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Abstract 
Consider a polynomial p(s, k) which is affine in the parameter 

perturbation 6; aasume that the vector k is uncertain but belongs 
to a convex set which contains the origin, and call a polynomial 
stable if all of its roots are contained in a pre-specified stability 
region in the complex plane. Then the stability robustness of 
p(8, k) can be measured by the maximal nonnegative number p 
with the property that if the gauge (or the Minkowski functional) 
of k with respect to the convex set is less than p, thP polynomial 
p(s, k) is always stable. This paper develops a unified approach 
to compute the robustness measure p. The approach imbeds 
the problem considered into the framework of convex analysis so 
that some powerful tools in convex analysis can be used. The 
approach is very general because of two reasons: i) the stability 
region in the complex plane can be an arbitrary open set, which 
includes the open left half plane and the open unit disc as special 
cases; ii) the convex set in which k is contained can be assumed to 
have an arbitrary shape, which includes polytopes and ellipsoids 
as special cases. The computational procedure to compute p 
which results from this approach is easy to implement. Various 
examples are included to illustrate the type of results which may 
be obtained. 

1 Introduction 
Consider an n-th degree real polynomial in a complex variable s. As- 
sume that its coefficients are affine functions of a vector k € R", whose 
entries represent independent physical parameters. This polynomial 
can be written as 

d b k )  = ao(k)s" + al(k)s"-' + . . * + an-l(k)s + a , ( k ) ,  (1) 

where ai (k) ,  i = 0,1,. . . , n, are affine functionals of k, i.e. there exist 
a matrix F E and a vector g E R"+' such that 

(2) a(k )  := [ao(k) ai(k) . . .an(k)]'  = Fk + g. 

In many applications, the parameter 12 is somewhat uncertain but is 
known t o  be contained in a given set S c Rm. In this paper, the set 
S is assumed to  be a closed convex set. With no loss of generality, we 
also assume that S contains the origin. 

In many control problems, a desired property of a polynomial is 
that all of its roots are located in a pre-specified area in the complex 
plane. This pre-specified area will be called the stability region and 
a polynomial is said to  be stable if all of its roots are located there. 
A stability robustness problem which naturally arises for the polyno- 
mial of the form (1)-(2) is to  determine whether or not the polynomial 
A s ,  k) is stable for all k contained in S; this problem will be called the 
robustness checking problem. However, an answer to the robustness 
checking problem is often not enough. It is desired to  have a quantita- 
tive robustness measure of the polynomial model (1)-(2). If we define 
the gauge (or Minkowski functional) of the set S to be a function p s :  
Rm -+ R U {CO} such that p ~ ( k )  = inf{a > 0 : a- 'k  E S}, then 
a relative size of k is provided by p s ( k )  and a robustness measure is 
provided by the maximal nonnegative number p with the pr0pert.y that 
the polynomial p ( s , k )  is stable for all k with ps(k) < p. The prob- 
lem to find such robustness measure p i s  called the maximal robustness 
problem. It is clear that an answer to  the maximal robustness problem 
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automatically provides an answer to the robustness checking problem, 
but to  do the converse requires an extra one-dimensional search. 

The purpose of this paper is to find a procedure to  compute the 
robustness measure p when F, g, S and the stability region are given. 
In this paper, a simple and numerically feasible procedure is obtained 
to  compute p. The procedure can be applied to  very general cases: i) 
the stability region in the complex plane can be an arbitrary open set; 
ii) the convex set S can be assumed to  have an arbitrary shape. 

A special case of the above problems occurs when each column 
and row of F have a t  most one nonzero element, the stability region 
is the open left half part of the complex plane, and the convex set S 
is a hyperrectangle. In this case, the polynomial p ( s , k )  is called an 
interval polynomial. The remarkable theorem of Kharitonov [lo] gives 
an elegant solution to the robustness checking problem of an interval 
matrix. It says that p(s ,  k) is stable for all k in S if and only if four 
specially constructed polynomials are stable. The maximal robustness 
problem for an interval polynomial can be easily solved in terms of 
Kharitonov's four polynomials using the Hurwitz stability criteria [9]. 

The stability of interval polynomials with respect to the open left 
half part of the complex plane is a very restricted special case of the 
general problem, in which the matrix F, the stability region and the 
convex set S are arbitrary. Although some attempts have been made 
to  generalize the result of Kharitonov to  the general problem (see [l], 
[2], [6] and the references in [3]), no results obtained have the same 
level of simplicity as Kharitonov's theorem. Recently, a considerable 
amount of research has lead to  the development of feasible numerical 
methods to  solve the maximal robustness problem and the robustness 
checking problem for polynomials whose coefficients are general affine 
functions of uncertain parameters. References [l] and [2] consider the 
robustness checking problem for the case when the set S is a polytope. 
The methods used in [l] and [2] are based on the concept of the value 
set, which is the set of complex numbers p ( s , k )  with s fixed and k 
varying in a known set. The computation required in the methods of 
(11 and [2] are combinatorially explosive with respect to  the number 
of uncertain parameters, so that they are only realistic to apply when 
the number of uncertain parameters is small. The maximal robust- 
ness problem is solved in [5]  and [8] for the case when the set S is 
a hyperellipsoid by using Euclidean space projection theory. In this 
case the gauge of S is actually the weighted Holder 2-norm. The case 
when S is a polytope is solved in [7] by using the geometry of the 
value sets and in [17] by using a linear programming method. The 
method in [7] completely eliminates the combinatorical explosion of 
the computational complexity with respect to  the number of uncer- 
tain parameters. A new method based on the Hahn-Banach theorem 
is developed in I l l ]  to  solve the maximal robustness problem for the 
case when the stability robustness is measured by norms, which are 
just special kinds of gauges. In this paper, the method used in [ I l l  is 
extended to  the case when S is any closed convex set containing the 
origin. 

