singular value decomposition
A®B = (U1®U;)(S1®Sz)(V1®Vz)‘.

IA®BII, = IAll,-IB,.

33)
©

Proof
(@) Using Theorem 3.1(b) and (d), if U,Ve F™* are unitary, then

WeV)' (USV) = (U V" \UBV)=U"USV'V =8, =1,.
This implies that U®V is unitary.
Using Theorem 3.1(b) and (d), it is easy to show that equality (3.3) fol-
lows. Since U,®U and V;®V are unitary and §;®S, is positive diag-
onal, it follows that (3.3) is a singular value decomposition of A®B.
This result is an immediate consequence of (b).

®)

©

a
Remark: The norm equality in Theorem 3.2(c) is actually a special case of the
general theory of norms of tensor products [8]. The proof given above, how-
ever, is more direct.

4. Robustness Bounds

In what follows, it is always assumed that Ae R™* and that A is stable,
i.e. sp(A)cC; in the continuous time case and sp(A)c€, in the discrete time
case. Since only real matrix spaces are considered, we write (A) for ur(A)
and v(A) for vg(A). To rule out trivial situations, it is assumed that n>2.

1. Continuous time case
It is desired to find

(A) = inf (IAAl,:AA€R™, sp(A+AA)AT, 2D}, @.1)
where I', = (jo: 0eR}.
Let
11 (A) = inf {IlAAlL:AAe R™*, Ocsp(A+AA)} @.2)
Wa(A) = inf (lAAIL:AAe R™*, spA+AANT~(0))#2),  (4.3)
where "~" means the difference of two sets.
Then it is clear that
Hg(A) = min(p; (A).p2(4)). (CX))
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11 (A) can be easily obtained as
W (4) = o(4).

The following analysis will therefore focus on py(A). Two lemmas are
required.

@.5)

Lemma 4.1 [13]: Given a matrix Be R™*, assume sp(B)n{jm:we R~(0) }#D,
then rank(B®B)<n?-2.

Lemma 4.2 [11]: If Be R™*, then for any nonnegative integer r<n,
min{llABIl: ABe R™* ,rank(B +AB)<r} = 6,,1(B).

The following main result on the robust stability of continuous time sys-
tems is then obtained.

Theorem 4.1: Given a stable matrix Ae R™", then

uz(A)z%c,-_, (A®A). @6

Proof: IfIAAIl, < % ,01(A®A), then

IAADAAIL, =TIAART+H ®AA, < HAA BT, + T @AAN,
=2llAAll, < 6,1 (ADA).
From Lemma 4.2, we know that
rank[(A +AA)YD(A +A4)] = rank[(ADAM(AABAA)] > n?-2.

It follows from Lemna 4.1, therefore, that A +AA has no imaginary eigen-
values.
Therefore, if sp(A+AA)NT,~{0})#D, IAAll, has to be greater than or
equal to % 01 (ADA).
0

A lower bound of M(A) can then be obtained as a consequence of
Theorem 4.1 and (4.4)-(4.6).

Corollary 4.1: Given a stable matrix Ae R™*, then

W) 2 min (G(A), 3 G- (ABA)). )

The bound (4.7) is in such a simple form that it can be easily computed
using standard software. Experience shows that for a matrix A of moderate size,
computing (4.7) is in fact faster than computing bounds (2.5) and (2.8), and a
large number of examples show that (4.7) is tighter than (2.5) and (2.8). In the
next section we will show that the bound (4.7) is exact in some special cases, in
particular, for the case when Ae R?%; it is to be noted that bounds (2.5) and
(2.8) are in general not exact for arbitrary 22 real matrices.

