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Concluding Remark: One should note that if Conditions 
C3)-C5) are supposed to hold, p and M can be easily identified 
from the truncated sequence ( R k ) h > l .  In fact, M is the smallest 
index for which R k  = 0 for each k 2 M + 1. On the other hand, 

= HoH’&. Therefore, p = Rank&. However, one should 
that it seems to be difficult to check that C3)-C5) hold. 
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A Single Sample Path-Based Performance 
Sensitivity Formula for Markov Chains 

Xi-Ren Cao, Xue-Ming Yuan, and Li Qiu 

Abstract-Using a sample path approach, we derive a new formula for 
performance sensitivities of discrete-time Markov chains. A distinguished 
feature of this formula is that the quantities involved can be estimated 
by analyzing a single sample path of a Markov chain. Thus, the formula 
provides a new direction for sensitivity analysis and can be viewed as 
an extension of the Perturbation realization theory to problems where 
infinitesimal perturbation analysis does not work well. 

1. INTRODUCTION 
In this paper, we derive a new formula for performance sensitivities 

of homogenous discrete-time Markov chains (we shall simply use the 
term Markov chain hereafter). We use a sample path approach, i.e., 
we analyze a sample path to determine the performance change due 
to a change in the transition probability matrix. The formula shows 
that the derivative of a performance measure equals the weighted 
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sum of the expected value of a quantity, called a realization factor, 
that measures the average performance change when the Markov 
chain changes from one state to another. The realization factors 
can be determined by solving a skew-symmetric Lyapunov equation. 
Furthermore, these realization factors can be estimated by analyzing 
a single sample path obtained from simulation or a record of a real 
system. 

The formula provides a new perspective to the sensitivity analysis 
of Markov chains. It shows that a single sample path contains all the 
information needed for determining the performance sensitivities in 
a Markov chain. The approach can be viewed as an extension of the 
realization theory [l] in infinitesimal perturbation analysis (IPA) [5], 
[6j to the case where a small change may induce a large change in 
the sample path. This work was motivated by a recent work of Dai 
and Ho [4] and can be considered a theoretical justification of the 
algorithm in [3j. 

The formula can be easily generalized to continuous-time Markov 
chains. Since a Markov chain is the main model for many stochastic 
systems such as queueing systems, the formula developed here may 
have an impact in other fields, especially in the field of single sample 
path-based sensitivity analysis and performance optimization. 

The paper is organized as follows. Section I1 introduces the basic 
concepts derived from a sample path point of view. We consider 
the simplest, but fundamental, case whiere one transition probability 
increases and another transition probability decreases by the same 
amount. We show how the sensitivity formula was derived by using 
intuition. Section I11 provides a rigorous proof for the general results 
where the transition matrix changes arbitrarily within the constraint 
of a stochastic matrix. The fundamental case discussed in Section I1 
becomes a special case. Section IV discusses the implication of the 
results. 

11. THE BASIC CONCEPTS 
In this section, by intuition we derive the performance sensitivity 

formula for the most fundamental case. The hasic concepts are 
introduced. The rigorous proof of the general formula and other 
results will be provided in the next section. 

Consider an irreducible and aperiodic Markov chain X = 
{ X , ; n  2 0) on a finite state space E = {1,2, . . . ,M} with 
transition probability matrix P = b8J]gl]gl. Let f :  E + R, 
where R = (-00,m) represents the space of real numbers, and 
n = (TI ,  m, . . . , T M )  is the steady-state probability vector of X .  f 
is called aperjormance function. The performance measure is defined 
as its expected value with respect to 7r 

M 

q = E ( f )  = Cn;f(i) = nf (1)  

where f = (f(l),f(2),...,f(M))T is a column vector, and E 
denotes the expectation with respect to the steady-state measure T .  

Assume that the transition matrix P is perturbed to P’ = 
bij]gl lgl, where 

’ I  p ; j ,  otherwise 

for some arbitrarily fixed 1, s, t E E,  and S > 0 is any small real 
number. Let Q = [qt3] be a matrix with qlS = - l , q l t  = 1, and 
q i j  = 0 for all i # I or .j # s , t .  Then we have P’ = P + S Q .  The 
Markov chain with transition matrix P’ is denoted as X ’  = { XA ; n 2 

2 = 1  

p i s  - 6, i = l , j  = s 
p, ,  = pit  + 6, i = 1,j  = t (2) 
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0). Let 7r' = (7r: , T; ,  

of X ' .  The performance measure of X '  is 
,7rb) be the steady-state probability vector 

M 

The derivative of v in the direction of Q is defined as 

(3) 

Our purpose is to derive a formula for 8 ~ / 8 Q  based on a sample 
path approach. 