Due to  space limitations, all of the proofs are excluded from this 
paper; a complete treatment of the material covered in this paper is 
given in [12]. 

The following notation is used throughout this paper: 

R(or C) 
R+ 

the field of real (or complex) numbers 
the set of nonnegative real numbers 

R R U {-OO,OO} 
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ii+ R+ U (00) 

P(s)(or 3(s))  the real (or complex) part of s E C 
closure of the set S 
convex hull of the set S 

Cl(S) 
4 s )  

In this paper, we have to  consider algebraic operations in p. 
If these operations involve 00, the conventional rules are used. In 
addition to  the obvious rules, these rules include: Om = w0 = 0 and 
inf 0 = 00. However, the following operations are avoided: 2, %, and 

2 Preliminaries 
00 - M. 

Assume in the following development that the vector space R" is 
equipped with the usual inner product (z ,y)  = z'y, Vz,y E Rm. This 
inner product induces a norm (the Holder 2-norm) llxllz = (z,z)), 
Vz E R". Let S, T be subsets of R"' and a, p be scalers in R .  We 
use aS to  denote the set {ax : z E S} and a s  + PT to denote the 
set {az + py : z E S, y E T}. Then S is convez if and only if 
aS + (1 - a)S C S for all a E [O, 11. This section introduces some 
preliminary results required in our development. The proofs of the 
results presented can be found in many standard references, e.g. [4], 
[13], [14]. Reference [12] also provides a complete and concise source 
of these proofs. 

Definition 1 A set S c Rm is said to be 

(a) bounded if there exists Q > 0 such that ))z))2 5 a for every z E S,  

(b) absorbing if for each x E R", there ezists a > 0 such that z E pS 

( c )  balanced if aS c S for every a E [-I, 11, 

(d) ellipsoidal if S = {z E R"' : ( z , M z )  5 1) for some positive 
definite matrix M E Rmx", 

(e) polyhedml if S is the intersection of a finite number of sets of the 
form {z E R" : (I, y) 5 a} for some y E R"' and some a E R. 

If y # 0, a set of the form {z E R"' : (z,y) 5 a} is usually called 
a closed halfspace; its boundary {x E A"' : (x,y) = a} is called a 
hyperplane. In the case when y = 0, the set {z E R"' : (z,y) 5 a} 
is either 0 or R".. A bounded nonempty polyhedral set is called a 
polytope; equivalently, we can define a polytope to be the convex hull 
of a finite set of points. 

for every 2 a, 

Let S c R" be a closed convex set containing the origin. 

Definition 2 The gauge (or Minkowski functional) of S is the func- 
tion ps : R" + V, defined by 

ps(x) = inf{a > o : a-'z E S}. (3) 

Some properties of the gauge are given by the following proposition. 

Proposition 1 Suppose that S c R"' is a closed convez set Containing 
the origin. Then 

(a> p s ( ~  + Y) 5 ~ ( z )  + PS(Y), 
(b) p . 4 ~ ~ )  = ~ P S ( X )  if a 1 0, 
( c )  ps(x) = 0 is equivalent to z = 0 if S is bounded, 
(d) p s ( z )  < 00 for every x E Rm if S is absorbing, 
(e) ps is a norm if S is bounded, absorbing and balanced, 
(f) S = {Z E R" : ps(2) 5 l}, 
(g) ps is lower semi-continuous; it is continuous if S is absorbing. 

It is seen from Proposition 1 that the gauge is a generalization 
of the norm. The set S is the generalized unit ball. For example, if 
S = {z : Czl Jz;)P = l} ,  then ps is the Holder pnorm. When p = 2, 
the set S is ellipsoidal. When p = 1 or 00, the set S is polyhedral 
(actually a polytope). 

Let S c R" be an arbitrary set. 

Definition 3 The polar of S, denoted by So, is defined by 

So = {y E R"' : (x,y) 5 1, Vx E S } .  

Proposition 2 The polar So of any set S c R"' is a closed convex 
set and contains the origin. If S is absorbing, then So is bounded. If 
S is bounded, then So is absorbing. If S is balanced, ellipsoidal or 
polyhedml, so is So. 

Since So is also a set in R"', it has a polar which is written as So" 
instead of ( S O ) " .  The set So" is sometimes called the bipolar of S. 

Proposition 3 For any set S C R"', So" = cl[co({O} U S)]. 

Corollary 1 If S c Rm is a closed convez set containing the origin, 
then So" = S. 

Since So is a closed convex set containing the origin, its gauge is 
defined. 

Definition 4 Let p s  be the gauge of a closed convez set S C R"' 
containing the origin. Then the gauge p s ~  of So is called the dual 
gauge of ps. 