II. Discrete time case
In this case, it is desired to find

V(A)=inf (IA4ll,:AAe R™, sp(A +AA)AT# @], @8
where T';= (e/®:0eR}.
Let
Vy(A)=inf (IA41,:AA € R™, 1€ sp(A+AA)} ©9)
va(A)=inf (IALI:AA€R™*, 1€ sp(A +AA)) ©.10)

va(A)=inf {IIAAIL:AA€ R™®, sp(A+AAYN(T~(1,-1}) #@).(4.11)

Then
Vg(A)=min{v;(A),v2(4),v3(4)}. @4.12)
V1 (4) and V,(A) can be easily obtained as
viA)=a(A-1), Vvo(A)=0(A+]). 4.13)

A bound for v3(A) will now be developed. The following lemma is
required:

Lemma 4.3 [13]: Given a matrix Be R™*, assume sp(B)N(Ty~{1,-1})=Q,
then rank(B®B -1)<n-2.
Theorem 4.2: Given a stable matrix A€ R™", then

V3(A) 2 [0, (ARA 1)+ TA)] 2 - (A). 4.14)
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Proof: If IAAl, < [0, (A®A-T)+3%(A)]"2~G(A), then
IAA®A +A®AA +AA®AAI, <IAAIZ + 2HA Il IAAI,
= (IAAIHIANL)Y - 1412 < 6,2 (ARA-T).
This implies that
rank[(4 +AA)®(A+AA)-T] =rank[(A ®A —I}HAARA+A®AA+AA®AA)] > n2-2.
It follows from Lemma 4.3, that sp(A +AA )T ;~{-1,1))=2.

Therefore, if sp(A+AA)N(T 4~{1,~1))#D, IAAll, has to be greater than or
equal to [0,2_; (A®A -T)+G*(A)]2-G(A).
a

A lower bound of v(A) is then obtained.

Corollary 4.2: Given a stable matrix AcR™", then
1
V(A)2min{S(A~T), 5(A+), [0, (ARA-THT?(A)] 2 ~G(A))(4.15)

The bound (4.15) is also very simple to-compute, and is exact in some
special cases.
5. Discussion of Special Cases

A question which naturally arises is whether or not the bounds given by
Corollaries 4.1 and 4.2 are exact, i.e. whether or not the inequalities in (4.7),
(4.15) are actually equalities. The answer to this question is not known for arbi-
trary stable matrices; however, the exact bounds can be established for some
special classes of matrices.
I._Continuous time case

From the development of the last section, it is observed that if
g(A)s%c,.t_l (ADA), then N(A)=g(A); in this case, p(A) is exactly obtained.
The exact {1 (A) can also be obtained in some other cases.

Theorem 5.1 [13): If Ae R™" is a stable normal matrix, then

BA)=min{g(A), 70,1 (A9A))

=min{-ReA,(4), i=1,2,..,n}. 6.1

This theorem implies that the new bound (4.7) is exact if A is normal. It
has been shown [1], [2] that the previous bounds have the same property.

Theorem 5.2 {13): If A is a 2x2 real stable matrix, then
G1AA)=-tr () 52

and

. 1
u(A)=mm{<_f(A).—--2- tr(4)). (53)
The 2x2 case has also been studied in [4] where it has been shown that
Mg(A)=min{c(4), —% tr(A)}, but no previous general bounds, when applied to
the 2x2 case, give the exact answer. This result gives support to the claim that
the new bound (4.7) is tighter than previous ones.

II. Discrete time case
Similar to the continuous time case, v(4) can be exactly obtained if
min{g(A -I),6(A+)} <[6,:_; (A®A -I+G*(4)]2-5(A). For the case when A
is normal or A is 2x2, similar results can be proven.
Theorem 5.3 [13]: If Ae R™* is a normal matrix, then
V(4)=min{0(A~T),0(A+]),[0,_; (ABA -T)+52(A)] "2 - 5(4))
=min{1-1};(A)1, i=1,2,..,n}. 5.4)

If Ac R?2, it can be shown that 03(A)=1-det(A)(see [13]). Then bound
(4.15) becomes

V(A)zmin{g(A-T),0(A+),[1-det(A)+5*(A)]*—5(A)).
However, it is not clear if this actually gives the exact value of v(4).

(5.5)
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6. Some Properties of Matrices A®A and A®A —I

The bounds developed in section 4 require the singular values of the
matrices A©A, A®A~/ to be determined. Such calculations may be difficult to
obtain if n is large. In the following sections, a method to reduce the computa-
tion complexity will be developed by introducing two other matrix composi-
tions. These matrix compositions have some similar properties to the Kronecker
product, but have smaller dimension. They can also be used to obtain robust-
ness bounds similar to those in section 4.