Consider a sample path of X with a finite length {X,;  0 5 n < L} .  
We define a sample pe$ormance measure 

- L-1 

(4) 

Since X is irreducible, aperiodic, and finite, we have [2] 

= lim V L ,  w.p.1. 
L-00 

That is, we can approximate 
From (2), the state transition may change only when the Markov 

chain is at state 1. Because p i s  = p i ,  - S and pit = pit  + 6, some 
transitions in X from 1 to s may become transitions in X' from 1 
to t. It is obvious that when X is at state I ,  the probability of such 
transition changes is S. 

Suppose we simulate X and X' using the same sequence of random 
numbers. Starting from the same initial state, X and X '  will be the 
same in an initial period; the two sample paths may differ only after 
the Markov chains reach state 1 at some time k ,  i.e., x k  = 1 and 
Xg = 1. At time k + 1, it happens that Xk+l = s and XA+l = t. 
The effect of a state changing from s to t on a sample performance 
measure can be visualized as follows. For simplicity, we renumber 
the time indexes such that k + 1 = 0. We run the two Markov chains 
X and X' with X o  = s and XA = t .  Let 

FL = f (Xn).  

The effect of the change from X O  = s to XA = t on the sample 
performance measure is reflected by 

by VL, provided L is large enough. 

L-1 

n=O 

L-1 

n=O 

with X O  = s and XA = t. 

Its expected value is denoted as 

dkt = E C [ f ( X L )  - f ( X n ) ] I X o  = s,XA = t ) (1:: ( 5 )  

where L is considered a very large number, X evolves according 
to P ,  and X '  evolves according to P'. It is easy to see that at 
some point R. = L*,XA and X ,  may reach the same state, i.e., 
X L *  = X L * .  After this point Xl and X ,  will behave statistically 
similarly. Therefore, L in ( 5 )  can be replaced by L", i.e., 

Thus, the effect of the change from XO = s to Xh = t on 
performance terminates when the chain reaches L*. 

With the above observations, we can devise the formula for the 
derivative. Among the L transitions on a sample path {Xn;O 5 
n < L } ,  the Markov chain X visits state 1 ,  on the average, L T ~  

times. Because the probability that a transition from 1 to s changes 
to a transition from 1 to t is S on the sample path, there are, on the 
average, Lr1S times when state s changes to state t. Each time the 
state changes from s to t ,  FL changes, on the average, by the amount 
d:,. In addition, because & can be chosen arbitrarily small and L" is 
always finite, the probability of two changes from s to t occurring 
within L' state transitions is of order 6' and hence is negligible. 
This implies that the effect of each change can be treated separately. 
Therefore, the total change of 17 due to the change of P is 

1 1 
L L 

AV = -AFL = --(LnlSd:t} = Ti&d',t.  

Finally 

where 
/L*- l  \ 

\ n=O 

Both X and X' evolve according to P (P' -+ P as S -+ 0). 
We have obtained the new formula (6) by using a sample path 

argument. A mathematical proof of the formula and the equations 
determining d Z 3 ,  i ,  j E E will be provided in the next section. The 
explanation in this section shows that the sample path approach may 
lead to new perspectives as well as new results. The theory is a 
counterpart of the realization theory in perturbation analysis El], [6] 
in the case where there are finite changes in sample paths. 

111. THE MAIN RESULTS 

In this section, we shall rigorously establish the performance 
sensitivity formula for the general case where the transition matrix 
changes arbitrarily within the constraint of a stochastic matrix. 

A. The Realization Matrix 
Consider an irreducible aperiodic Markov chain X with a transition 

matrix P and state space E = {1,2, .  . . , M } .  Let X' be another 
Markov chain, independent of X ,  with the same state space E and 
the same transition matrix P. We assume that the initial states of both 
chains may be different, say XO = i , X h  = j , i , j  E E.  

