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A Summary on the Real Stability Radius 
and Real Perturbation Values 

Bo Bernhardsson, Anders Rantzer, Li Qiu 

1. Introduction. The stability radius problem has an interesting history in the 
mathematical and control theory literature. Stability radii also occur in numerical 
analysis in relation with the so called pseudospectra introduced by Trefethen and 
the analysis of stability of numerical solvers for ordinary differential equations. 

There are several different definitions of so called "stability radii" . The theory 
for the complex stability radius is equivalent to Hoo-theory and can be connected 
to Riccati equations. Towards the end of 1980's, attention was focused on the real 
stability radius. Hinrichsen, Pritchard, and associates studied various properties 
of the real stability radius and surveyed their results in [5]. It was also studied 
by people in numerical linear algebra, see [9]. Several lower bounds on the real 
stability radius were obtained in [12]. We will here focus on presenting thc rccent 
ideas behind the calculation of the real stability radius and the connected "real 
perturbation values" of a matrix. 

Consider the following problem closely connected with the computation of 
the real stability radius: Given a complex matrix !vI E Cpx m, compute the so 
called "real perturbation values" of M: 

(1) Tk(M):= [min{IILlII : Ll E R"'xp and rank(Im - LlM) = m - k}r 1 . 

Note that Ll is here assumed real, while M is a complex matrix. The size of the 
matrix Ll is measured in induced 2-norm, i.e. as t.he largest singular value and the 
invcrsc is taken for latcr notational convenience. When IvI is real, Tk(!vI) = O'k(Itf), 
where O'dM) denote the standard singular values of 1v! ordered nondecreasingly. 

We have recently shown the following easily computable formula for the real 
perturbation values: 

(2) . ([ ReM Tk(M) = lIlf 0'2k -1 I '1' 
"YE(O,lj ,lIllY, 

-~flmM ]) 
ReM . 

This result generalizes a formula for T1 obtained in [10], [11] to arbitrary k. The 
new more general proof is quite different and sheds new light on the previous 
results on the real stability radius. The problem is by (2) reduced to a simple 
one-parametric minimization, where actually only k local minima can occur. It 
is also possible to give a constructive method for finding a minimizing Ll. For a 
discussion of numerical issues connected with the computation of (2) and the real 
stability radius see the contribution by van Dooren et.al. in this book. 

The (structured) real stability radius of a matrix quadruple (A, B, C, D) E 
Rnxn x Rnxm x RPxn x RPxm satisfies 

11 
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rR(A, B, C, D) := inf {116.11: A + B(I - 6.D)-l6.C is unstable 
~ERmxp 

or det(I - 6.D) = o}. 

= [sup T1(D + C(sI _ A)-l B)]-l 
BEaCg 

where BCg denotes the boundary of the stability domain Cg • This should be com­
pared with the corresponding well known result for complex perturbations 

rc(A, B, C, D):= inf {1I6.1I: A + B(I - 6.D)-l6.C is unstable 
~Ecmxp 

or det(I - 6.D) = o}. 

= [sup 0"1 (D + C(sI _ A)-l B)] -1 

sEaCg 

which connects the complex stability radius with H=-theory. 

(3) 

It is also relatively easy to show that 

Tk(M) = max min II Re (Mz)ll. 
dim(S)=k zES II Re (z) II 

Compare this with the classical variational formula for the singular values 

(4) O"k(M) = max min 11M zll. 
dim(S)=k zES IIzll 

The real perturbation values seem to be new interesting entities connected 
to a complex matrix . Many results for the singular values have counterparts for 
the real perturbation values. The analysis is related to other interesting areas in 
mathematics, such as Hermitian-symmetric inequalities, consimilarity and quater­
nions. 

Due to page limitations it will not be possible to give all details here. An 
extended version of this paper will appear elsewhere. 

