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Abstract 

This paper considers the problem of the stability r+ 
bustness computation of polynomials with coefficients 
which are affine functions of the parameter perturbations. 
A polynomial is said to be stable if its roots are contained 
in an arbitrarily pre-specified open set in the complex 
plane, and its stability robustness is then measured by the 
norm of the smallest parameter perturbation which desta- 
bilizes the polynomial. A simple and numerically effective 
procedure, which is based on the Hahn-Banach theorem of 
convex analysis and which is applicable for any arbitrary 
norm, is obtained to compute the stability robustness. The 
computation is then further simplified for the case when 
the norm used is the Holder eo-norm. 2-norm or 1-norm. 

1 Introduction 

Consider a real monic polynomial in a complex variable s whose 
coefficients are affine functions of some independent physical pa- 
rameters k E Rm. This polynomial can be written as 

p ( s ,  k) = sn + al(k)sn-' + a z ( k ) s " 4  + . . . + a, (k) ,  

where a; (k ) ,  i = 1 , 2 , .  . . , n ,  are affine functions of k, i.e. 
exist a matrix F E Rmxn and a vector g E R" such that 

~ ( k )  := [ ~ l ( k )  ~ 2 ( k ) . . . ~ , ( k ) ] '  = Fk + 9. 
In many applications, the parameter k is somewhat uncertain 
but its nominal value is known. With no lose of generality, the 
nominal value of k is assumed to  be zero. 

Polynomial models of the form (1)-(2) are encounted in many 
circumstances in control problems. For example, if a matrix A E 
Rnxn is subject t o  a unity-rank perturbation of the form 

A + kb', 
where b E R" is a known vector and k E Rn is the uncertain 
perturbation, then the characteristic polynomial of the perturbed 
matrix has the form of (1)-(2).  Another example is given by a 
closed loop MISO (similarly SIMO) system [5]; assume that a 
MISO system is described by the transfer function 
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Research Council of Canada under grant no. A4396. 

where 

d(s)  s p  + (dl + 6d1)sP-l + . . . + (d, + 6d,) 
n;(s) := (nil + Gn;1)sP-' + (n;2 + 6n;z)sP-2 + 

:= 

. . . + (nip + 6n;,), i = 1 , 2 . .  . ., r ,  

and the parameters IC = [6d1 6d2 . . .6d,]' x [6n11 6n12 . . .6nl,]' x 
. . . x [6n,l 6n ,2 . .  .Sn,,]' (where "x" means the Cartesian prod- 
uct) are uncertain and independent. If the system is controlled 
by a fixed linear time-invariant proper controller, the closed loop 
characteristic polynomial will be of the form (1)-(2). 

In many control problems, a desired property of a polynomial 
is that  all of its roots are located in a pre-specified area in the 
complex plane. This pre-specified area will be called the stability 
region in the complex plane and a polynomial is said to  be stable 
if all of its roots are located in the stability region. A natural 
stability robustness problem then arises for the polynomial of 
the form (1)-(2): if p(s ,O) ,  the polynomial corresponding to  the 
nominal parameter, is stable, how large can the perturbation k 
be in order for p ( s ,  k) t o  maintain stability. More precisely, let us 
define a norm 11 on R"; we want to find the maximal positive 
number p such that for any parameter perturbation llkll < p ,  
the polynomial p ( s , k )  is stable. Here, the number p provides a 
stability robustness measure for polynomial (1)-(2). The purpose 
of this paper is t o  find a procedure to compute p when F ,  g and 
the stability region are given. It is apparent that  p depends on the 
choice of the norm I( . 11. In this paper, a simple and numerically 
effective procedure, which is applicable for any arbitrary norm, 
is obtained to  compute p ;  it  is then shown that the computation 
can be additionally simplified for some commonly used Holder 
p-norms. (The Holder pnorm, 1 5 p 5 00, in the vector space 
Rm is denoted by 1 1  . 11, and is defined by llkllp = [EL1 l k ; l P ] k  

for k = [kl kz...k,]' E R"). The problem of finding such p 
obviously includes the following preliminary problem: given a 
norm 6 of the maximum possible perturbations allowed on the 
parameters, determine if p ( s , k )  is stable for all llkll 5 6. To 
distinguish our problem from the preliminary problem, we will 
call the former problem, the maximal robustness problem and 
the later problem, the robustness checking problem. It is clear 
that  an  answer to  the maximal robustness problem automatically 
provides an  answer to  the robustness checking problem, but t o  
do the converse requires an extra one-dimensional search. 