The dual gauge of p s  can also be related to  p s  through the follow- 
ing proposition. 

Proposition 4 Let ps be the gauge of a closed convez set S C R" 
containing the origin. Then its dual gauge p p  satisfies 

p s ~ ( y )  = inf{a 2 0 : (2.y) 5 aps(x) ,  Vz E R"}. (5) 

If ps is a norm, the right hand side of (5) is the definition of the 
dual norm. Hence, the concept of the dual gauge is a generalization of 
that of the dual norm. For example, if ps is the Holder pnorm, then 
p s ~  is the Holder q-norm, where f + b = 1. 

A key result in our development is a direct application of the well- 
known Hahn-Banach theorem [15]. 

Lemma 1 (Hahn-Banach Theorem) Suppose 
(a) (b : R" -+ R+ is a function satisfying 4(x + y) 

(b(a2) = a(b(z) for all z , y  E R", a 1 0, 
(b) f is a linear functional on V and f(x)  5 (b(z) for all z E V. 

Then there ezists a linear functional f on R"' such that f(x) = f ( z )  
for all z E V and ](z) 5 4(z) for all x E R". 

#(x) + 4(y) and 

Note that the condition (a) of Lemma 1 is always satisfied by the 
gauge of any absorbing convex set S. 

3 Problem Formulation 

Let is 
homeomorphic to  the Riemann sphere. Partition into two disjoint 
subsets C, and cb, i.e. = C,UCb, such that C, is open. The reason 
why we consider instead of C is to avoid ambiguity a t  00; we want, 
w to  belong to  either C, or cb but not both. Let P be the space 
of all real polynomials with degree not larger than n. The number 
of roots of each polynomial in P is made to  be n by supplementing 
an appropriate number of m's as its roots. We use As, IC) to  denote 
the image of IC E R"' under a fixed affine map from R" t o  P which 
is completely characterized by a matrix F E R("+')'" and a vector 

be the one point compactification of C. It is known that 

g E R"+l as 

p ( ~ ,  I C )  = [s" s"-' . . .l](FIC + 9). (6) 
A polynomial in P is said to  be stable if all its roots are in C,. For 

any given closed convex set S c R" containing the origin, define 

p := inf{ps(k) : IC E R"' and p(s,IC) is unstable}. (7) 

The purpose of this paper is to  find a procedure to compute p when F, 
g, C, and S are given. If p(s ,  0) is unstable, we must have p = 0, so it 
is always assumed in the following that p ( s ,  0) is stable. Alternatively 
we can write p as 

(4) 
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Denote the boundary of C, by aC,, i.e. aC, = cb n cl(C,). Then 
simple continuity arguments show that 

p = inf{ps(k) : k E R" and 3s E aC, such that p ( s , k )  = 0}, (9) 

which can be rewritten as 

p = inf {inf{ps(k) : k E Rm and p ( s , k )  = 0)).  (10) 
S E X ,  

Define a function ~ ( s )  : aC, + i?+ by 

'(9) = inf{ps(k) : k E R" and p ( s , k )  = 0). (11) 

It is seen from (10) that the computation of p can be accomplished in 
two phases. The first phase is to find T ( S )  for any fixed s E aC,. The 
fiecond phase is to  carry out a search over all points in aC,, which is 
usually a one-dimensional curve in c, to  find infsEaC, ~ ( s ) .  

Now let s E aC, be fixed. The equation p ( s ,  k) = 0 becomes 

[s" 5"-1 . . .1 ]Fk = -[s" sn-1 . . . l]g. (12) 

The assumption on the stability of p(s, 0) implies that the right hand 
side of (12) is nonzero. Let 

F'[s" 5"-1 . . .I]' 
[s" 5"-1 . . . l]g 

M ( S )  := - 

and let U(.) := R[w(s)], v(s) := S[w(s)], the real and the imaginary 
part of w respectively. Then u(s), v(s) E R" and (12) is equivalent to  

u(s)'k = 1 and v(s)'k = 0. (13) 

Consequently, we have 

~ ( s )  = inf{ps(k) : k E Rm and u(s)'k = l,v(s)'k = 0). (14) 

Therefore, the first phase of the problem to compute p becomes a 
specialization of the following problem: find 

inf{ps(k) : k E R" and u'k = 1, v'k = 0) (15) 

for any given U, v E R". A straightforward method to  solve this prob- 
lem can be directly obtained since this is just a nonlinear programming 
problem with a convex cost function ps(k) and linear constraints. It 
can be shown that this nonlinear programming problem is reduced to  
a linear programming problem if S is a polytope. This is basically 
the method used in [17]. The purpose of this paper is not to  pursue 
this direction; instead, we will simplify this problem to a form which 
is much more tractable numerically. 

The second phase of the problem to compute p is usually carried 
out by a "brute force search" over dC,. The details and the possible 
numerical difficulties of this search are discussed in Section 7. 

Finally, we note that in most applications aC, is symmetric to  the 
real axis. Since p(s, k) = 0 if and only if p(S ,  k) = 0, where 6 means 
the conjugate of s, it  is sufficient in this case to carry out the search 
over the intersection of aC, with the closed upper half of the complex 
plane. 