Let AeF™". Consider ADA and A®A-T as linear operatqrs on the Hil-
bert space F* , mapping xe F" to (A®A)x and (A®A -T)xe F* respectively.
The inner producton F* is defined in the usual way, i.e. (x,y)=x*y, VxyeF".
The norm induced by this inner product is the Holder 2-norm iil,.

The nxn matrix space F™* is also an n2-dimensional vector space over
FF. It becomes a Hilbert space, if we define an inner product on it by
&.Y)=tr(X'Y), VX,Ye F™**. The norm in ™" induced by this inner product is
the Frobenius norm Illz. Now define a linear operator Vec: F™* — JF* by

X1 X2 "t X
X21 X2 "7 X .

Vec) @ L IURRAE MUE SVRERE SREES 38 B (R )
Xny Xn2 "7 Xpn

‘We need two properties of Vec to proceed.

Lemma 6.1 [6]: LetX,Y,Ze F™*, then
@ X'Y)=[Vec(X)])" Vec(Y),
() Vec(XYZ)=(Z'®X)Vec(Y).

Lemma 6.1(a) implies Vec is an isomorphism. Under this isomorphism,
operators A®A and A®A-I on F* become operators L, and L, mapping
XeF™ 10 L(X)=AX+XA" and Ly (X)=AXA'-X respectively. L, is usually
called the Lyapunov transformation. L, is the discrete time version of the
Lyapunov transformation. We will next explore some properties of operators L,
and L,.

Let S; cF ™" be the subspace of all symmetric matrices, and let S,cIF ™"
be the sub§pace of all skew-’symmetric matrices.  Formally,
8;={Xe F™":X'=X} and 8,=(XeF™":X'=-X}. The following two proposi-
tions are required in the later development.

Proposition 6.1
$iLS, and §;+8,=F™"
Proof: VX;eS, and X,e§,,
(X1.X2)=tr (X1 X5) =tr(X1X ) = tr (XX}
=—tr(X,X1)=—tr (X1 X5)=—(X1,X;).

Thus (X1,X5)=0, i.e. X 1X,.

This proves S; L S;

VXEF™ let X,= % (X4X), Xp= —21- ®-X).

Then X;=X,, Xo=—X,, ie. X,€8,, X,€S,.

S0 8,+8,=F™",

. Since S;18,, the sum is acwmally a direct sum, which proves that
S48, =F™*,

a

Proposition 6.1 states that §; and S, are orthogonal complements. to each

other.
Proposition 6.2
L.(81)cS;, L(Sy)cS, and
La(81)8y, Ly(S)cS,.
Proof: VX,€S8,, we have X; =X,. Thus
LX) =(AX1+X14") =AX; +X[A = AX X, 4" = L(X,),
so that L,(S;)cS;.
VX,€8,,we have X, =X,. Thus
Lo (X)) =(AX 3+X,A4") =AX3+X5A" =~AX ;—X,A4" =L (X,),
so that L,(S,)cS,.
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This proves the result for L.

The proof for L, is almost the same and is omitted.
o

Proposition 6.2 states that S, and S, are reducing subspaces of F"** for
operators L, and L.

Since the operator Vec is an isomorphism from F™* to IF"', and since
A®A and A®A-T are the induced operators of L, and L, under Vec, the follow-
ing two corollaries can be easily obtained.

Corollary 6.1
Vec(S1)LVec(S;) and Vec(S,HVec(Sy)=F" .

Corollary 6.2
(A®A)Vec(S;)cVec(S;), (ADA)Vec(S,)cVec(S,) and
(A®A)Vec(S))cVec(S;), (A®A)Vec(S,)cVec(S,).

7. Two Other Composite Matrices

The Kronecker product can be considered as a composition of two
matrices. Two other compositions of matrices will now be introduced. These
compositions have some similar properties as the Kronecker product, but have
smaller dimension, and stability robustness bounds can be obtained in terms of
these compositions.