A special case of the above problems occurs when each col- 
umn and row of F have a t  most one nonzero element, the stable 
region is the open left half part of the complex plane, and the 
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norm in R" is the Holder co-norm 1 1  . ]loo. In this case, the poly- 
nomial p ( ~ ,  k) is called an interval polynomial. The remarkable 
theorem of Kharitonov [9] gives an elegant solution to the robust- 
ness checking problem of an  interval matrix. It says that for any 
6 > 0, all polynomials belonging to  an  interval polynomial p(s, k) 
with llkllm I: 6 are stable if and only if four specially constructed 
polynomials are stable. The maximal robustness problem for an 
interval polynomial can be easily solved in terms of Kharitonov's 
four polynomials using the Hurwitz stability criteria [8]. 

The stability of interval polynomials with respect to  the open 
left half part of the complex plane is a very restricted special case 
of the general problem, in which the matrix F is arbitrary and 
the stability region is arbitrary. Although some attempts have 
been made to  generalize the result of Kharitonov to  the general 
problem (see [l], [2], [5] and the references in [3]), no results 
obtained have the same level of simplicity as Kharitonov's the- 
orem. Recently, a considerable amount of research has lead to  
the development of feasible numerical methods to  solve the maxi- 
mal robustness problem and the robustness checking problem for 
polynomials with general affine perturbations. References [l], 
[2] consider the robustness checking problem for the case when 
the uncertain parameters are known to  be contained in a convex 
polytope in the parameter space, which includes the ball l)kll < 6 
as a special case if ( 1  is the Holder co-norm or 1-norm. The 
methods used in [l] and [2] are based on the concept of the value 
set, which is the set of complex numbers p(s, k) with s fixed and 
k varying in a known set. The computation required in the meth- 
ods of [ l ]  and [2] are combinatorial explosive with respect to  the 
number of uncertain parameters, so that they are only realistic 
to  apply when the number of uncertain parameters is small. The 
maximal robustness problem is solved in [4], [7] for the Holder 
2-norm case by using the Euclidean space projection theory. The 
Holder co-norm case is solved in [6] by using the geometry of the 
value sets and in [12] by using a linear programming method. 
In this paper, we solve the maximal robustness problem using 
a unified method for different norms. The method is based on 
the Hahn-Banach theorem in convex analysis, and is purely al- 
gebraic. I t  turns out to  be very simple both conceptually and 
computationally. For the Holder 2-norm case, the new method 
is basically the same as the one used in [4], (71; for the Holder 
co-norm case, the new method seems simpler than the methods 
used in [6] and [12] and its computational complexity is only 
proportional to  the number of uncertain parameters. 

2 Problem Formulation 

Let C be the set of all complex numbers. Partition C into two 
disjoint subsets 63, and cb, i.e. C = C , l & , .  w e  assume for 
technical reasons that C ,  is open. Let K be a normed linear 
space defined to  be Rm with norm )I . 11. Let P be the set of all 
n-th degree real monk polynomials. Then a map from K to P is 
defined by 

p ( s ,  k) = sn + [sn-l r2.. . l ] (Fk  + 9). (3) 

The purpose of this paper is to  find a procedure to  compute p 
when H ,  h and C ,  are given. If p(s, 0) is unstable, we must have 
p = 0, so it is always assumed in the following that p(s,O) is 
stable. Alternatively we can write p as 

p = inf{llkll : k E ( 5 )  

Denote the boundary of C ,  by dC,. Then simple continuity 

(6) 

and 3s E cb such that p ( s , k )  = 0). 

arguments show tha t  

p = inf{llkll : k E K and 3s E dC, such that p ( s , k )  = 0), 

which can be rewritten as 

p = inf {inf{llkll : k E K and p ( s ,  k) = 0)). (7) 

Define a function ~ ( s )  : dC, + R+ U (00) by ~ ( s )  = inf{llkll : 
k E K and p ( s , k )  = 0). I t  is seen from (7) that the computation 
of p can be accomplished in two phases. The first phase is t o  find 
T ( S )  for any fixed s E dC,.  The second phase is to  carry out a 
search over all points in dC, to  find infSEaC, ~ ( s ) .  