4 The Main Result 
The purpose of this section is to  analyze the quantity inf{ps(k) : k E 
R" and u'k = 1,v'k = 0}, which is essential in the computation of 
~ ( s )  defined in the previous section. We only consider in the following 
sections the case when S is absorbing and bounded; in other words, the 
set S is a bounded convex set containing the origin as an interior point. 
In this case, both ps(z) and pse(z) are less than infinity for all z and 
strictly positive for nonzero 2. The main theorem given in this section 
simplifies the quantity inf{ps(k) : k E R" and u'k = 1, v'k = 0) to  a 
form more readily computable. 

From the theory of linear equations it is known that if rank[u v] # 

rank[ 0" 1, then there exist no k E Rm such that the equations 

u'k = 1 and v'k = 0 are satisfied. Thus in this case 

inf{ps(k) : k E R" and u'k = 1,v'k = 0) = 00. 

Now assume that rank[u w] = rank [ y ;] = 1 or 2. A n y k  

satisfying (k, U) = 1 and (k, v) = 0 defines a linear functional f on the 
subspace V := span{u, v }  c R" by f ( a u  + Pv) = a. Define a function 
4 : R m + R +  by 

a u + p v # O  

Then 4(z) satisfies the conditions in Lemma 1. Therefore there exists 
a linear functional f on R" such that f(z) = f(z) for all z E V ,  and 
f(z)  5 4(z) for all z E R". This means, by the Riesz representation 
theorem ([15]), that there exists k E R" such that (k, U) = 1, (k, v) = 
0, and (k,z) 5 $(z) for all z E R". Furthermore, the inequality 
becomes an equality for some z E V .  By Proposition 4, we obtain 

PS(k) = p s - ( k )  
a - 

- a,ygR pso(au + P v )  
nu+ o w  # 0 

1 1 
= max{ SUP 1. ::\ pSo(u + a v ) '  E R  /&"(-U + a v )  

u + a w = O  -U + a v  = 0 

A special case happens when U, v are linearly dependent. Since we 

have already assumed that rank(u v] = rank [ y i ] ,  then u , v  are 

linearly dependent if and only if U # 0 and v = 0. In this case, we 

have 
1 -- SUP 

u + a u # 0  
a E R  p S o b  + - pso(u)  

and 
1 -- SUP 

- U +  nu # 0 
a 6 R pso(-u + av)  - pso(-") '  

The following theorem summarizes the above development. 

T h e o r e m  1 For any given U, v E R", 

inf{ps(k) : k E R" and u'k = 1, v'k = 0) 

i f  rank[uv] # rank Im . 

I 2; ps+: + a.) } if rank[u v] = 2. 

In the special case when S is balanced, the gauges ps and p,p are 
actually norms. Theorem 1 can be simplified as follows in this case: 

Corollary 2 If S is a balanced closed conuez set containing the origin, 
then for any given U, v E R", 

inf{ps(k) : k E R" and u'k = 1,v'k = 0) 

I W .  

if rank[uv] # rank 
[ 1  0 1  

i f  u # Oand v = 0 
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It is apparent that if ps and pse can be easily evaluated (which 
is the case in most practical applications), the computation of the 
right hand side of (16), which contains an optimization problem in 
a scaler variable a, is much simpler than the direct computation of 
the left hand side of (16), which contains an optimization problem in 
a vector variable I C .  For obvious reasons, the critical problem in the 
computation of (16) is the computation of SUP,€R & for any 
given u ,u  E R" with rank[u v] = 2. Therefore, in the following when 
we refer to  the computation of (16), we always mean the computation 
of SUP,€R +I, or equivalently infoER pse(u + av), for any given 
U ,  v E Rm. 

If p s ~  can be easily evaluated, the computation of inf,€RpsO(u + 
av) is actually very straightforward. It follows from Proposition 1 that 
hs.(u+av), when considered as a function of a, is a continuous convex 
function on R. As a goes to  f m ,  pso(u+av) goes to  00. Consequently, 
infaER jis.(u+av) is achieved at a finite point and any technique for a 
convex one-dimensional optimization, such as the Fibonacci search or 
the golden section search, can be used to  find inf,€R p s ~ ( u + a v ) .  It will 
be shown in the following sections that if ps is one of the commonly 
used Holder pnorms, or if S is a polytope with known vertices, then 
the computation of infmERpp(u + av) becomes very simple and no 
one-dimensional optimization is required. 

In some applications, however, the evaluation of pse may not be 
easy; some techniques which may simplify the evaluation of p s ~  are 
developed in [12]. 

5 Important Special Cases 

This section deals with the computation problem of (16) when the 
convex set S is an ellipsoid, a parallelotope or a crosspolytope. An 
ellipsoid is just an ellipsoidal set which is defined in Definition 1. The 
definitions of parallelotopes and crosspolytopes are given as follows. 
For simplicity, we denote the convex hull of two points z , y  E Rm by 

Definition 6 Let ~ 1 . ~ 2 , .  . . ,zm E Rm be linearly independent. A par- 
allelotope in R" is a set of the form 

12, Y1. 

[ZI, -211 + [ Z Z ~  -221 + ' '  + [ z m ,  

The set of vectors {z~,xz,. . . , zm} is called the basis of the pamllelo- 
tope. 

