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A Polynomial Solution to an H oo Robust Stabilization Problem

Yu Liang and Li Qiu

In Hoo control theory, the suboptimal controllers are
not unique, and the behavior of each solution varies. For
example, one of these, which called the central controller, is
suggested to achieve a nominal performance of the closed­
loop system. In fact, as a tends to 00, the central controller
actually approaches the H2 controller.

it is often not necessary or sometimes even undesirable to
design an optimal controller, by considering the economy and
time conditions. And suboptimal controllers, which are very
close to the optimal ones in the norm sense, may also have
other nice properties. The suboptimal Hoo control problem
is given a > 0, to design a stabilizing controller C(s), so
that
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Abstract-In this paper, we present a polynomial solution to
a particular H oo control problem, which arises in the robust
stabilization of a 5150 plant when the uncertainty is described
by the gap metric, v-gap metric, pointwise gap metric, or
normalized corprime factor perturbation. Compared with the
existing state space solution, the polynomial solution appears
simpler and more elementary. It boils down to a rational
function pole-placement problem and hence is equivalent to
a polynomial Diophantine equation. The derivation of this
polynomial solution is based on the existing results of the
Nehari problem. We first reduce the original problem to the
Nehari problem, and then find the closed-loop characteristic
polynomial from the solution to the Nehari problem. Finally,
we obtain the desired controller by rational function pole­
placement.

I. INTROD UCTION

The Hoo norm can be interpreted as a measure of how
large the frequency response of the system gets. We often
wish to make the 1too norm of a closed-loop transfer function
small for two reasons. Firstly, we wish to make the energy
gain of the system small in order to satisfy performance ob­
jectives. Secondly, by making certain closed-loop Hoo norms
sufficiently small, it is possible to guarantee robustness in the
face of modeling errors.

Fig. 2. Feedback system concerned in this paper

In this paper, we will study a special Hoo robust stabiliza­
tion problem when the uncertainty is described by the gap
metric [3], [10], z--gap metric [9], pointwise gap metric [6],
or normalized coprime factor perturbation [4]. In particular,
we will focus on the feedback system in Fig. 2. Consider the
transfer function from W 2 and W l to y and u,

The quantity be.c, inverse of an 1too norm, is called robust
stability margin, which is a measure of the system robust
stability [3], [7], [8], [9]. We shall see that the norm can
never be made smaller than 1, which means that, for any
pes) and C( s), br.c lies in the range [0, 1] .

The problem to be dealt with in this paper is described as
follows:

Given an n-th order proper plant P(s) = ~~:~ , find a

controller C(s) so that br.o 2: f3 for a given f3 E [0, 1] .
A solution to this problem in the state space form is given

in [4] as follows:

W z
G(s)

u y

C(s)

Fig. I. Feedback system for H oo control problem

Consider the feedback system in Fig. 1. The optimal Hoo

control problem is to design a controller C(s) , so that the
overall system is internally stable and the Hoo norm of the
closed-loop transfer function from w to z ,

II Twz(s)ll oo = supO'(Twz(j w))
w

is minimized.
Knowing the minimum Hoo norm may be useful since it

sets a limit on what we can achieve. However, in practice
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F (s) = [PiS)] [1+ C( s)p(s)r 1 [-C (s) 1] .

Define
br.o = II F (s )ll ~l . (1)
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Start from a minimal realization of the plant

P(s) = [ ~ I~ ] .
1) Solve two particular algebraic Riccati equations:

(A - BS-1D*C)* X + X(A - BS-1D*C)

- XBS- 1B* X + C* R-1C == 0,

(A - BD* R-1C )Y + Y(A - BD* R-1C )*

- YC* R-1C Y + BS-1B* == 0,

where R == 1 + DD* and S == 1 + D*D.
Let Amax denotes the eigenvalue with the largest mag­
nitude. If 13 2:: [1 - Amax(YX(1 + Y X)-l )]1/2, there
is no solution and exit. Otherwise proceed.

2) A controller for the selected 13 is given by

in which

A c A + BF + j3-2W~-lyC*(C + DF),

F -S-l(D*C + B* X),

WI 1 + (XY - 13- 21 ).

The state space solution involves solving two Riccati
equations, which are nonlinear matrix equations, and other
matrix computations. To program this solution in Matlab, we
need the Control System Toolbox.

In this paper, we will develop a simpler polynomial
solution which only involves elementary polynomial and
matrix computations, and can be easily programmed using
basic Matlab functions.