Let A={ayleF™", B=[b;jle F™*, n22. Let (i},i;) be the i-th pair of
integers in the sequence

(1,1),(1,2),...,(1,n),(2,2),(2,3),....(2,1),(3,3),....(n ~1,n),(n,n)(71.1)

Definition 7.1

1 1
— - 1% — 1.
AGB '—:[Cij]EF 2 R(a+1)x 2 n(n+ )'

where
ai,j,bi,j, i1=i3, j1=f2s
= % (4,55, i g, bij 43, B, 463 Biy) D1z, i, (1.2)
% (a;,;,bi,j,*vai,,bi;,) otherwise.
Let (r,,r,) be the r-th pair of integers in the sequence
(1,2),(1,3),...,(1,7),(2,3),-,(2,7),(3.,4),....(n—1,n). (1.3)
Definition 7.2
A58 e F—;—u(n-l)x%n(n——l),
where
o= 3 G By BriGrBr G ) 4

A different version of ® can be found in [9), but its origin is ot given. ®
was introduced in [10]._Since no name has been given to ® and &, they will be
called §-produ_gt and §-product respectively. The corresponding sum opera-
tions of ® and ® can be defined as follows:

Definition 7.3
— _ _ L et L agas1)
A®B=A®I,+I,®Be F? 2 . (7.5)
1 1
= = = —a(a-1)x>-n(n-1)
ABB=ABI,+I,®BF2 2 . 1.6

These sum operations will be called &-sum and g-sum respectively.

Unlike the Kronecker product and sum, ®, 3, ® and €=3 are defined only
for square matrices with the same size.

The operations ® and ® are closely related to the Kronecker product
operation. Recall from the last section that the space IF” with inner product
(xy)=x"y, and the space F™* with inner product (X,¥)=tr(X"Y), are iso-
morphic to each other with the isomorphism Vec: F™* —»JF" defined as in
(6.1). Subspaces S; and S, are defined as S;=(XeF™™:X'=X},
S;=(Xe F™*X'=X).

541

Define E;;e IF ™ to be matrix with 1 in the #,j-th entry and 0 elsewhere.
Let (i1,i,) be the i-th pair of integers in the sequence (7.1) and let

E;;, if iy=i,,
vi= izi— E; i, +E;,;,) otherwise. @7
Then {U,,U,,..., U%,,(,H.l,] is an orthonormal basis of S;.
Let (r,,r2) be the r-th pair of integers in the sequence (7.3) and let
=L, ) 8)
Then {Vl,Vz,...,V%,(,,_,)} is an orthonormal basis of S,.
Lot w=Vee(U),  i=12. % a(rel),  and  vi=Vec(V),

i=1,2,.,..%n(n—1). Then (u,,uz,...,u%,(.,.l)] is an orthonormal basis of
Vec(S;), and {v,,v,,. ..

Define

,v%,.(,._u] is an orthonormal basis of Vec(S;).

2, 1
L 0 nA{n+1)

T, =[u1su2;---,u%n(n+l)] eF 7.9
n’xln(n-l)
Tz=[v1,V2»---’V%n(n-1)]€ F (7.10)
It can be verified that [T; T,] is a real orthogonal matrix.
Proposition 7.1 [13]: Let A,Be F™". Then
A®B=T{(A®B)T, (7.11)
A®B =T, (A®B)T,. 7.12)

From Corollaries 6.1 and 6.2, the following proposition easily follows:

Proposition 7.2: Let Ae ™. Then
T (A®A)T,=0
TH(A®A)T, =0
T, (A®A)T,=0
TH(ADA)T; =0.

Let T=[T; T,]. Propositions 7.1 and 7.2 imply that

ABA 0

T'(A®A)T= - (1.13)
0 A®A
ABA 0

T'(A®A)T = = | (7.14)
0 AGA

Various properties of the §,§-product and 5,§-sum will now be
obtained. Although they can be proved directly from Definitions 7.1 and 7.2,
the proof is easier by using Propositions 7.1 and 7.2.

