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Abstract: This paper considers the problem of the stability robustness computation of polynomials with coefficients which are affine 
functions of the parameter perturbations. A polynomial is said to be stable if its roots are contained in an arbitrarily pre-specified 
open set in the complex plane, and its stability robustness is then measured by the norm of the smallest parameter perturbation which 
destabilizes the polynomial. A simple and numerically effective procedure, which is based on the Hahn-Banach theorem of convex 
analysis and which is applicable for any arbitrary norm, is obtained to compute the stability robustness. The computation is then 
further simplified for the case when the norm used is the HtSlder oo-norm, 2-norm or 1-norm. 
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1. Introduction 

Cons ider  a real  monic  po lynomia l  in a complex  var iab le  s. A s s u m e  tha t  i ts coeff icients  are affine 
funct ions  of  a vector  k ~ R m whose entr ies  represent  i n d e p e n d e n t  phys ica l  pa ramete rs .  This  po lynomia l  
can  be wr i t ten  as 

p(s,  k ) = s ' + a ] ( k ) s  "-t + a2(k)s ' -2  + . . .  +a , ( k ) ,  (1) 

where  ai(k), i = 1, 2 . . . . .  n, are  aff ine funct ions  of  k,  i.e. there  exist a ma t r i x  F ~  R "xm and  a vector  
g ~ R"  such that  

a(k)  := [ a a ( k  ) a 2 ( k  ) - - -  a n ( k ) ] ' = F k + g .  (2) 

In  many  appl ica t ions ,  the p a r a m e t e r  k is somewha t  unce r t a in  bu t  its nomina l  va lue  is known.  W i t h  no  loss 
of  general i ty,  the nomina l  value of  k is a ssumed  to be  zero. 

Po lynomia l  mode l s  of  the fo rm (1) - (2 )  are  encoun te red  in m a n y  c i rcumstances  in cont ro l  p rob lems .  F o r  
example ,  if a ma t r ix  A ~ R "×" is subject  to a un i ty - r ank  p e r t u r b a t i o n  of  the  form 

A +kb',  

where  b ~ R"  is a k n o w n  vector  and  k E R"  is the  uncer ta in  pe r tu rba t ion ,  then the character is t ic  
po l ynomia l  of  the  pe r tu rbed  mat r ix  has  the fo rm of  (1)- (2) .  A n o t h e r  example  is given b y  a c losed loop 
M I S O  (s imilar ly  S I M O )  sys tem [5]; assume that  a M I S O  system is descr ibed  b y  the t ransfer  funct ion  

[nx(s) n 2 ( s ) . . . n r ( S )  1 
d ( s )  ' 
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where 

a(s)  ..=sp + (d, + S d l ) s p - l +  . . .  +(dp + 8d ), 

ni(s ):=(n,, +Snn)s p-l +(n, 2 +Sni2)s p-2 + .." +(nip+Snip), i = 1 , 2  . . . . .  r, 

and the entries of the parameter vector 

k=[Sdl 8d2""Sdp]tX[Snll 87'/12 ' ' '  8/'/lp]tX " ' "  ×[Sn, 1 8nr2"''Snrp]' 

(where ' × '  means the Cartesian product) are uncertain and independent. If the system is controlled by a 
fixed linear time-invariant proper controller, the closed loop characteristic polynomial will be of the form 
(1)-(2). 

In many control problems, a desired property of a polynomial is that all of its roots are located in a 
pre-specified area in the complex plane. This pre-specified area will be called the stability region in the 
complex plane and a polynomial is said to be stable if all of its roots are located in the stability region. A 
natural stability robustness problem then arises for the polynomial of the form (1)-(2): if p(s, 0), the 
polynomial corresponding to the nominal parameter, is stable, how large can the perturbation k be in 
order for p(s, k) to maintain stability. More precisely, let us define a norm []-h] on Rm; we want to find 
the maximal positive number t9 such that for any parameter perturbation k with ]] k ]] < 0, the polynomial 
p(s, k) is stable. Here, the number/9 provides a stability robustness measure for polynomial (1)-(2). The 
purpose of this paper is to find a procedure to compute p when F, g and the stability region are given. It is 
apparent that 0 depends on the choice of the norm ]]. ]]. In this paper, a simple and numerically effective 
procedure, which is applicable for any arbitrary norm, is obtained to compute t9; it is then shown that the 
computation can be additionally simplified for some commonly used HOlder p-norms. (The HOlder 
p-norm, 1 < p  < m, in the vector space R m is denoted by [l" ]] p and is defined by ]] k [Ip = [ • i m - - 1  ]k i]P]  1/p 