Definition 6 Let q , z z , .  . . , z, E R" be linearly independent. 
crosspolytope in Rm is a s e t  of the form 

A 

CO{[ZI, -211, [ZZ, --Iz], . . ., [ z m ,  -zml}. 

The set of vectors {z~,zz,. . . , z,} is called the basis of the crusspoly- 
tope. 

The parallelotopes and the crosspolytopes defined here are centered 
at the origin. The definitions given in many textbooks also cover the 
shifted version of the ones defined above. It is a trivial fact that 
the Holder m-norm and 1-norm are respectively the gauges of the 
parallelotope and the crosspolytope with basis {el, e2,. ..,e,}, where 
ei, i = 1,2,. . . , m, is a vector with 1 in the i-th coordinate and zero 
elsewhere. Conversely, it is shown in this section that the gauge of 
any parallelotope is a weighted version of the Holder m-norm, and 
the gauge of any crosspolytope is a weighted version of the Holder 
1-norm. It is also taken as a trivial fact here that the images of a 
parallelotope and a crosspolytope with basis {XI, 2 2 , .  . . ,z,} under a 
nonsingular linear map H on Rm are respectively a parallelotope and 
a crosspolytope with basis { H q ,  H z z ,  . . . , Hzm}. 

Case I S is an ellipsoid 

The following proposition shows that if S is an ellipsoid, then ps 
and pso are both weighted Holder 2-norms. We denote the uni ue 
positive definite square root of a positive definite matrix M by M 2 .  

9 

Proposition 6 If S C R" is a n  ellipsoid of the form S = {g E A" : 

(Y, MY) I 11, then P S ( Z )  = llMfz11~ and ps4(2) = I l M - ~ ~ I l z .  
Given S = {y E R" : (y,My) < l}, we obtain p s ~ ( u  + av) = 

1 1 M - f ~  + aM-4~112. The infimum of p p ( u  + av) is then achieved 
at the least square solution of the linear equation aM-fv = -M-fu, 
which is given by a = -v'M-'vv'M-'u. Thus 

Case I1 S is a parallelotope 

The following proposition shows that if S is a parallelotope, then 
ps is a weighted Holder m-norm and p s ~  is a weighted Holder 1-norm. 

Proposition 6 Assume that S c R" is  a pamllelotope with basis 
{ q , z 2 ,  ..., zm}. L e t H  := [z1z2 . . . zm]ERmxm and[ylyz...y,]:= 
HI-'. Then So is a crosspolytope with basis {yl, yz, . . . , ym}. More- 
over, ps(z) = ~ ~ H - l z ~ ~ ,  and pso(z) = llH'z111. 

Given a parallelotope S c R" with basis {zl,~~,. . .,z,,,}, we ob- 
tain p s ~ ( u  + av) = IJH'u + aH'vJJ1 ,  where H = [ZI z2.. .zm]. Let 
H'u = [Cl (2 . . . Cm]' and H'v = [q1 qz * . .qm]'; then 

IIH'U + aH'vJI1 = IG + 0711 + I f 2  + a%( + ' .  + ICm + aVmI. (19) 

A continuous function on R is called polygonal (or piecewise linear) 
if there exist finite points al, az, . . . , ap E R with a1 < az < * * .  < a1 
such that the function is linear on (-OO,al], [ a , , ~ )  and [a;,ai+l], 

i = 1,2, .  . . , I  - 1. In this case the points a l , a ~ , .  . .,a1 are called 
division points. If (19) is considered to  be a function of a, then it is a 
polygonal function with a t  most m division points. The set of division 
points is just {- : i = 1,2,. . . , m and qi # 0). The supremum and 
infimum of a polygonal function on R can only happen a t  00, -m or 
one of its division points. Since JJH'u  + aH'vlJ1 goes to  infinity as 
a goes to  00 or -00, its infimum can only be achieved at one of its 
division points. This proves that 

1 
= sup 

1 zi PSe(u + av) or€R IIH'u + aH'vlll 

= max{ 1 : a E {-& : i = 1,. . . , m and qi # 0}}(20) 
IIH'U + aH'v(l1 Vi 

To compute (20), we only need to compute the 1-norm of a t  most 
m vectors in R". 

Case I11 S is a crosspolytope 

The following proposition shows that if S is a crosspolytope, then 
ps is a weighted Holder 1-norm and pso is a weighted Holder oo-norm. 

Proposition 7 Assume that S c R" is a crosspolytope with basis 
{zl,zz,. . . ,zm}. Let H := [z1 zz. . .zm] E RmX" and [y1 yz . . . ym] := 
HI-'. Then So is a pamllelotope with basis {y1,y2,. . ., ym}. MOW- 
over, ps(z)  = IlH-'z111 and ps. = IIH'illoo. 