II. POLYNOMIAL SOLUTION

The design procedure of the polynomial solution is given
as follows:

Start from the transfer function of the plant P(s) = :~:~.

1) Spectral factorization:
Find a stable polynomial

d(s) == dosn + d1s
n- 1+ ... + dn

such that

a(-s)a(s) + b(-s)b(s) == d(-s)d(s).

2) Eigenvalue and eigenvector computation:
Define the companion matrix of d(s) as

d 1 1 0- do

Ad ==
d n - 1
-~ 0 1

d n 0 0- do

ThC6.3

and set

where

J==
-1

1

Let ry* be the eigenvalue of H with the largest magni­

tude. If [32 :::: 1 + t"(* )2' there is no solution and exit.

Otherwise proceed.
3) Rational function pole-placement:

For ry == J13- 2 - 1, define a polynomial

d1

o
v(s) == d(s) + 2e(s)H2(ry21 - H 2)-1 d

3

where e(s) == [sn-1 sn-2 ... s 1]. The unique n­

th order strictly proper controller C(s) = ;~:~ solved

from the Diophantine equation

a(s)p(s) + b(s)q(s) == d(s)v(s)

is a guaranteed robust stabilizing controller.

To illustrate the new polynomial solution and to compare
it with the state space solution, let us consider a simple
numerical example:

Given a proper plant P(s) = b((S )) = (1 ) and [3 =
as ss+l

0.5. Find a controller O(s) such that br.c 2:: 13.

A. State space Solution

Obtain a minimal realization of the plant from the transfer
function as

P(s) = [ ~ I~ ] = [~ ~~ ~].
1) Using Matlab Control System Toolbox to solve the two

algebraic Riccati equations, we get

X == [1.7321 -0.7321] Y == [1.7321 0.7321]
-0.7321 0.4641' 0.7321 0.4641 .

Check 13 < [l-Amax(YX(1 +Y X)-l )]1/2 == 0.5671,
solution exists.
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2) A desired controller is

[

-5.6524 4.9204 -4.6524]
C(s) == -2.6233 0.8913 -1.6233

1 -0.2679 0

4.217s + 4.652
s2 + 4.761s + 7.87·

B. Polynomial Solution

1) Solving a(-s)a(s) + b(-s)b(s) == d(s)d( -s) == s4 ­
S2 + 1, we get d(s) == S2 + -)3s + 1.

2) The companion matrix is

[
- -)3 1]

Ad == -1 0'

so we get

H == [2 - -)3 -)3 - 1]
-)3-1 1 '

whose eigenvalue with the largest magnitude is ry* ==
1.4524. Check (32 < t )2 = 0.3216, solution

1 + "t"
exists.

3) Define

()
2 16 + 21-)3 45 + 24-)3

v s == s + 11 s + 11 .

Rational function pole-placement gives a desired con­
troller

C s ~ (36 + 6-)3)s + 18 + 20-)3
( ) ~ l1s2 + (16 + 21-)3)s + 45 + 24-)3

4.217s + 4.652
s2 + 4.761s + 7.87·

For a given plant, the two methods give the same solutions.
But the polynomial solution is probably easier to understand
and avoids using Matlab Control System Toolbox.

III. DERIVATION OF THE POLYNOMIAL SOLUTION

In this section, we will explain how to derive the polyno­
mial solution. First, we will reduce the original problem to
the Nehari problem, then solve the Nehari problem to find
the closed-loop characteristic polynomial corresponding to a
desired controller, and finally obtain the controller by rational
function pole-placement.

A. The Nehari Problem

By the definition of bP,C in Equation (1),

b;c = II [P~s)] [1 + C(s)p(S)]-l [C(s) 1] 1100

[1 + IP(jw)12 ][1+ IC(jw)12
]== sup

wE~ 1 + IP(jw)C(jw)1 2

[1 + P(jw)P( -jw)][l + C(jw)C( -jw)]
== sup
wE~ [1 + P(jw)C(jw)][l + P( -jw)C( -jw)]

I

P( -jw) - C(jw) 1

2

== sup 1 +
wE~ 1 + P(jw)C(jw) .

ThC6.3

Therefore,

{

2 }-~P( -s) - C(s)
br.c = 1+ 111 + P(s)C(s) 1100 '

and

br.c ~ (3~ 1p,c = II ~~;;(~gg? 1100 < 1

where ry == J /3-2 - 1.

Given an n-th order proper plant P(s) = ~~:~, let

d(s) == dosn + d1sn
-

1+ ... + dn

be a stable polynomial satisfying the spectral factorization

a(-s)a(s) + b(-s)b(s) == d(s)d( -s).