for k = [k 1 k 2 . . .  km] '~  Rm). The problem of finding such p obviously includes the following pre- 
liminary problem: given a norm 8 of the maximum possible perturbation allowed, determine if p(s, k) is 
stable for all k with [] k ]] < 8. To distinguish our problem from the preliminary problem, we will call the 
former problem, the maximal robustness problem and the later problem, the robustness checking problem. 
It is clear that an answer to the maximal robustness problem automatically provides an answer to the 
robustness checking problem, but to do the converse requires an extra one-dimensional search. 

A special case of the above problems occurs when each column and row of F have at most one nonzero 
element, the stable region is the open left half part of the complex plane, and the norm in R " is the HOlder 
m-norm ][-[] ~. In this case, the polynomial p(s, k) is called an interval polynomial. The remarkable 
theorem of Kharitonov [9] gives an elegant solution to the robustness checking problem of an interval 
matrix. It says that for any 8 > 0, all polynomials belonging to an interval polynomial p(s, k) with 
[[ k ][ ~ < 6 are stable if and only if four specially constructed polynomials are stable. The maximal 

robustness problem for an interval polynomial can be easily solved in terms of Kharitonov's four 
polynomials using the Hurwitz stability criteria [7]. 

The stability of interval polynomials with respect to the open left half part of the complex plane is a 
very restricted special case of the general problem, in which the matrix F is arbitrary and the stability 
region is arbitrary. Although some attempts have been made to generalize the result of Kharitonov to the 
general problem (see [1,2,5] and the references in [3]), no results obtained have the same level of simplicity 
as Kharitonov's theorem. Recently, a considerable amount of research has lead to the development of 
feasible numerical methods to solve the maximal robustness problem and the robustness checking problem 
for polynomials with general affine perturbations. References [1,2] consider the robustness checking 
problem for the case when the uncertain parameters are known to be contained in a convex polytope in the 
parameter space, which includes the ball ][ k [] < 8 as a special case if []. ]l is the HOlder m-norm or 
1-norm. The methods used in [1] and [2] are based on the concept of the value set, which is the set of 
complex numbers p(s, k) with s fixed and k varying in a known set. The computation required in the 
methods of [1] and [2] are combinatorially explosive with respect to the dimension of k, i.e. the number of 
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independent uncertain parameters, so that they are only realistic to apply when the dimension of k is 
small. The maximal robustness problem is solved in [4,8] for the HOlder 2-norm case by using the 
Euclidean space projection theory. The HOlder oo-norm case is solved in [6] by using the geometry of the 
value sets and in [13] by using a linear programming method. In this paper, we solve the maximal 
robustness problem using a unified method for different norms. The method is based on the Hahn-Banach  
theorem in convex analysis, and is purely algebraic. It  turns out to be very simple both conceptually and 
computationally. For the HOlder 2-norm case, the new method is basically the same as the one used in 
[4,8]; for the HOlder ~ - n o r m  case, the new method seems simpler than the methods used in [6] and [13] 
and its computational complexity is only proportional  to the dimension of k. 