Now let s E dC, be fixed. The equation p(s, k) = 0 becomes 

S E X g  

p - - 2 . .  .1]Fk = -8" - [p-l p.. (8) 

The assumption on the stability of p(s,O) implies that the 
right hand side of (8) is nonzero. Let 

p[p-l sn-2. .  . 11' 
-sn - [Sn-l Sn-2 . .  . l lg '  

w := 

and let u := IR(w), w := S(w), the real and the imaginary part 
of w respectively. Then U, w E R" and (8) is equivalent to  

u'k = 1 and w'k = 0. (9) 

(10) 

The first phase of the problem to compute p then becomes to  
find 

inf{((k(( : k E K: and u'k = 1, u'k = 0) 

for any given U, w E R". 
The second phase of the problem to  compute p is usually car- 

ried out by a "brute force search" over dC,. In most applications, 
dC, is symmetric to  the real axis. Since p(s ,  I C )  = 0 if and only if 
p ( s ,  k) = 0, where is the conjugate of s, it is sufficient to  carry 
out the search over the intersection of aC, with the closed upper 
half of the complex plane. 

3 Development 

In this section the quantity inf{l)k)) : k E K and u'k = 1, w'k = 0} 
is reduced to  a closed form expression by using the Hahn-Banach 
theorem [lo]. 

From the theory of linear equations it is known that if 

rank[u v] # rank , then there exist no k E K such that 

the equations u'k = 1 and v'k = 0 are satisfied. Thus in this case 

inf{llkll : k E K and u'k = 1, w'k = 0) = w. 

[ I  
A polynomial in P is said to be stable if all its roots are in Now assume that rank[u w] = rank 1; J = 1 or 2. Con- 

sider the normed vector space K. Let K' be its dual space. Then 
K' is also a normed vector space with norm 1 1 . 1 1 * ,  which is called 
the dual norm of 1 1  . I / .  In our problem, K* is just Rm with norm 

C,. Define' 

p := inf{llkll : k E K and p ( s , k )  is unstable}. (4) 
'Throughout this paper, we assume inf 0 = 05. 
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II.11* and the norm 1 1 .  I(* is induced from ( 1 . 1 1  by 

k # o  

for x E K* .  It  is known that if 1 1  . 11 is the Holder p-norm 11 . lip, 
then 1 1  . 11. is the Holder q-norm 1 1  . + $ = 1. Since K is 
finite dimensional, K is isometrically isomorphic to  K", the dual 
of K'. This implies that each k E K can be considered as a linear 
functional on K'. For given U, w E R", consider U, w as vectors in 
K'.  Let k := {k : k E K and u'k = 1, w'k = O } .  Then each k E k 
is a linear functional on IC' and its value on the space spanned 
by {U, w} are defined by the two equations u'k = 1 and w'k = 0. 
It is clear that  for each k E k, llkll 2 Ilklspan{u,w}ll, where 
klspan{u, w} is the restriction of k to  the subspace span{u, w} c 
K',  and its norm is induced by 11 . I\* in spanju,  w}, i.e. 

with 

14 Ilklspan{u,v)ll = SUP - 
2 E span{u,v} 11x11' 

- I 4  
2#0 

- 
a , Y : R  l l a u  + pwll* 

0Iu+8u#0 
1 

sup - - - 
a E R + a v / l * '  

u + a u # O  

A critical step in our development is achieved by using the 
The Hahn-Banach theo- 

can be found such that llkll = 
Hahn-Banach theorem ([lo] p. 104). 
rem simply says that a k E 

Ilklspan{u, .}[I. Therefore the following equality is obtained: 

inf{llkll : k E K and u'k = 1, w'k = 0 )  
= inf{llkll : IC E R }  

u + a v # 0  

A special case happens when u , v  are linearly dependent. 

[; : ] 7  
Since we have already assumed that rank[u w] = rank 

vectors U, w are linearly dependent if and only if U # 0 and w = 0. 
In this case, 

1 - 1 
sup -- - 

01 E R l l U  + a v l l *  I I u I I * '  

The following theorem summarizes the above development. 

u + a u # O  

Theorem 1 For any given U, w E Rm, 

inf{llkll : k E K and u'k = 1, w'k = 0 )  

0O if rank[u w ]  # rank 

a f u # O a n d v = O  (12) 

if rank[u v] = 2. 