2. Calculation of the Real Perturbation Values. Formula (2) follows from: 
THEOREM 2.1. Given a matrix C E Cpxm the following four conditions are equiv­
alent, where A = M* M - T2 I, B = MT M - T2 I, 6. E Rmxp and Sk is a complex 
matrix of mnk k: 

(5) 

(6) 
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(7) inf A2k ([ AB ~AB]) ~ 0 
1<>19 a 

(8) . f ([ ReM III (J"2k 
,E(O,lj '1'-1 1m M 

-'Y ImM ]) ~ 7 
ReM 

Proof That (5) is equivalent to (6) follows from the fact that given two complex 
matrices U and V there exists a real contraction, i.e. a real matrix ~ with II~II ::; 1, 
such that ~U = V if and only if 

[ ~; ] [U V] ~ [ ~; ] [V V]. 

If (6) is true then it is easy to see that the same statement with B replaced with 
-B is also true. By convexity one can then replace B by aB for any a E [-1,1]. 
Hence (6) implies (7). That (7) is equivalent to (8) can be seen as follows: Since 

P ( ).= [ ReM -'Y ImM ] = D [M ~] D-1 
M'Y· 'Y-1lmM ReM 0 M 

h D _ [hI hI] were - I -I 

we can use the fact that congruence transformations do not change the sign of 
eigenvalues to show that 

A2k(PMb)* PMb) - 7 2 1) ~ 0 -{=} 

A ([ M ~] * D* D [M ~] - 7 2 D* D) > 0 
2k 0 MOM -

However, because D* D = [ ~~ ~ i ~~ ~ i ] this is equivalent to 

A2k ([ ~ ~] + ~~ ~ ~ [~ ~]) ~ o. 

With a := b 2 -1)/b2 +1) this proves that (7) is equivalent to (8) with the interval 
(0,1] replaced by (0,00). The singular values of PMb) and PMb- 1 ) are however 
the same. This concludes the proof of the theorem except for the implication (7) 
=} (6). We will not prove that in full generality here. The following lemma however 
illustrates the main idea. 

Remark The implication (7) =} (6) would be relatively easy to prove if A and B 
where diagonal. The existence of a simultaneous *- and T-block diagonalization of 
A and B. required in the next lemma is actually not a strong restriction. If the 
eigenvalues to the generalized eigenvalue problem 
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are simple, S can be constructed from the corresponding eigenvectors. In the case 
of multiple eigenvalues the simultaneous block-diagonalization might however not 
be possible. One must then replace the block-diagonal matrices with matrices 
of a form parallel to those in the Jordan canonical form. The proof then becomes 
slightly more technical. For a more extensive discussion see [3]. See also the related 
references [1], [6], [14], [15] and [16]. 

LEMMA 2.2. Let A and B a be defined as in the previous theorem. Assume that 
there exists a complex non-singular matrix S such that 

(9) S*AS = A and STBS = I 

where A diag(Al> ... ,AT) is a block-diagonal matrix with blocks of the form 

Aj = Aj E R or Aj = [~j ~]. Then (6) and (7) are equivalent to the following 

condition 

(*) Let n1, n2 denote the number of Aj 2: 1 and non-real Aj respectively and let 
the real eigenvalues smaller than 1 be ordered so that 1 > A1 2: A2 2: .... 
Then either n1 + n2 2: k or else 

Aj + A2k-2n,-2n2+1-j 2: 0, j = 1, ... , k - n1 - n2. 

Proof After a congruence transformation condition (7) means that [:1 ¥] 
has 2k positive eigenvalues for all a E [-1, 1]. The eigenvalues can be studied block 
by block. Because of symmetry it is enough to study a E [0,1]. The eigenvalues 
are given by Aj ± a if Aj E Rand ±(a2 + IAjl2 ± 2a Re (Aj ))1/2 otherwise. If the 
eigenvalues of the matrix above is plotted as function of a there will be 2n curves. 
The n2 non-real blocks of A give rise to 4n2 curves, half of them above 0, half of 
them below O. The real blocks will give 2n - 4n2 straight lines, half of them with 
slope 1, half with slope -1 as a function of a. The eigenvalues with Aj 2: 1 give 2n1 
lines above 0 for all a E [-1,1]. Drawing a diagram and figuring out the condition 
for existence of a total of 2k curves above 0 for all a E [-1,1] one arrives at the 
somewhat involved condition (*). 