Given a crosspolytope S C R" with basis {z~,zz,  ..., zm}, we 
obtain pso(u + av) = IIH'u + aH'v(loo, where H = (21 z2 ... zm]. Let 
H'u = [(I ( 2 . .  . ("1' and H'v = [ql qz.. .qm]'; then 

IIH'u + aH'vlI, = max{lG + ~vII, I t  +awl, .  . ., IG + avml}.  (21) 

It is easy to  see that JIH'u+aH'vll, is also a polygonal function of 
a which goes to  CO as a goes t o  00 or -00, so its infimum is achieved 
at one of its division points. However it appears that the division 
points of J(H'u  + aH'v(1, can not be obtained as easily as those of 
IJH'u + aH'vll1. Note that a t  any division point of IlH'u + aH'v(l,, 
we must have 16i + aqil = I(, + avj1 for some i, j = 1,2,. . . , m and 
i # j. So the set of division point is contained in the following set 

A = { a : < ; + a q i = C , + a q j ,  I < i < j < m }  
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u{a : (i + 09, = -<j - aqj, 1 _< i < j 5 m }  

= w: 15 i < j 5 m and q, - qj # 0) 
{-ii - i j  

This proves that if S is a crosspolytope, then 

1 = sup 
1 

2; PS. (U  + a v )  OCR IIH'U + aH'vll, 

: a  E A}. (22) 
1 = max{ 

IIH'U+ aH'vll, 

In the worst case, A has m(m - 1) elements, while the number of 
the division points of IIH'u+aH'v((, may be much less than m(m-1). 
It is possible to  devise a search scheme to find the division points, but 
this requires extra computational effort. Thus formula (22) should be 
used, a t  least in the case when m is not too large. 

6 Polytopes 

The problem considered in this section is to compute (16) in the case 
when S is a absorbing polytope, i.e. a polytope which contains the 
origin as an interior point. 

A polytope is usually represented either as the convex hull of a 
finite nonempty set of points in R", which is known as the internal 
representation, or as the intersection of a finite number of closed halfs- 
paces, which is known as the ezternal representation. The convex hull 
of an arbitrary finite set of points is not necessarily an absorbing poly- 
tope. A necessary and sufficient condition for C O { Z ~ , Z ~ , .  . . , z ~ }  to  be 
a n  absorbing polytope is that some of (I, z i )  are strictly positive and 
some of (5 ,  zi) are strictly negative for any nonzero z E R". Similarly, 
the intersection of an arbitrary finite number of halfspaces, which is a 
polyhedral set, is not necessarily an absorbing polytope. A necessary 
and sufficient condition for nf=,{z E R" : (z,y,) 5 ai} to  be an ab- 
sorbing polytope is that it must be possible for each of the halfspaces 
{z E R" : (z,yi) 5 ai} to  be rewritten as {z E R" : (z,zi) 5 1) and 
CO{Z~,ZZ, .  . . ,ZI} is an absorbing polytope. 

Given an absorbing polytope S with either internal or external 
representation, it is not a trivial task to  find its other representation. 
However, it  is very easy to  find its polar in the other representation. 

Assume that 
s = co{z1,22,. . . , 2 I } ,  

where ~ 1 ~ ~ 2 , .  . . ,ZI E R". Then by definition 

So = {y E R" : (y ,z )  I 1,Vz E S }  
C {y E R" : (y, 2,) 5 1, i = 1,2,. . . l ]  

I 
= n { y  E Rm : (Y,zi) I 1). 

I=1 

On the other hand, if (y,zi) 5 1 for all i = 1,2, .  . . , I ,  then 

I 1 

C X i ( Y , z i )  = ( Y , C X i z i )  I 1 
i=l  i= 1 

for all X i  2 0, i = 1,2,. . . , I ,  with E:=, Ai .  This implies (y, z) I 1 for 
all z E S. Therefore, it  follows that 

So = A { y  E R" : (y,zi) I 1). 
i=l 

Assume now that 

I 

s = n{. E ~m : 5 1) 
i=l 

where yl,  yz,. . . y ~  E Rm. Let T = co{y1,yz,. . . ,yl}. Then To = S. 
Since T is also an absorbing polytope, it follows that So = Too = T .  

Case I T h e  internal  representat ion of S is given 

Let 
s = CO{Zl,Z2,. . . , 2 I } .  

Then 
I 

S o =  n { y  E A":  (y,zi)  5 1)  
i=l 

and 

p p ( u  + 00) = inf{P > 0 : (P-'(u + a v ) ,  zi) 5 1, i = 1,2,. . . , I }  
= inf{p > 0 : (U + av,z i )  I P,i = 1,2, .  . . , l }  
= max{(u+ av,z i )  : i = 1,2 ,..., I }  
= max{(U,zi)+0(u,z;): i=1,2 ,... 1).  

Again we see that p p ( u  + av) is a polygonal function of a and its 
infimum can only happen at its division points or at foo. The fact 
that S is absorbing implies that some of ( u ,  zi) are strictly positive 
and some of ( v ,  2;) are strictly negative. Hence p s ~  goes to infinity as 
a goes to  foo.  Consequently, p s ~ ( u + a v )  achieves its infimum a t  one 
of its division points. The division points of p p ( u  + a u )  are contained 
in the set 

A = { a : ( ~ , z i ) + a ( v , z i ) = ( ~ , z j ) + a ( v , z j ) , l ~ i <  jII} 

This shows that if S is a polytope with an internal representation, 
then 

Case I1 T h e  ex te rna l  representat ion of S is given 

Let 
I 

s = n{. E : (z,y,) I 1). 
i= 1 

Then 
so = CO{Yl ,YZ , . . . ,Y l )  

and 

I 
p p ( u  + a v )  = inf{P > o : ~ i y i  = P-'(u + a v ) ,  

i=l 
I 

X i  2 0 , i  = 1,2, ..., 1,  and X X i  = 1) 
i=l 

1 
= inf{P > o : C ~ , y i  = U + au,  

i= 1 

X i  2 0 , i  = 1,2, .  . . , l ,  and X X i  = P }  
i= 1 

I 1  
= i n f { C  : C ~ i y i  = U + a v  

i=l i=l 

and X i  2 0 , i  = 1,2 ,..., 1 ) .  