Theorem 7.1 [13]: LetA,B,C,DeF™*; o,BeFF. Then

(@) A®(GB+BC)=a(ABB)+BABC)
(0A+BB)®C = (A®C) +B(BEC).

(b) (A®BY=A"®B".

(©) (ABA)YB®B)=AB®AB.

(@ (A®A)'=A"'®A™ if A is nonsingular.

(€ (CB®CYABA)CBC)™ =CACSCAC™ if C is nonsingular,
(a)-(e) also hold if ® and ® are replaced by ® and ® respectively.

© ABBI,<IA, - 1Bl,, IABBII, <IAl, - IBl.

& spABA)=(M(ANA), 1=1,2,....m, j2i)
SPA®A) = (M(AN(4), 1=1,2,...n-1, j>i}.

() spABA)= (N(AX+A;(A), 1=1,2,...,n, j2i}

SPABA)= {(Mi(ArA;A), 1=1,2,...,n-1, j>i}.
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8. More Robustness Bounds

In this section, the composite matrices introduced in the last section are
used to obtain some robustness bounds for stable matrices. We again assume
throughout the section that Ae R™*, n>2 and A is stable.

1. Continuous time case
Let [1(A) be defined as in (4.1), i.e.
wA)=inf {IAAll:AAe R™", sp(A+AA)NT, D},
where I, = {jo:0eR}.
If sp(A+AA)NT, 2D, (A+AA)5(A +AA) is singular by Theorem 7.1(h);
this leads to the following result.

Theorem 8.1: Given a stable matrix Ae R™*, then

u(A)z%g(AéA). @1

Proof: IfIAAIl < %g(A@A),

HAABAAI, = IAABI +IBAAT, < IAABTIHIBAAI, < 2IIAAL,
<G(ABA).
Thus ABA+AABAA = (A +AA)D(A +AA) is nonsingular, which implies that
SpA+AAYNT =D,

Now let w1 (A) and u2(A) be defined as in (4.2) and (4.3), i.e.

Wy (A)=inf (IAAl;:Ade R™*", Ocsp(A+AA)}

Wp(A)=inf (lIAAll;:AAe R™*, sp(A+AA)N(T.~{0})»D}.
It is known that

H1(A)=g(4) and pA)=min{p, (4),K,(4)}.

By Theorem 7.1(h), (A+AAYBA+AA) s
Sp(A+AA)N(T~{0})#D. This leads to the following theorem.,

singular  if

Theorem 8.2: Given a stable matrix A€ R™*, then

Ha(4)2 3 O(ABA). ®2)

Its proof is similar to the proof of Theorem 8.2, so it is omitted.

Corollary 8.1: Given a stable matrix Ae R™" , then

BEA) 2 min (g(4), 2 SABA)). ®3)

It is of interest to compare the bounds (8.1), (8.2) and (8.3) with bounds
(4.6) and (4.7). Since A®A and A®A have smaller dimensions than A®A4, it is
observed that bounds (8.1), (8.2) and (8.3) are easier to compute. (7.14) shows
that the singular values of ABA together with those of A®A are just the singular
values of A®A; thus either G(A®A) or G(A®A) must be equal 10 GABA). A
conjecture, drawn from a large number of examples, is that G(ADA)=c(ADA).
If this conjecture is true, bound (8.1) is worse than bound (8.3), since
G(ABA)<a(ABA) and %g(A@A) = % G(A®A)<G(A). (The last inequality is
not directly obvious, but can be proven.) Examples also show that g(AgA) may
be greater than 6,21 (ADA). This implies that bound (8.3) may be less conser-
vative than bound (4.7) (if the conjecture is true).

It can be shown that if A is normal, bounds (8.1) and (8.3) result in the
exact value of u(A). If Ae R?2, the definition of A®A gives that A®A =tr (A);
thus bound (8.3) and bound (4.7) both give the exact value of {(4) in the 2x2
case. However, bound (8.1) does not give the exact value of p(A4) for general
2x2 matrices. This result also supports our conjecture.