From a computational point of view, the only nontrivial case 
occurring in (12) is the case when rank[u w] = 2. In this case, 
''P~ER j $ $ ?  or equivalently infaER IIu + aw11*, has to  be com- 
puted. his computation however is straightforward to  do even if 

1 1  . I)* is an  arbitrary norm. Simple analysis shows that JIu+av11*, 
to  be considered as a function of a,  is a continuous convex func- 
tion on R. As a goes to  00 or -00, llu + aw11' goes to  00. Con- 
sequently, infaER IIu + av11* is achieved a t  a finite point and any 
technique for a convex one-dimensional optimization, such as the 
Fibonacci search or the golden section search, can be used to  find 
inf IIu + crv11*. It will be shown in the next section that if 1 1  
is one of the commonly used Holder pnorms, the computation 
of inf 11u + awl[* becomes very simple and no one-dimensional 
optimization is actually required. 

4 Computational Aspects 

This section deals with the computational problem of (12) when 
the norm 11.11 is ll.llm, 11.112 or 11.111. The computation is nontrivial 
only if rank[u v] = 2. Thus it is assumed in this section that 
rank[u w] = 2. 

Case 1 II . I1 = II . Ilm 
In this case, 1 1  . [ I f  = 1 1  . [ I 1 .  Let u = [ul u2...um]' and v = 

[VI w2 . . . v,]'; then 

1 1 ~  + Q V I I I  = 1 ~ 1  + awl[+ + ( Y W Z ~ +  ...+ [U, + (YW,). (13) 

A continuous function on R is called polygonal (or piece- 
wise linear) if there exist finite points ~ 1 ~ x 2 , .  . .,zg € R with 
2 1  < 2 2  < . * .  < zi such that the function is linear on (-co,z~], 
[xi, 00) and [xi, xi+1], i = 1 , 2 , .  . . , I  - 1. In this case the points 
~ 1 ,  22,. . . ,zi are called division points. If (13) is considered to  
be a function of a,  then i t  is a polygonal function with a t  most 
m division points. The set of division points is just { - 2  : i = 

1 , 2 , .  . . , m and w; # O } .  The supremum and infimum of a polyg- 
onal function on R can only happen a t  00, -CO or one of its 
division points. Since IIu + awl11 goes to  infinity as a goes to  00 

or -CO, its infimum can only be achieved a t  one of its division 
points. This proves the following equality: 

inf{Ilkllm : k E K and u'k = 1, w'k = 0 )  
1 

sup - 
aER llu + avlll 

- - 

1 U' 

IIu + 4 1 1  vi 
= max{-: a E {-L : i = 1 , .  . . ,m,  vi # O}X.14) 

To compute (14), we only need basically to compute the 1- 
norm of a t  most m vectors in R". 

Case 11 II . I1 = II ' 112 
In this case, 1 1  . [I* = 1 1 .  ) I 2 .  The infimum of IIu t avllz is 

achieved a t  the least-square solution of the linear equation av = 
-U, which is given by a = - l l~11;~u'u. Thus 

inf{llkllz : k E K and u'k = 1, v'k = 0 )  
1 - - sup- 

a E R  llu + awl12 

(15) 
- l l 4 l z  - 

[11~11;11.11; - (u'4213' 

This case is also considered in [7]; the result obtained here is 
basically the same as in [7]. 

Case 111 II . II = II . 111 
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In this case, 11 e l l '  = 11 . llm. Let u = [ U ~ U Z  .-.urn]' and v = 
[vl v2 . . .U,]'; then 

llu+a~ll,,, max{lul+avll,luz+avzl, ..., Ium+avmI). (16) 

It is easy t o  see that llu + avllm is also a polygonal function 
of a which goes t o  00 as a goes to M or -oo. So its infimum is 
achieved a t  one of its division points. However it appears that 
the division points of IIu + awlloo can not be obtained as easily as 
those of IIu+avIII. Note that a t  any division point of IIu+avll,,,, 
we must have lui+awil = luj+avjl for some i , j  = 1,2,. . . , m and 
i # j .  So the set of division point is contained in the following 
set 

u i + u j  . . 15  i < j 5 m and vi- vj # 0). 
Vi + V j  

This proves the following equality: 

inf{llklll : k E IC and u'k = 1, v'k = 0) 
1 

1 

= sup 
orER IIu + avllco 

= max{- : a  E A}. (17) llu + avl l  

In the worst case, A has m(m - 1) elements, while the num- 
ber of the division points of 1111 + avll, may be much less than 
m(m - 1). It is possible t o  have a search scheme to find the di- 
vision points, but this requires extra computational effort. Thus 
formula (17) should be used a t  least in the case when m is not 
too large. 