It is easy to  see that "inf" in above equation can be replaced by 
"min". Therefore infOEppp(u + a v )  can be obtained by solving the 
following linear programming problem: 

E',,, X i  minimize 
subject to -au + Xiyi = U (24) 
and X i  2 0 

with respect to  variables a and Xi ,  i = 1,2,. . . ,1.  
The solution in this case is not as simple as in case I where no 

linear programming is needed. It is not obvious now whether a simpler 
solution exists in this case. We have mentioned in Section 3 that the 
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problem to find quantity (15), which is the problem we are trying to  
solve, can be directly reduced to a linear programming problem (cf. 
[17]). The linear programming problem (24) has an advantage over the 
one which can be obtained directly from (15), in that it is almost in the 
standard form which can be solved by the simplex method ([lS]) and 
it results a standard linear programming problem with fewer variables 
and constraints. 

7 Search Problem 

Recall that our major problem of this paper is to compute the ro- 
bustness measure p defined as a function of a 4-tuple ( F , g , C , , S )  in 
(7)-(IO). It is shown in Section 3 that p = inf.,ac, r ( s ) ,  where r(s) 
is a function from BC, to  $ which can be evaluated a t  any fixed 
s E BC, by using the various methods developed in Section 4-6, if 
S is an bounded absorbing convex set. The quantity p can then be 
obtained by a "brute force" search over BC,. i.e. choose a finite sub- 
set of BC, which is sufficiently "dense" in BC, and find the minimum 
of ~ ( s )  over all points i n th i s  finite subset. Since BC, is usually an 
one-dimensional curve in C, this "brute force" search is considered to  
be numerically permissible in engineering applications. However, two 
numerical difficulties may occur during the search. The first difficulty 
is that when BC, is unbounded (or virtually unbounded, i.e. part of 
BC, is to  big), it may be impossible (or unrealistic) to have a finite and 
sufficiently "dense" subset in aC,.  The second difficulty occurs due 
to  the fact that 7(s) is generally not a continuous function on BC,, so 
it may be easy to  miss the true infimum when a ''brute force" search 
over BC, is carried out. This section discusses the methods t o  deal 
with these difficulties. The convex set S is assumed to  be bounded 
and absorbing throughout this section. 

The first difficulty can be overcome completely using a "tricky" 
but simple method. If ( F , g , C , , S )  is given, then BC,, the boundary 
of the stability region, and As, k), the affine map from R" to  P ,  are 
also given, and the function r is defined in (11). Let 

r 1 1  

and F = J F ,  4 = J g .  Define a new map $(s, k) from R" to  P by 

f j (s,  k) = [s" 8"-1 * 1](Ek -t i ) ,  
a reciprocal set B C ,  of BC, by 

1 a t g  = {s E E: - E BC,) 

and a new function i: &, -+ by 

i ( s )  = inf{ps(k) : k E K: and @ ( s , k )  = 0). 

Since $(s, I C )  = 0 if and only if p(5 ,  I C ) ,  we obtain 

1 .( -) = i( s) 

where U is the closed unit disk in C and U' is the complement of U in 
C. 
- 
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The function i has exactly the same form as T except that F and 
g are replaced by F and 4; it can be evaluated a t  each s E B C ,  using 
the same way as r is at each point s E BC,. This shows that p can 
be obtained by two independent searches and each of these searches is 
carried out over a "small" bounded set. 

Some thought about the treatment of the second difficulty is given 
as follows. 

Recall the expression of r(s) given by (14) and the definition of 
vectors u(s), ~ ( s ) .  Define 

BC,, 
BCg2 = {s E BC, : rank[u(s) v ( s ) ]  = 2). 

= {s E aC,  : U(.) # 0 and ~ ( s )  = 0) 

It is known from Theorem 1 that r ( s )  = 00 for all s E BC,\{aC,l U 
BC,l}. Hence 

inf T ( S )  = inf r ( s )  = min{ inf ~ ( s ) ,  inf ~ ( s ) } .  
sEBC, sEaCgiUaC,a s%aC,i aE8Cga 

Denote by rlac,,, i = 1,2,  the restrictions of 7 to  BC,;, e = 1,2, 
respectively. 

Lemma 2 rlac,,, i = 1,2, ape continuous functions. 

Lemma 4 implies that if we can identify BC,l and BC,n from BC, 
and carry out the "brute force" searches to  find infsEaCgl r(s) and 
infsEaCgz .(a) separately, then we will have very little chance to  miss 
the true infimum of r(s) over BC,. 

The set BC,1 is contained in the intersection of BC, and 

The latter set contains R U ( 0 0 )  and usually consists of some curves 
and points in c. Hence the set BC,, usually contains discrete points 
in BC,. If these points can be sorted out and special care is taken 
when the "brute force" search is carried out, then the search should 
reliably reach the real infimum. There are straightforward but tedious 
ways to  sort out these points from BC,. In most cases when m, the 
dimension of k, is greater that 1, these points are just the elements of 
the intersection of BC, and R U {w}. 