II.. Discrete time case
Recall that v(A), v;(A), vo(A) and v5(A) are defined in (4.8)-(4.11) as fol-
lows:
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V(A)=inf (1AAll:Ade R™", Sp(A+AA)T;# D)

vy (A)=inf {IAAll;:AAe R™*", 1esp(A+AA))

Vy(A)=inf {IAAll:AAe R™*, ~1esp(A+AA))

v3(A)=inf (IAAII:AA€R™®, sp(A+AA)N(Ty~{1,-1})# D),
where Ty = {e/®:0e R}.

It is clear that
Vi(A)=a(A-]), v,(A)=0(A+]) and
V(A)=min{vi(4),v2(4),v5(4)}.

By Theorem 7.1(g), (A +AA)§(A+AA)—I is singular if sp(A +AA4)NT #D,
and (A +AA)®(A +AA)-T is singular if sp(A +AA)(T4~(1,~1))#@. The follow-
ing results are now obtained.

Theorem 8.3: Given a stable matrix Ae R™", then
V(A) 2 [(ABA -THGHA)] 2 - &(A). 8.5
Proof: If IIAA, < [0(A®A -1)+32(A)] "2 - (A), then
IAARA +ABAA +AA®AAI, <IAAIZ + 21411 IAAN,
= (IAANHIANL)2 ~ A N2 < G(ARA -T), ;
which implies that A®A—T+AA®A +A®AA +AABAA = (A +AA)B(A +AA)-T is
nonsingular,
Thus sp(A+AA)NT, =@,

Theorem 8.4: Given a stable matrix Ae R™*, then

Va(A)2 [0(ABA-THE A2~ 5A). @®6)

The proof of Theorem 8.4 is similar to that of Theorem 8.3 and s0 is omit-
ted.

Corollary 8.2: Given a stable matrix AeR™*, then

V(4) 2min{0(A+),5(A-1). [0ABA-IHFA)25A)).  (8.T)

For the discrete time case, we also can note that bounds (8.5)-(8.7) are
easier to compute than bounds (4.14) and (4.15). Since (7.13) implies that

ABA-I 0

T (A®A-I)T= = .
0 A®A-I

This implies that either g(A@A -I)or c_r(AgA ~I) must be equal to G(A®A-T).
A conjecture similar to the one suggested for the continuous case is made that
S(A®A-I)=0(A®A-T). If this is true, then bound (8.7) will give the "best"
result. For the case when A is normal, both (8.5) and (8.6) give the exact value
of v(A) (which is the distance of sp(A) to T;). If A is a 2x2 matrix, Definition
7.2 gives A®A-I =det(A)-1; so bound (5.5) can also be obtained from 8.7).

9. Numerical Examples

Several examples are presented to demonstrate the new bounds obtained,
and to compare them with previous bounds. Examples 1-3 are for continuous
systems, and Example 4 is for a discrete system.

Example 1
A stable 5x5 matrix obtained from a linear quadratic optimal control
design was considered in [1], using the bound (2.5). The matrix is
-0.201 0.755 0.351 -0.075 0.033
~0.149 -0.696 —0.160 0.110 -0.048
0.081 0.004 -0.189 —-0.003. 0.001 |.
-0.173 0.802 0.251 —-0.804 0.056
0.092 0467 -0.127 0.075 ~-1.162
Previous bounds give
bound (2.5): BR(A) 21 (4) 20.077
bounds (2.7), (2.8): HR(A)21e(4)=0.1116.

On applying the new bounds to A, we obtain the following results:
o(A)=0.1116

A=
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GHABA)=0.1716, Gy (ABA)=03480, G, ,(A®A)=0.3604
O(ABA)=01716, G(ABA)=0.3604,

which implies that
bound 4.7 pR(A)> min[g(A),% 0,1 (ABA)} =0.1116
bound 8.1): u,,(A)z%g(AéA)=o.osss
bound (8.3): u,,(A)Zmin(g(A),%g(AéA)) =0.1116.

Since min[g(A),% g(AéA)]:g(A), we actually have that pig(A)=0.1116.
The conjecture that g(AéA):g(A@A) holds in this case. We also have that

g(AéA)=o‘,.-_2(AeA)>c,.f_1(A®A). This shows that it may be possible to
obtain a tighter bound using (8.3) instead of (4.7).