Define Y, = ( X , , X A ) , n  = O , l , . . .  . Then Y = 
{Yo, Yl . . , Ynl - a }  is a Markov chain with state space & x E and 
transition matrix P IX P, where 8 denotes the Kronecker product. 
Furthermore, Y is irreducible and aperiodic since X and X '  are 
irreducible and aperiodic. 

Since E x E is finite, it follows that all the states of Y are recurrent 
nonnull [ 2 ] .  Thus, the first passage time from any state to any other 
state has a finite mean. Let S = { ( k , k ) :  k E E } .  Let L* be the 
random variable such that at n = L", Y reaches S for the first time. 
Then E(L*)  is finite. (One reviewer pointed out that if X and X '  are 
not independent, e.g., they are simulated by using common random 
numbers, then L* may not be finite.) 

DeJnition 1: 

is called a perturbation realization factor; the matrix D = [dC3] is 
called a realization matrix. 

The meaning of the perturbation realization factor can be intuitively 
explained as follows: suppose that a Markov chain is perturbed 
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by some reason such that the state changes from i to j .  This 
perturbation will affect the system performance. The average effect 
can be expressed as 

invertible, it follows that the restriction of L to V is also invertible, 
0 which implies that D E V for each F E V .  

D E V implies 

/ L " - l  

The second term is zero. Therefore, d,, measures the average effect 
of this perturbation on the performance measure. This is in parallel 
to the theory for IPA [I]. We say that the effect of the perturbation 
from i to J has been realized at L* on the sample path. 

By definition, d,, = -dz,. That is 

D~ = - D  

where T represents the transpose of matnces or vectors 
Denote 

F = e f T  - f e r  

where e = (1,1,. . . , l ) T ,  and define two subspaces of R M x M  

U = ( X E R M X M : X T = - X }  
V = { e 2  - zeT:  z E R"}. 

Clearly, V c U ,  D E U ,  and F E V 

of the Lyapunov equation 
Theorem 1 The realization matrix D is the unique solution in U 

D - P D P ~  = F (8) 

Furthermore D E V 

we have 
Proof First let us prove that D satisfies (8) For any Z , J  E E ,  

/ )  

L* 

d,, = E C[ f  (X6) - f (Xn)] IXo = 2, Xo = J lo 

L 
M M  

= f ( 3 )  - f ( 2 )  + 
2'=1 , '=I 

L* 

E C [ f ( X L )  - f(Xn)]lXi = 2' ,X;  = J  

. P { X 1 =  z ' , X :  = j'1Xo = 2,X; = 1 )  

2 ' = 1  ,'=I 

Writing the above equations in matrix form, we obtain (8). 
Consider now the Lyapunov map L: RM 'ur + R" defined 

by 

L ( D )  = D - P D P T .  

Simple algebra shows that U is an invariant subspace o f  L. It 
is well known [SI that the restriction of L to U has eigenvalues 
1 - X,(P)X, ( P ) ,  1 5 i < j 5 M ,  where X,(P) denotes the ith 
eigenvalue of P. Because X is irreducible and aperiodic, P is 
primitive; it follows that 1 is the only eigenvalue of P with maximum 
modulus. Hence, this restriction is invertible, which means that for 
each F E U there is a unique D E U such that (8) is satisfied. Since 
V is also an invariant subspace of L and the restriction of L to U is 

d,rc = d,, + d ,k ,  for all i , j ,  IC E E .  (9) 

Corollary 1: The unique skew-symmetric solution to (8) is given 
bY 

m 

D = P " F ( P T ) " .  
n=0 

Proof.. Replacing the D on the right-hand side of (8) by 
F + P D P T  and working iteratively, we get 

N 

D = P"F(PT)"  + P N + l D ( P T ) N + l .  (10) 
n=O 

Since X is irreducible and aperiodic, we have [2] 

lim p N  = en 
N-m 

Because DT = - D ,  we have 7rD7rT = 0. Therefore 

lim P N D ( P T ) N  = e7rD7rTeT = 0. 
N-CC 

The corollary follows directly from this and (10). 0 

B. The Derivative Formula 

following pattern: 
Now we assume that P is perturbed to P' according to the 

P'= P + 6 &  (1 1) 

where 6 > 0 is a small real number and &e = 0. 
Let 7r and 7i' be the steady-state probability vectors of the Markov 

chain with P and P', and let 17 = 7r f and 17' = 7r' f be their steady- 
state performance measures, respectively. The performance derivative 
of 7 in the direction of Q is defined as 