2. Problem formulation 

Let C be the set of all complex numbers. Partition C into two disjoint subsets Cg and Cb, i.e. 
C = C g t] C b" We assume for technical reasons that C g is open. Let X" be a normed linear space defined 
to be R '~ with norm [[ • [[. Let 9 ~ be the set of all n-th degree real monic polynomials. Then a map from 
to 9 a is defined by 

p ( s ,  k ) = s " + [ s  "-1 s "-2 . "  1 ] ( F k + g ) .  (3) 

A polynomial in ~ is said to be stable if all its roots are in C g. Define 1 

P := inf(  l[ k II: k ~3e" and p ( s ,  k )  is unstable}. (4) 

The purpose of this paper  is to find a procedure to compute p when F, g and Cg are given. If  p ( s ,  0) is 
unstable, we must have p = 0, so it is always assumed in the following that p ( s ,  0) is stable. Alternatively 
we can write P as 

p = inf( 11 k 11: k ~,,z¢" and 3s ~ C b such that p ( s ,  k)  = 0) .  (5) 

Denote the boundary of C g by OC g. Then simple continuity arguments show that 

p = inf(  II k I1: k ~ e "  and 3s ~ 0Cg such that p ( s ,  k)  = 0 ) ,  (6) 

which can be rewritten as 

p =  inf {inf{ Ilkll: k ~ J g a n d  p ( s ,  k ) = 0 } ) .  (7) 
s~OCg 

Define a function ~-(s): 0Cg - -  R + U {oo} by ~'(s) = inf( IIk I1: k ~ J d  and p ( s ,  k) = 0). It  is seen from 
(7) that the computation of p can be accomphshed in two phases. The first phase is to find z(s)  for any 
fixed s ~ a C g. The second phase is to carry out a search over all points in a Cg to find infs ~ o c z ( s ) .  

Now let s ~ aCg be fixed. The equation p ( s ,  k)  = 0 becomes 

Is "-1 s "-2 . - .  1 ] F k = - s n - [ s  n-1 s n-2 "'" 1]g. (8) 

The assumption on the stability of p ( s ,  0) implies that the right hand side of (8) is nonzero. Let 

F ' [ s  "-1 s "-2 . . .  1]'  
W : ~  

- s " - [ s  " - l  s "-2 "-- 1 ] g '  

and let u := ~ ( w ) ,  o := ~ (w) ,  the real and the imaginary part  of w respectively. Then u, v ~ R m and (8) is 
equivalent to 

u ' k =  l and v ' k = O .  (9) 

1 Throughout this paper, we assume inf ~ = ~. 
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The first phase of  the problem to compute  p then becomes to find 

inf( II k II: k ~ f "  and u'k = 1, v'k = 0)  (10) 

for any given u, v ~ R m. 
The second phase of the problem to compute  p is usually carried out  by a ' b ru t e  force search'  over 0C g. 

In most  applications, OCg is symmetric to the real axis. Since p(s, k)  = 0 if and only if p(g, k)  = 0, where 
g is the conjugate of s, it is sufficient to carry out the search over the intersection of 0Cg with the closed 
upper  half of  the complex plane. 

3. Development 

In this section a closed form expression for inf( II k I1: k ~ and u'k = 1, v'k = 0} is obtained by using 
the H a h n - B a n a c h  theorem [11]. 

F rom the theory of linear equations it is known that if rank[u v] ¢ rank[~ ~], then there exist no k ~ J t  ~ 
such that the equations u'k = 1 and v 'k  = 0 are satisfied. Thus in this case 

inf{ Ilkll :  k ~ g C  and u ' k=  1, v 'k  = 0} = ~ .  

N o w  assume that rank[u v] = rank[~ ~] = 1 or 2. Consider  the normed  vector space ~ .  Let Jff* be its 
dual space. Then g ( *  is also a normed vector space in which the no rm is the dual norm of [1" II. In our 
problem, ~c'* is isometrically isomorphic to the space R m with no rm I1" II * and the no rm hi" II * is 
induced from I1" II by 

Ix 'k l  
11 x II * = sup 

k ~  II k II 
k , 0  

for x ~ J f ' * .  It is known that if I1" II is the HOlder p - n o r m  I1" II p, then I1" II * is the HSlder q-norm I1" II q 
with 1/p + 1/q = 1. Since 9ff is finite dimensional,  ~ is isometrically isomorphic  to J f f** ,  the dual of  

• . This implies that each k ~ 9'/" can be considered as a linear functional  on J l  *. For  given u, v ~ R m, 
consider u, v as vectors in j~r. .  Let ~ . ' =  {k: k ~ g C  and u ' k =  1, v 'k  = 0). Then  each k ~ g t  ~ is a linear 
functional on ~ff* and its values on the space spanned by  (u ,  v } are determined by the two equations 
u ' k=  1 and v'k=O. It is clear that  for each k ~ ,  Ilkll >- Ilk I span(u ,  v)  II, where k [span(u ,  v} is the 
restriction of  k to the subspace span (u,  v} c.gff*,  and its no rm is induced by I1" II * in span (u,  v}, i.e. 