Example 2

This is an example for which a perturbation more easily moves two poles
to the imaginary axis rather than move one pole to the origin. In this case, the
new bounds give a great improvement compared to previous ones. The matrix
considered is as follows:

01 100
A=|-10-1 2|
1 1-110
The robustness bounds are as follows:
bound 2.5 Mr(A)20.1626
bond 0B:  pe(4)205083
bound (4.7): Hg(4)= m'm(g(A),E o1 (AGA)}
=min{14704, —;- x1.3342) =0.6671
bound 8.1}  Hn(A)2 -;— G(ABA)=0.1894
bound (8.3): uR(A)zmin[g,—;-g(AgA))
= {14704, %x 1.3342) =0.6671.

The best result is given by (4.7) and (8.3). Again the conjecture is true,
and bound (8.1) is worse than bound (8.3).

Example 3

In this example, we will determine how conservative the bound pg(4) can
e when used as a lower bound for sg(A). The matrix to be considered is:

-1 k
A=_4 1> where k1.

The eigenvalues of A are —1%jVk and
o;(AeA)=g(A5A)=—%tr(A)=l

2_ "
Q(A)=3+k \l(kz;l!z 8k+4 S1

From Theorem 5.2 or Theorem 8.3, we obtain g (4)=1. However, the result of
27)is

2
(A= inf ol ~A)S 0l -A) | guiper= L NOHIIGE,
which goes to zero as k goes to infinity. This shows that the conservatism of
Kz (A) as a bound of pg(A4) can become arbitrarily large. Since bounds (4.7) and
(8.3) give the exact value of Lg(A) when A is 2x2, there can be an arbitrary
degree of improvement over the previous bounds when they are applied to
matrices with any size.

Example 4
This example is for the discrete time case. The following 7x7 matrix is
the closed loop state matrix of a heated rod controlled by a dead-beat controller

{12):

-0.1373 0.2139 -0.2831 0.2792 -0.2177 -0.1298 0.0666]
0.0002 -0.0163 —0.0438 -0.0657 -0.0669 —0.0473 —0.0275
0.0469 0.0718 0.0896 0.0782 0.0493 0.0224 0.0074
00373 00712 01124 0.1292 0.1124 0.0712 0.0373|.
0.0074 0.0224 00498 0.0782 0.0896 0.0718 0.0469

~0.0275 -0.0473 —0.0669 0.0657 -0.0438 -0.0163 0.0002

-0.0666 -0.1298 —0.2177 -0.2792 -0.2831 -0.2139 -0.1373

A=
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The following data are computed
o(A-1)=0.6705, o(A+)=0.6642, O©(A)=0.8306
0,1 (A®A-T)=0.9375, g(A®A-1)=0.7129, g(AgA ~1)=0.9375.

The stability robustness bounds are as follows:

bound (4.15):  Vg(4)=04451
bound 8.5):  vm(A)=0.3538
bound (8.7  vr(4)=0.4451.

As anticipated, bound (8.7) is a better result than bound (8.5).

10. Conclusions

A new method for the robust stability problem of linear time-invariant
state space models with real perturbations is considered in this paper. The
method is based on the properties of the Kronecker product and two other com-
posite matrices. Explicit bounds on the magnitude of unstructured real perturba-
tions which do not destabilize a linear time-invariant stable system are obtained.
The bounds obtained are shown to be tighter than previously reported ones, and
are exact for a wider class of matrices. The bounds are easy to compute, and
although the dimensions of the composite matrices are in the order of n2, recent
studies have shown that it is possible to compute the required singular values of
these composite matrices without actually constructing them [14]. The new
method can also be used to deal with the robust stability problem when the per-
turbations are structured.

Some questions in this framework remain to be answered: (i)What rela-
tionships exist between the bounds obtained in this paper? Which bound is the
tightest? (ii)yWhat relationships exist between the new bounds and bounds previ-

ously reported? (iii)How far are the new bounds to the exact value of j(A) or
V(A)?
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