We would like to remark that although we have only consid- 
ered the computational problem for three different pnorms, the 
results obtained can be applied to the case when the norm is a 
weighted version of any of these pnorms, i.e. when llkll is de- 
fined to be equal t o  IITkllp, p = l, 2, or 00, for some nonsingular 
matrix T .  In such a case, we can convert the original problem 
(3)-(4) to a problem with a standard pnorm by substituting k 
with T-Ik.  

5 An Example 

The following polynomial is considered in [6]: 

p(s, k) = s4 + al(k)s3 + az(k)s2 + a3(k)s + a4(k), 

where k E IC = R4 and 

1 0 1  0 12 
10.75 0.75 7 0 .251  
32.5 7.5 12 0.5 

18.75 18.75 10 0.5 

The roots ofp(s, 0) are -5, -5, - 1 k j .  If the desired stability 
region is assumed to be the open left half part of the complex 
plane, then the polynomial is nominally stable and the stability 
robustness measure is given by 

[ i] 

p = inf ~ ( j w ) ,  
WER 

where ~ ( j w )  = inf{llkll : k E IC and p(jw,%) = 0). By using the 
procedure given in Section 2-4, we obtain 

~(jw)I,o = 1.04 if 11 - 11 = 11 . ll,,, 
p = { ~ ( j w ) 1 ~ 0  = 1.76 if (1  . 11 = 11 . (I2 

~ ( j w ) I ~ o m  = 2.00 if II II = II . I l l .  
Now assume that the desired stability region is the set C ,  = 

C,1 U C,z U Cg3, where 

Cgl 
Cgz 
Cg3 := {S : IS - (-5)l < 1). 

:= 
:= 

{S : I S  - (-1 + j ) l  < 0.25) 
{S : IS - (-1 - j ) l  < 0.25) 

With respect to the stability region C,, the nominal polynomial 
p(s,O) is stable. The boundary of C, is given by aC, = aC,, U 
aC,z U dC,3, where 

aC,1 = {S : I S  - (-1 + j ) l  = 0.25) 

a C p  {S : I S  - (-1 - j ) l  = 0.25) 
aCg3 = {S : I S  - (-5)1 = 1). 

= 

The stability robustness measure of p(s ,  k) is then calculated 
to be as follows on using the proposed procedure: 

T(s)I~=-I.I~+~o.sI = 0.30 if II . I[ = II IIm 
P = inf T(S) = T(S)Is=-1.20+j0.85 = 0.44 if 11 . 11 = 1 1  . JIz i T(s)I~=-I.z~+~o.sJI = 0.47 if 11 . 11 = 11 . (11. 

sEaC, 

The case when ( 1 .  (1  = ( 1 .  ((,,, is considered in [6]; the results 
obtained here and in [6] are consistent. 

6 Conclusions 

A unified method is obtained to analyze the stability robustness 
of a polynomial whose coefficients are affine functions of param- 
eter perturbations. The stability robustness is measured by the 
norm of the smallest parameter perturbation which destabilizes 
the polynomial. The method is quite general in two senses: i) the 
stability region in the complex plane can be an arbitrary open 
set, which includes the open left half plane and the open unit 
disc as special cases; ii) the norm used to measure the stability 
robustness can be any norm defined on a linear space as long as 
its dual norm can be numerically evaluated. The computational 
procedure obtained from this method is conceptually simple and 
numerically effective, and it can be further simplified if the norm 
used t o  measure the stability robustness is among the commonly 
used Holder pnorms. If the norm is the Holder 2-norm, the 
procedure coincides with some recent results obtained in the lit- 
erature [4], [7]; if the norm is the Holder oo-norm, the procedure 
is an improvement over the existing results. 

In most of the applications, using a norm to measure the 
size of the perturbation is satisfactory. However, there are cases 
when a norm is not a proper measurement of the size of the 
perturbation. For example, if it is known that the perturbation 
is contained in a convex body (containing the origin as an interior 
point) in the parameter space, it is more natural to use the gauge 
(or Minkowski functional) [ l l ]  of the convex body to measure the 
size of the perturbation. If the convex body is balanced, i.e. it 
contains k if and only if it contains -k, then the gauge is actually 
a norm; otherwise it is not a norm. If we use the gauge to measure 
the size of the perturbation and define the stability robustness 
in terms of this gauge, then the polytope problem considered 
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by many researchers ([l], [2], [6], etc.) can be covered; in this 
case it can be shown that the method given in this paper can be 
generalized to  deal with the stability robustness problem for any 
given convex body. This will appear in a future paper. 
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