Solve the Diophantine equation

a(s)po(s) + b(s)qo(s) == d2(s),

then Co(s) = qo ((s )) is one of the stabilizing controllers.
Po s

Define

a(s) b(s)
M(s) = d(s) , N(s) = d(s)' (2)

X ( ) == Po (s) Y ( ) == qo (s) (3)
s d(s)' s d(s) ,

so M(s), N(s), X(s), Y(s) are all stable transfer functions
satisfying

N(s) Y(s)
P(s) = M(s)' Co(s) = X(s)'

and

M(s)X(s) + N(s)Y(s) == 1.

By Youla-Kucera parametrization [11], the set of all sta­
bilizing controllers is given by

{
Y(s) + M(s)Q(s) }

S(P) = C(s) = X(s) ~ N(s)Q(s) ' Q(s) stable . (4)

For controllers of such form,

P( -s) - C(s)
1 + P(s)C(s)
N( -s) Y(s) + M(s)Q(s)
M( -s) X(s) - N(s)Q(s)
1 + N(s) Y(s) + M(s)Q(s)

M(s) X(s) - N(s)Q(s)

::~~) [N(~s)X(s) - M( ~s)Y(s) ~ Q(s)].

Since ::~~) is all pass, it follows that

ryp,c == IIG( -s) - Q(s)lIoo ,

where
G(s) :== N(s)X(-s) - M(s)Y(-s). (5)
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Substituting Equations (2) and (3) into Equation (5),

G(s) = b(s)po(-s) - a(s)qo(-s)
d(s)d(-s) .

It appears that G(s) has denominator d(s )d(-s) with degree
2n.

Lemma 1: G(s) = :~:~ for some polynomial r(s) with

degr(s) ::; n.

Proof: Denote w(s) :== b(s)po(-s) - a(s)qo( -s).

Carrying polynomial calculations, we get

a(-s)w(s) == [b(s)d( -s) - qo(-s)d(s)]d( -s), (6)

b(- s) w(s) == [po (- s) d(s) - a(s )d(- s )]d(- s ) . (7)

As we all know, a(s) and b(s) are coprime. It follows
from Euclid's algorithm that there exist polynomials x( s)
and y(s) so that

a(s )x( s) + b(s )y(s) == 1. (Bezout's identity) (8)

Therefore,

w(s) == b(s)po( -s) - a(s)qo( -s)

== [a(- s )x (- s) + b(- s )y ( - s )] [b( s )Po (- s) - a(s )qo (- s )]

==r(s )d(-s) (9)

in which

r(s) :== x( -s)[b(s)d( -s) - qo( -s)d(s)]

+ y ( - s ) [Po (- s )d(s) - a(s )d( - s )]. (10)

By comparing the degree of polynomials on both sides of
Equation (9), we know that deg r( s) ::; n. Hence,

G(s) = b(s)po(-s) - a(s)qo(-s) = r(s)d( -s) = r(s)
d(s)d(-s) d(s)d(-s) d(s)'

for r(s) defined in Equation (10). •

The original problem can now be reduced to another
problem: For a stable G(s) given in (5) corresponding to
the given plant P(s), design Q(s) E H oo so that

IIG(-s) - Q(s) 1100 ::; " , == Jfj-2 - 1. (11)

Such a Q (s) may not be optimal, but it can be as near
optimality as we wish. This problem is called a suboptimal
Nehari problem.

At this moment, to design a controller C (s) for a given
plant P(s) so that ,p,o ::; " the direct steps are:

ThC6.3

B. The Hankel Operator

Consider the set of rational functions

{
k(S) n-l }

Sd(s) = d(s): k(s) = k,» + ... + kn , k, E R. .

. r(s) k(s)
GIVen a proper G(s) = d(s) and take any d(s) E Sd(s),

then
G(s) k(-s) = r(s)k( -s)

d(-s) d(s)d(-s)

is a strictly proper rational function with poles at the roots of
d(s) and their mirror images with respect to the imaginary
axis. This function could be uniquely decomposed into

r(s)k(-s) m(s) n(s)
d(s)d(-s) == d(s) + d(-s)

where both terms on the right hand side are strictly proper.

Consider the map ~~:~ f---> ~~{, which is a linear

operator from Sd(s) to Sd(s)' We cab it the Hankel operator
with symbol G(s), denoted by rG(s).