From (*) it is easy to construct the nonsingular matrix Sk needed in (6) by 
using the blocks corresponding to the 2k curves above O. In fact we construct Sk 
in the following way. Let S be given as above and put for each real eigenvalue 2: 1 

Sj = S [0 ... 1 0 ... 0 f, j = 1, ... , n1. 

so that sj ASj 2: 1 and sf BSj = 1. For each pair of complex eigenvalues put 

Sj = S [ 0 
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Assuming 1m (Aj) < 0 this gives sj ASj = -21m (Aj) > 0 and sf DSj = o. Put for 
each pair with Aj + A2k-2n,-2n2+1-j 2': 0 

Sj = S [0 . .. 1 i . .. 0 1 T, j = T!l + T!2 + 1, ... ,k. 

This gives s; ASj = Aj + A2k-2n,-2n2+1-j 2': 0 and sf BS j = o. With Sk 

[S1 ... Sk]T we hence have 

SZASk = diag(Ac, Ad) and sI BSk = diag(I, 0), 

where Ac 2': I and Ad 2': O. From this (6) follows. That (6) implies (7) was proved 
in the previous theorem. 

2.1. The Courant-Fischer Type Formula. Formula (3) follows from 

LEMMA 2.3. Let A = M* M - 7 2 I, B = MT M - 7 2 I and assume Sk denotes a 
matrix of rank k. Then the following conditions are equivalent 

(6) 3Sk: [~k;k r [~ ~] [~k ;k] 2': 0 

(**) 3Sk : 

(3') 3Sk : 

z* Az 2': Re (zT Bz), Vz E 1m (Sk) 

IIRe(Mz)1122':721IRe(z)112, VzE 1m (Sk) 

Proof That (6) is equivalent to (**) follows from Lemma 3.1 below. Conditions 
(**) and (3') are equivalent since 

II Re (MSk w)11 2 2': T211 Re (Skw)112, Vw E C k 

¢} (MSkw + M Sk W)*(MSkW + M Sk w) 2': T2(SkW + Sk W)*(SkW + Sk w) 

¢} w* SZ(M* M - T2 I)SkW 2': - Rc (wT SI(MT M - 72 I)SkW), Vw E C k 

¢} W* Sk(M* M - 72I)SkW 2': Re (wTSI(MT M - 72 I)SkW), Vw E Ck 

2.2. Some Properties of the Real Perturbation Values. The following properties 
follow directly from the definition of 7k(M): 
LEMMA 2.4. 

(10) 7k(o:M) = O:Tk(M), 0: E R 

(11) 7k(M) = Tk(M) 

(12) 7k(Q1MQ2) = 7k(M), Qi Teal orthogonal matrices 

By using (2) for T](M) and the fact that 1T2(A) 2': infzcs211Azll/lizii for allY 
subspace S2 of dimension 2 one can also prove that 
LEMMA 2.5. 7](M) is continuous in M at points 1"1 where 1m (M) =1= O. 
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3. Connections to Other Parts of Mathematics. 

3.1. Hermitian-Symmetric Inequalities. Pairs (k B) where A is Hermitian and B 
complex symmetric matrix occur occasionally in analysis, for instance in quadratic 
Hermitian-symmetric inequalities: 

n n 

(13) z* Az = L o,ijZiZj?: L bijZiZj = IzT Bzl, \lz E Cn. 
;,j=l i,j=l 

Such inequalities are surveyed in [4] where the following theorem is proved: 
LEMMA 3,1. The following six statements are equivalent 

(i) z* Az ?: IZT Bzl, \lz E Cn 

(ii) x*Ax+y*Ay?: 2 IxTnyl, \lx,y E Cn 

(iii) x* Ax + y* Ay ?: 2 Re(xTBy) , \Ix, y E Cn 

(iv) the 2n x 2n matrix 

A= [~ ~] 
is nonnegative definite, that is, (A( ?: 0, \I( E C2n 

(v) (* A( ?: 0, for all ( E c2n of the form 

(= [ ;] where Z E Cn 

(vi) z*Az?: Re(zTBz), \lzECn 

There are several interesting instances of such inequalities, for example the 
Grunsky inequalities in the theory of univalent functions. Hermitian-symmetric 
inequalities also occur in analytic continuation, harmonic analysis and the moment 
problem for complex measures. Some of these applications are described below. 