[ I k l s p a n ( u ,  v ) I I  = sup Ix'k______~l _ sup la l  sup 1 
x~span(u,v~ II x II * II an + By II * ~ a  II u + av II * " 

x~:O au+ f l v ~ O  u + a v ~ O  

A critical step in our development  is achieved by using the H a h n - B a n a c h  theorem [11, p. 104]. The 
H a h n - B a n a c h  theorem simply says that a k ~ 0 f  ~ can be found such that IIkl l  = ] lk l span{u ,  v} II. 
Therefore the following equality is obtained: 

i n f ( l l k l l :  k ~ . ~ r a n d u ' k = l , v ' k = O } - - i n f { l l k l l :  k ~ J f ~ }  = sup 1 (11) 
~ a  I l u + a v l l *  

u + c~ v =P O 

A special case happens when u, v are linearly dependent.  Since we have already assumed that 
rank[u v] = rank[~ ~], vectors u, v are linearly dependent  if and only if u ~ 0 and v = O. In this case, 

1 1 
sup = - -  
~ a  I lu+avl l*  Ilull*" 

u+av~:O 

The following theorem summarizes the above development.  
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Theorem 1. For  any  given u, v ~ R m, 

i n f ( l l k l l :  k ~ F a n d u ' k = l , v ' k = O } =  [ lul l* 

1 
sup Hu +-av II * a E R  

i f r a n k [ u v ] * r a n k [ 1  0 ] '  

i f  u ~ 0 and  v = O, (12) 

/f r ank [u  v] = 2. 

F rom a computa t ional  point  of  view, the only nontrivial  case occurr ing in (12) is the case when 
rank[u v] = 2. In this case, s u p ~ a l / I  I u + a v  l] *, or equivalently i n f ~  R II u + a v  II *, has to be computed.  
This computa t ion  however is s traightforward to do even if I[ "11 * is an arbi t rary norm. Simple analysis 
shows that [I u + av  [1 *, to be considered as a funct ion of  a, is a cont inuous  convex function on R. As a 
goes to oo or - oo, II u + av  11 * goes to oo. Consequent ly ,  i n f ~  R II u + a v  II * is achieved at a finite point  
and any technique for a convex one-dimensional  optimization,  such as the Fibonacci  search or  the golden 
section search, can be used to find inf II u + av  II *. It  will be shown in the next section that if II " [I is one 
of  the commonly  used HOlder p-norms,  the computa t ion  of  inf II u + a v  [I * becomes very simple and no 
one-dimensional  opt imizat ion is actually required. 

4. Computational aspects 

This section deals with the computa t ional  problem of  (12) when the n o r m  II • [I is I1" II ~ ,  I1" [I 2 or 
I1" II1. The computa t ion  is nontrivial  only if rank[u v] = 2. Thus  it is assumed in this section that 

rank[u v] = 2. 

Case I. II'll = I1"11oo, In  this case, I1.11 * =  I1"111. Let u = [ u l  U 2 " ' "  Um]' and  v = [ v l  v2 " "  Vm]'; then 

II u + a v  111 = [121 "~- a U l [  "q- I /22 -st- a / )  2 1 "{- " ' "  "[- lure + aura 1- (13) 

A continuous funct ion on N is called polygonal  (or piecewise linear) if there exist finite points 
xl,  x2 . . . . .  xt ~ R with x 1 < x2 < • • • < xt such that the funct ion is linear on ( -  oo, xl], [xt, oo) and 
[x~, x i÷l] ,  i = 1, 2 . . . . .  l - 1 .  In  this case the points  xl,  x 2 . . . . .  xt are called division points. If  (13) is 
considered to be a funct ion of  a, then it is a polygonal  funct ion with at most  m division points. The set of  
division points is just  ( - u i / v ~ :  i = 1, 2 , . . . ,  m and v i --/: 0}. The supremum and inf imum of  a polygonal  
funct ion on R can only happen  at ~ ,  - oo or  one of  its division points.  Since II u + a v  II a goes to infinity 
as a goes to ~ or  - o o ,  its inf imum can only be achieved at one of  its division points. This proves the 
following equality: 