The largest singular value of T G (s) is called the Hankel
norm ofG(s) and is denoted by IIG(s)IIH. Since there exists
an orthonormal basis under which the matrix representation
of the Hankel operator rG(s) is symmetric [8], so rG(s) is a
self-adjoint operator, i.e., T G(s) == rC(s). Thus, the singular
values of T G(s) equal the absolute values of the eigenvalues
of T G (s). The Hankel operator can be represented by a matrix
if a basis in Sd(s) is chosen, and all its matrix representations
share the same eigenvalues. Define the matrix representation
of T G (s) under the standard basis as the standard Hankel
matrix, denoted by H. So IIG(s)IIH == IAmax(H)I, where
Amax denotes the eigenvalue with the largest magnitude.
Nehari's theorem [1] states that

min IIG(-s) - Q(s) 11 00 == IIG(s) II H ,
Q(s)E7-loo

that is to say, for the problem described in (11), we can only
find a solution for, > IIG(s)IIH'

Define the companion matrix as

d 1 1 0- do

Ad ==
d n - 1
-~ 0 1

d n 0 0- do

From [1], [2], [5], we know that

H == d- 1
( -Ad)r(Ad)J,

1)
2)
3)

Obtain G (s) from the original given plant P (s );
Solve the Nehari problem to get Q(s);
Substitute Q (s) back into (4) to get C (s ).

where

J==

However, the procedures above involve a lot of compli­
cated calculations. We are thinking to find some simpler way
to solve this problem. As we all know, if we could give
the closed-loop characteristic polynomial of the system, the
controller is easily solved by pole-placement.

-1
1

To follow this direct way of calculating H, we have to
calculate the r(s) corresponding to G(s) in Lemma 1, whose
steps may be a bit complicated. An alternative method which
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Substituting Ad into the two equations above, we have

a(-s)r(s) == b(s)d(-s) - qo(-s)d(s),

b(- s )r (s) == Po (- s )d(s) - a(s )d(- s ).

1
1 + -rC(s)u(s),,
E(s)H2(,2 I - H 2)-lr

-E(s)(,2 I - H 2)(,21 - H 2)-l r
+,2E(s)(,21 - H 2)-lr
-6(s) + ,U(s),

V(s)

v(s)
rG(s) d(s)

A solution to this Nehari problem is stated in [2] as:

Lemma 3: Let 6(s) E H oo be a rational, strictly proper,

stable function with 116(s) IH < "(. One of the O(s) E 'Hoo

satisfying 116(-s) - O(s)1 00 <::: "( is given by

Q(s) == 6(-s) -,U(-s)V-1(s).

From Lemma 3, we know that for G(s) == c + 6(s), a
Q(s) E H oo satisfying IIG( -s) - Q(s) 1100 ::; , is

Q(s) == c + Q(s) == G(-s) -,U(-s)V-1(s). (15)

Let V(s) = ~~:~ = 1 + ~~:~. According to the definition

of Hankel operator, we have

v(s) Zl(S)
G(s)V(-s) = G(s) + rG(s) d(s) + d(-s)'

Since

H == [a(-Ad)] t [ b(A d) ] J
b(-Ad) -a(Ad) ,

[ ] t []
a(-Ad). . a(-Ad)

where b(_ Ad) IS a left Inverse of b(- Ad) .

Proof' From Equatuions (6), (7), and (9), we get

a(-Ad)r(Ad) == b(Ad)d( -Ad), (12)

b(-Ad)r(Ad) == -a(Ad)d(-Ad), (13)

since d(Ad) == 0 by Cayley-Hamilton theorem.
Combining Equations (12) and (13), we get

[~~=1:?J r(Ad ) = [~~t1~)] d(-Ad ) . (14)

Since a(s) and b(s) are coprime, the tall matrix [~~=1:?]
has full column rank. Then

H == d(-Ad)-l r(Ad)J == [a(-Ad)] t [ b(A d) ] J.
b(-Ad) -a(Ad )

avoids the computation of r (s) can be obtained as given in
the following lemma.

Lemma 2: The standard Hankel matrix of rC(s) is given
by

For convenience, we can simply choose the Moore­
Penrose pseudoinverse as a left inverse, i.e.,

[
a(-Ad)] t = ([a( -Ad)] * [a(-Ad)]) -1 [a(-Ad)] *
b(-Ad) b(-Ad) b(-Ad) b(-Ad) .

•
C. Solution to the Nehari Problem

Denote the standard basis of Sd(s) as

e(s) 1 n-1
E(s) = d(s) = d(s) [s ... s 1].