3.1.1. Grunsky Inequalities. The most celebrated example of Hermitian-symme­
tric inequalities is probably the Grunsky inequalities in the classical theory of 
univalent analytic functions: If f(z) is a normalized (i.e. f(O) = 0, f'(O) = 1) 
analytic function on the unit disc, then a necessary and sufficient condition that 
f be univalent, is that 

l:n 1 l:n I [ ZiZj f(Zi) - !(ZJ)] x,xJ log > X·X· og 
l-zz- "J f(z)f(z) z-z 

i 1j=1 t J i,j=l t J Z J 

for all Xl, ..• ,Xn E C, all Zj, ... ,Zn in the unit disc, and all n = 1,2, .... Of course, 
the difference quotient is interpreted as f'(Zi) if Zi = Z)' 
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3.1.2. The Moment Problem. Consider a finite sequence of complex numbers ao, 
a1, ... , a2N where ao is real and N is a positive integer. Define a-n = an, for 
n = 1,2, ... , 2N. In [4] it is shown that the following conditions are equivalent: 

(a) There exists an infinite sequence of complex numbers (aj )~2N+1 such 
that the function fez) = ao + 2a1Z + 2a2z2 + 2a3z3 + ... is analytic in the 
unit disc of the complex plane and satisfies 

Ref(z) ::::: 0, Izl:::; 1. 

(b) 

N N 

2: ai-jCiCj::::: 2: ai+jCiCj , \lco, Cl, ... , CN E C. 
i,j=O i,j=O 

3.1.3. Reproducing Kernel Hilbert Spaces. Let 0 be a finite domain in the com­
plex z-plane which is bounded by n closed analytic curves CI/, l/ = 1,2, ... ,n. The 
Green function g(z, () of 0 is defined by the following properties 

(a) g(z, () is harmonic for ( E 0 fixed except for z = (. 
(b) g(z, () + log Iz - (I is harmonic in the neighborhood of z = (. 

(c) g(z,() == 0 for z E 80 and (E O. 
The kernel functions are defined by 

K(z t=) = _ ~ 82g(z, () 
,., 7r 8z8( , 

L( ,) = _~ 82g(z, () 
Z,., 7r 8z8( . 

The following Hermitian/symmetric relations follow from the definitions: 

K(z, () = K«(, z), L(z, () = L«(, z). 

One often also introduces the function l(z, () = l/7r(z - ()2 - L(z, (). One can 
show that for any 0: 

n n 

2: XiXj K(Zi, Zj)::::: 2: XiXj l(zi, Zj), \lXi E C, \lzi E 0, 
i,j=l ij=l 

which is yet another example of a Hermitian-symmetric inequality. For a discussion 
of simultaneous diagonalization of K and I see [2]. See also [13] for an interest­
ing discussion on connections to Hilbert transforms and the Fredholm integral 
equation. 

3.2. Consimilarity. We say that two matrices C, Dare consimilar if there is a 
--1 

nonsingular P such that P CP = D. A mapping T : V --> W between complex 
vector spaces V and W is called an antilinear transformation if 

T(o:x + (3y) = aT(x) + {JT(y) , \10:,(3 E C,x,y E V. 
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Just as similar matrices are matrix representations of a linear transformation in 
different bases, consimilar matrices are matrix representations of an antilinear 
transformation in different bases. For a collection of results for consimilarity and 
more references see [8, Chapter 4]. Consimilarity is closely related to the simulta­
neous * and T-diagonalization in (9), see [8, Chapter 4.6], [7]. 
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