1 
inf{ []kll ~ :  k ~ X "  and u ' k  = 1, v ' k =  0} = sup 

~ .  I l u + a v l l l  

= max I l u + a V l l l  : a ~  - - - :v i  i = 1 , 2  . . . . .  m and Vi:'TkO . (14) 

To compute  (14), we only need basically to compute  the 1-norm of at most  m vectors in R m. 

Case II. I1" II = I1" II 2. In  this case, I1" II * = 11" II 2" The inf imum of  II u + av  II 2 i s  achieved at the 
least-squares solution of  the linear equat ion ao  = - u ,  which is given by  a = - I I  v IIZ2v'u. Thus 

1 
inf{ Ilkl12: k ~ , X "  and u ' k = l ,  v ' k = 0 }  = sup 

~ .  I l u + a v l l 2  [ll 
II v II 2 

ull l[ vfl - (u,v)2] lj2 (15)  

This case is also considered in [8]; the result obtained here is basically the same as in [8]. 
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Case III.  II'll = [1" II 1. In  this case, I1" II * = I1"11 ~. Let u = [ u  1 u 2 " . .  Urn]" and v = [v 1 v~ . . .  Vm]'; then 

II u + a v  II ~ -- max{ I Ux + avl  1, [I ' /2 + O~U2 [ . . . . .  ]Urn + OlUm I }"  (16) 

It is easy to see that  [1 u + av [I ~ is also a polygonal  funct ion of a which goes to oo as a goes to oo or 
- oo. So its in f imum is achieved at one of its division points.  However  it appears  that  the division points  
of ][ u + av II oo can not be obta ined as easily as those of  [[ u + av [I 1- No te  that  at any division point  of  
II u + av  II ~, we must  have [ u i + avil  = [ uj + avj[ for  some i, j = 1, 2 . . . . .  m and i c j .  So the set of 

division points  is contained in the following set 

A =  ( a :  u i ~ - o L u i = u j ~  au], 1 < i  < j  < m }  U {a :  u, + a v i =  - u j - a v s ,  1 < i < j  < r n )  

. . . .  : l < i < j < m a n d v ~ - v j ¢ O  U - - - ' l < i < j < _ m a n d v , + v j ¢ O  . 
v~ vj v~ + vj 

This proves the following equality: 

inf{ 11 kl[ 1: k ~,)~" and u ' k = l ,  v ' k =  0} = supper I l u +  a v l ] ~ l  { 1 } = m a x  i l u + a v l i "  a ~ A  . (17) 

In the worst  case, A has m ( m  - 1) elements,  while the number  of  the division points  of  II u + av  II 
may  be much  less than m ( m -  1). It is possible to have a search scheme to find the division points,  but  
this requires extra computa t iona l  effort. Thus formula  (17) should be used at least in the case when m is 
not too large. 

We would like to remark  that  a l though we have only considered the computa t iona l  p rob lem for  three 
different p -norms ,  the results obta ined can be applied to the case when the n o r m  is a weighted version of 
any of these p-norms,  i.e. when II k II is defined to be equal to II Tk  II p, p = 1, 2, or  oo, for some 
nonsingular  matr ix  T. In  such a case, we can convert  the original p rob lem (3)-(4)  to a p rob lem with a 
s tandard p - n o r m  by substi tut ing k with T-1~:. 