For a proper transfer function G(s) with IIG(s)IIH < "
decompose it as the sum of a constant term and a strictly
proper term

(16)

(17)

v(s) f(s)
rG(s) d(s) = d(s)'

Assume

so
Zl(S)

G(s)V(-s) - "(U(s) = c + d(-s)'

Then Equation (15) is equivalent to

Q(s) = G(-s) - "(U(-S)V~I(S) = ~(~; ,

where Z2(S) == c- d(s) + Zl(-s).

Combining (16) and (17), we know that c(s) and h(s)
have an n-th order common divisor en (s), i.e.,

Theorem 1: For the controller corresponding to such a
Q (s) in (15), the closed-loop poles of the system are exactly
the poles of Q(s) and the roots of d(s).

Proof Choose arbitrary C(s) = :~:~ E S(P), then

Q(s) = X(s)C(s) - Y(s)
N(s)C(s) + M(s)

_ Po(s)q(s) - qo(s)p(s) ._ h(s)
- a(s)p(s) + b(s)q(s) .- c(s) ,

which implies that the poles of Q (s) are closed-loop poles.

G(s) == c + 6(s),

A f(s)
G(oo) and G(s) = d(s) is strictly proper.where c

Assume

A f(s) r1Sn-1 + ... + rn
G(s) == d( ) == d d E Sd(s) ,

S osn + ... + n

and we have 116(s)IIH = IIG(s)IIH < "(.
Denote the vector representation of f (s) under the standard

basis e(s) by r. Define

U(s) == ,E(s)(,2I - H 2)-lr,
V(s) == 1 + E(s)H(,2 I - H 2)-lr .
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Carrying polynomial calculations, we get

q(s)d2(s) == [a(s)z2(S) + qo(s)V(S)]Ch(S), (18)

p(s)d2(s) == [Po(s)v(s) - b(S)Z2(S)]Ch(S), (19)

d(s)d(-s)q(s) == [a(s)k(-s) + b(-s)V(S)]Ch(S), (20)

d(s)d( -s)p(s) == [a( -s)v(s) - b(s)k( -S)]Ch(S). (21)

where k(s) == C> d(s) - f(s) - r(s).
From Equations (18) and (19), we could see that Ch(S)

divides q(s)d2(s) and it also divides p(s)d2(s). p(s) and q(s)
are coprime, so Ch (s) divides d2 (s). Similarly, Equations
(20) and (21) imply that Ch(S) divides d(s)d(-s). So Ch(S)
divides d(s), i.e., Ch(S) == d(s), since they have the same
degree. Hence the closed-loop poles of the system are exactly
the poles of Q(s) and the roots of d(s).

•
Theorem 1 shows that to find a controller C (s) such that

bP,C ::; (3, it is sufficient to obtain d(s) and find the poles
of Q(s) in (15), or the zeros of V(s).

Let

6(s)(1(-s) = f(s) _ (-l)nf(s)
d(-s) d(s) d(-S) ,

which means r C(s) ~~:~ = 6(s). Since the Hankel operator

does not depend on the constant term C in G(s) [8], i.e.,

d(s) d(s)
rC(s)d(s) =rC(S)d(s)'

so
E(s)Hil == E(s)r,

where il is the vector representation of d(s) under the
standard basis. This implies that H il == r.

It is easy to verify that

H(,2J - H 2 ) - 1 == (,2J _ H 2)-lH,

then V (s) can be modified as

V(s) == 1 + E(s)H2(,2 J - H 2)-lil,

which means

V(s) == d(s) + [sn-l ... S 1]H2(,2 J - H 2)-lil

v(s)
such that d(s) = V(s). Hence by Theorem 1, a desired

n-th order controller C(s) = :~:~ is solved from rational

ThC6.3

function pole-placement

a(s)p(s) + b(s)q(s) == d(s)v(s).

For this controller, in general, bP,C is neither of optimal
possible value b* (P) nor the boundary value (3. It is rather
somewhere in between.

IV. CONCLUSIONS

We have presented the polynomial solution to a special
H oo control problem for an SISO system. Compared to the
standard state space solution in literature, this polynomial
solution is arguably easier to understand and requires less
mathematical background. To use this solution, people only
need knowledge on basic linear algebra and control theory,
for example, matrix operations and polynomial operations.
Moreover, it is easier for programming. Matlab users do not
need to install extra control system toolbox.

Although the polynomial solution is simple and efficient
to apply, its derivation procedures are not so simple. The first
step is to reduce the original problem to Nehari Problem, then
solve the Nehari Problem in polynomial approach to find the
closed-loop characteristic polynomial. Finally, apply rational
function pole-placement to obtain the desired controller.
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