8 An Example 

The following polynomial is considered in [7]: 

p ( s , l ~ )  = ao(k)s4 + al(k)s3 + az(k)s2  + as(k)s  + a4(k) 
0 0 0  

= [s4 s3 sz s 11 [ [ 1:;; 0.7; 7.5 12 0.2; 0.5 1 k +  [ [ I] , 

18.75 18.75 10 0.5 

where k E R4 is uncertain. 
The roots of p(s,O) are -5, -5, -1 rt: j. If the desired stability 

region is assumed to  be the open left half part of the complex plane, 
then the polynomial is nominally stable and the stability robustness 
measure is given by 

p = inf r ( j w )  = mint inf ~ ( j w ) ,  inf i ( j w ) )  
wER WE [OJ 1 WE[O.1)  

where 

r ( j w )  
i ( j w )  

= inf{llkll : k E K and p ( j w , k )  = 0) 
= inf{llkll : k E K and g j w , k )  = 0) 
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= [ s4s3s2s l ] [ - l : 2~ ;  

then ~ ( j w )  and i ( j w )  can be evaluated by using (16) and (23). We 
obtain 

18.75 18.75 10 0.5 

o:;; 1; o o z ; ] k + - i ] j .  

Therefore p = 0.549. 

9 Conclusion 
An approach based on the framework of convex analysis is developed 
in this paper to  study the stability robustness of polynomials. This 
approach unifies and improves some recent results in the area of the 
stability robustness of polynomials, motivates and solves new related 
problems, and provides theoretical soundness and completeness to  this 
area which is full of ad hoc methods. The approach is quite general; it 
allows the stability region in the complex plane to be an arbitrary open 
set and allows the convex set which contains the uncertain parameters 
t o  have an arbitrary shape. The power of this approach is not limited 
to  the material presented in this paper; for example, the remarkable 
Kharitonov’s theorem and the edge theorem can also be proved within 
the framework of this approach. 

References 

A.C. Barlett, C.V. Hollot and H. Lin, “Root locations for an 
entire polytope of polynomials: it suffices t o  check the edges”, 
Math. Control Signals and Systems, vol. 1, pp. 61-71, 1988. 

B.R. Barmish, “A generalization of Kharitonov’s four-polynomial 
concept for the robust stability problems with linearly depen- 
dent coefficient perturbations”, IEEE Trans. Automat. Contr., 
vol. AC-34, pp. 157-165, 1989. 

B.R. Barmish, “New tools for robustness analysis”, P m .  IEEE 
CDC, pp. 1-6, 1988. 

A. Brindsted, An Introduction to Convex Polytopes, Springer- 
Verlag, New York, 1983. 

R.M. Biernacki, H. Hwang and S.P. Bhattacharyya, “Robust 
stability with structured real parameter perturbations”, ZEEE 
Trans. Automat. Contr., vol AC-32, pp. 495-505, 1987. 

H. Chapellat and S.P. Bhattacharyya, “A generalization of 
Kharitonov’s theorem: robust stability of interval plants”, IEEE 
Trans. Automat. Contr., vol. AC-34, pp. 306-311, 1989. 

M. Fu, “Polytopes of polynomials with zeros in a prescribed re- 
gion: new criteria and algorithms”, To appear in Robustness in 
Identification and Control, 1988. 

D. Hinrichsen and A.J. Prichard, “New robustness results for 
linear systems under real perturbations”, P m .  IEEE CDC, pp. 
1375-1379, 1988. 

M. Fu and B.R. Barmish, “Maximal unidirectional perturbation 
bounds for stability of polynomials and matrices”, Systems d 
Control Letters, vol. 11, pp. 173-179, 1988. 

V.L. Kharitonov, “Asymptotic stability of an equilibrium position 
of a family of systems of linear differential equations”, Diflennc- 
jalnyje Uravnenija, vol. 14, pp. 2086-2088, 1978. 

L. Qiu and E.J. Davison, “A simple procedure for the exact stabil- 
ity robustness computation of polynomials with affine coefficient 
perturbations”, Proc. IEEE International Conference on Systems 
Engineering, Dayton, Ohio, 1989, To appear in Systems €4 Control 
Letters. 

L. Qiu and E.J. Davison, “A unified approach for the stability ro- 
bustness of polynomials in 2 convex set”, Systems Control Group 
Report, No. 8912, Dept. of Electrical Eng., Univ. of Toronto, 
1989. 

R.T. Rockafellar, Convex Analysis, Princeton University Press, 
Princeton, New Jersey, 1970. 

W. Rudin, Functional Analysis, McGraw-Hill Book Company, 
New York, 1973. 

H.L. Royden, Real Analysis, MacMillan Publishing Co., Inc., New 
York, 1968. 

D.M. Simmons, Linear Programming for Operations Research, 
Holden-Day, Inc., San Francisco, 1972. 

A. Tesi and A. Vicino, “Robustness analysis for uncertain dynam- 
ical systems with structured perturbations”, P m .  IEEE CDC, 
pp. 519-525, 1988. 

36 

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 14,2021 at 07:53:56 UTC from IEEE Xplore.  Restrictions apply. 