5. A n  e x a m p l e  

The following polynomia l  is considered in [6]: 

p(S, k )=s4 + al(k)s3 + a2(k )s2 + a3(k)s+ a4(k ), 

where k ~ ~ =  R 4 and Ialkl l 0 10 ] [12] 
a 2 ( k )  = 10.75 0.75 7 0.25 47 

a 3 ( k  ) ]32 .5  7.5 12 0.5 k + 70 " 

a4(k ) [18.75 18.75 10 0.5 50 

The  roots of p ( s ,  0) are - 5 ,  - 5 ,  - 1  + j. If  the desired stabili ty region is assumed to be the open left 
par t  of the complex plane, then the polynomia l  is nominal ly  stable and the stabili ty robustness  measure  is 
given by 

p = inf ~'0~0), 
w ~ R  

where ~ ' ( j~ )=  inf( 11 k I1: k ~ and p ( j~ ,  k ) =  0). By using the p rocedure  given in Sections 2 -4 ,  we 
obtain  

( r ( jo~)  1,~ 0 = 1.04 if I1" II = I1" 11 oo, 
/ 

p = {r(j~0) I ~= 0 = 1.76 if I1" I1 = II" II =, 
! 
~r(jo~) 1,~=0.71 = 2.00 if I1" II = ll" II 1- 
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Now assume that the desired stability region is the set C g = C gl U C g2 I.J C g3, where 

C g l : = ( s :  I s - ( - l + j )  1<0 .25} ,  C g 2 : = ( s :  I s - ( - 1 - j )  1 < 0 . 2 5 ) ,  

Cg 3 := (S:  IS - -  ( - - 5 )  1 < 1} .  

With respect to the stability region Cg, the nominal polynomial p(s, 0) is stable. The boundary of Cg is 
given by 0Cg = 0Cg I u OCg 2 u 0Cg 3, where 

3 C g l = ( s :  I s - ( - l + j )  1=0 .25} ,  0 C g 2 = ( s :  I s - ( - 1 - j )  l = 0 . 2 5 } ,  

a c g 3 = ( s :  I s - ( - 5 ) 1 = 1 ) .  

The stability robustness measure of p(s, k) is then calculated to be as follows on using the proposed 
procedure: 

(~'(s) I s=-lA7+j0.81 = 0.30 if I1" tl = I1" II 
/ 

p =  inf ~ ( s ) = ~ ' ( S ) l s = _ L 2 0 + j 0 . 8 5 = 0 . 4 4  if I I ' l l -  11"1[2, 

s~aC~ / [ r ( s )  I s=-l.23+j091 = 0.47 if I1" II = I1" II 1. 

The case when I1" II = I1" II is considered in [6]; the results obtained here and in [6] are consistent. 

6. Conclusions 

A unified method is obtained to analyze the stability robustness of a polynomial whose coefficients are 
affine functions of parameter perturbations. The stability robustness is measured by the norm of the 
smallest parameter perturbation which destabilizes the polynomial. The method is quite general in two 
senses: (i) the stability region in the complex plane can be an arbitrary open set, which includes the open 
left half plane and the open unit disc as special cases; (ii) the norm used to measure the stability 
robustness can be any norm defined on a linear space as long as its dual norm can be numerically 
evaluated. The computational procedure obtained from this method is conceptually simple and numeri- 
cally effective, and it can be further simplified if the norm used to measure the stability robustness is 
among the commonly used HiSlder p-norms. If the norm is the HNder  2-norm, the procedure coincides 
with some recent results obtained in the literature [4,8]; if the norm is the HNder  ~-norm,  the procedure 
is an improvement over the existing results. 

In most of the applications, using a norm to measure the size of the perturbation is satisfactory. 
However, there are cases when a norm is not a proper measurement of the size of the perturbation. For 
example, if it is known that the perturbation is contained in a convex body (containing the origin as an 
interior point) in the parameter space, it is more natural to use the gauge (or Minkowski functional) [12] of 
the convex body to measure the size of the perturbation. If the convex body is balanced, i.e. it contains k 
if and only if it contains - k ,  then the gauge is actually a norm; otherwise it is not a norm. If we use the 
gauge to measure the size of the perturbation and define the stability robustness in terms of this gauge, 
then the polytope problem considered by many researchers [1,2,6, etc.] can be covered; in this case it can 
be shown that the method given in this paper can be generalized to deal with the stability robustness 
problem for any given convex body. This will appear in a future paper [10]. 
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