The derivatives of other quantities are defined in a similar way. 

of Q ,  we have 
Taking derivatives of the both sides o f  7iP = T in the direction 

It follows from (d7r /dQ)e  = 0 that 

d7r -(I - P + e r )  = nQ. aQ 
Since the fundamental matrix [7] I - P + e r  is invertible, we have 

Theorem 2: 
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Prm$ From (12) 

= r Q ( I -  P + er)-’f. (13) 

Since D = F + P D P T , n e  = 1, and r P  = T ,  we have 

D T n T  = F T x T  + PDTPTnT 

= f - ( 7 r f ) e  + P D ~ ~ ~ .  

Furthermore 

( I  - P + e7r)DT7rT = (7rDT7rT)e + f - ( 7 r f ) e  

Now we have 

( I  - P + e*)-lf 

= DT7rT + (7rf - 7rDT7rT)(I - P + e 7 r - l ~  

= DTnT + (7 r f  - 7rDT7rT)e. 

The last equation is due to ( I  - P + e7r)e = e .  Therefore, from 
(13) and &e = 0 

= x Q [ D T x T  + (7rf  - 7rDT7rT)e] aQ 
T T  = r Q D  7r . 

This concludes the proof. 0 
For the case discussed in Section 11, we have qiS = -1, qzt = 1, 

and qzJ = 0 for i # 1 or j # 1,s.  We have 

M 

= 7ri d,t. (14) 

The last equation is due to (9). Thus, a ~ / a Q  equals the expected 
value of dSt.  

Finally, the derivative aq/aQ is similar to the directional deriva- 
tive in calculus. Therefore, if Q is multiplied by a constant, so is 
aq /aQ.  Of course, we can normalize Q so that the derivative depends 
on only the direction of the changes. 

IV. DISCUSSIONS 

Using a sample path approach, we have derived a new formula for 
the performance sensitivity of Markov chains. A distinguished feature 
of this formula is that the quantities involved can be estimated by 
analyzing a single sample path of a Markov chain. 

To estimate d,t defined in (7) on a sample path of a Markov chain 
X, we may proceed as follows. First, find an X, = s and an X ,  = t 
on the sample path. Then record f ( X n )  and E’,’’=” f (Xn) 
until X 2 + ~  = X,+L. The average of f (Xn) - f(Xn) 
is an estimate of d,t. This demonstrates the important principle 
that a single sample path contains all information of performance 
sensitivity. 

Reference [3] proposed a simulation algorithm which in fact 
estimates the realization factors. In Dai’s method, an additional 

simulation for a Markov chain X’ with the initial state t is carried out 
when X reaches s. The additional simulation stops when X‘ and X 
reach the same state. The results obtained in this paper thus provide 
a clear interpretation of Dai’s method as well as a concise proof of 
the algorithm in [3]. 

To develop single sample path-based algorithms using the formula 
for estimating performance sensitivities of practical systems is an 
ongoing research topic. 
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An Alternate Calculation of the Discrete-Time Kalman 
Filter Gain and Riccati Equation Solution 

Robert Leland 

Abstract- We describe an algorithm to calculate the steady-state 
Kalman filter gain and Riccati equation solution for a discrete-time 
Kalman filter. Our algorithm makes use of an approximate autoregressive 
model for the one-step predictor and only requires the solutions to linear 
equations. All of the nonlinear calculations can be made explicitly. 

- 

I. INTRODUCTION 

We consider a new algorithm for calculating the steady-state 
Kalman filter gain and error covariance for the discrete-time filter. 
Our algorithm only requires (in principle) the solution of linear 
equations, and all of the nonlinear calculations are explicit. 

Suppose we have the discrete-time stochastic system 

where @ is a discrete-time stable 7~ x n matrix, wk and z’k are inde- 
pendent zero mean Gaussian white noise processes with E[WIFW~] = 

Q ,  E [ v ~ v ~ ]  = R, where Q 2 0, and R > 0. We also assume that 
(C, (a) is observable and + is nonsingular. This last assumption is 
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