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A unified approach to compute  the stability robustness measure o f  a convex 
set o f  polynomials  is obtained using convex analysis techniques. 
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Alntraet--Consider a polynomial p(s, k) which is alline in 
the parameter k; assume that the vector k is uncertain but 
belongs to a bounded closed convex set which contains the 
origin as an interior point, and call a polynomial stable if all 
of its roots are contained in a pre-specified stability region in 
the complex plane. Then the stability robustness of p(s, k) 
can be measured by the maximal nonnegative number p with 
the property that if the gauge (or the Minkowski functional) 
of k with respect to the convex set is less than p, the 
polynomial p(s, k) is always stable. This paper develops a 
unified approach to compute the robustness measure p using 
the framework of convex analysis. The approach is very 
general because of two reasons: (i) the stability region in the 
complex plane can be an arbitrary open set, which includes 
the open left half plane and the open unit disc as special 
cases; (ii) the convex set in which k is contained can be 
assumed to have an arbitrary shape, which includes 
polytopes and ellipsoids as special cases. The computational 
procedure to compute p which results from this approach is 
easy to implement. An example is included to illustrate the 
type of results which may be obtained. The approach 
developed in this paper, when specialized, leads to some of 
the available results in the literature; moreover, it generates 
many new and interesting results. Another important feature 
of this approach is that it provides a rich mathematical 
insight to the stability robustness problem of polynomials. 

1. INTRODUCTION 

CONSIDER AN nth degree real polynomial in a 
complex variable s. Assume that its coefficients 
are affine functions of a vector k ~ R m, whose 
entries represent independent  physical para- 
meters. This polynomial can be written as 

p(s, k) = ao(k)s ~ + a , (k)s"- '  

+ ' "  +a._ i (k )s  +a. (k ) ,  (1) 
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where ai(k), i = O, 1 . . . .  , n, are affine function- 
als of k, i.e. there exist a matrix F e R ("+l)×'' 
and a vector g e R "+~ such that 

a ( k ) : =  [ao(k) a l ( k ) . ' ,  a , (k)] '  -- Fk + q. (2) 

In many applications, the parameter  k is 
somewhat uncertain but is known to be 
contained in a given set S c R m. In this paper, 
the set S is assumed to be a closed convex set. 
With no loss of generality, we also assume that S 
contains the origin. 

Polynomial models of the form (1)-(2)  are 
encountered in many circumstances in control 
problems. For example, if a matrix A e R "×" is 
subject to a unity-rank perturbation of the form 

A +kb ' ,  

where b e R ~ is a known vector and k e R ~ is the 
uncertain perturbation, then the characteristic 
polynomial of the per turbed matrix has the form 
of (1)-(2).  Another  example is given by a closed 
loop MISO (similarly SIMO) system (Chapellat 
and Bhattacharyya, 1989); assume that a MISO 
system is described by the transfer function 

n,(s) nz(s) n,(s) 1 
d@) "'" 

where 

d(s )  :=  (do + 

+ (d, + + . . .  + (4,  + < dp) 

hi(S) :=  (n,o + ,Sn o)S p 

+ (nil + tSnil)$ p-1 + . . .  + (nip + ¢~nip), 

i = 1 , 2  . . . . .  r, 

and the entries of the parameter  vector 

k = [6do 6dl • • • 6dp]' x [t~nlo t~nll • • • ~nlp ]' 
X .  • • X [6n,.o 6n, l . • • 6nrp]', 

(where " x  " means the Cartesian product) are 
uncertain and independent.  If the system is 
controlled by a fixed linear time-invariant proper  
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controller, the closed loop characteristic polyno- 
mial will be of the form (1)-(2). 

In many control problems, a desired property 
of a polynomial is that all of its roots are located 
in a pre-specified area in the complex plane. This 
pre-specified area will be called the stability 
region and a polynomial is said to be stable if all 
of its roots are located there. A stability 
robustness problem which naturally arises for the 
polynomial of the form (1)-(2) is to determine 
whether or not the polynomial p(s, k) is stable 
for all k contained in S; this problem will be 
called the robustness checking problem. 
However, an answer to the robustness checking 
problem is often not enough. It is desired to 
have a quantitative robustness measure of the 
polynomial model (1)-(2). If we define the 
gauge (or Minkowski functional) of the set S to 
be a function #s:R"---~ [0, oo] such that #s(k) = 
inf {tr > 0:k etrS}, where trS is the set {o~x :x e 
S}, then a relative size of k is provided by #s(k) 
and a robustness measure is provided by the 
maximal nonnegative number p with the 
property that the polynomial p(s, k) is stable for 
all k with l~s(k)< p. The problem to find such 
robustness measure p is called the maximal 
robustness problem. It is clear that an answer to 
the maximal robustness problem automatically 
provides an answer to the robustness checking 
problem, but to do the converse requires an 
extra one-dimensional search. 

The purpose of this paper is to find a 
procedure to compute the robustness measure p 
when F, g, S and the stability region are given. 
In this paper, a simple and numerically feasible 
procedure is obtained to compute p. The 
procedure can be applied to very general cases: 
(i) the stability region in the complex plane can 
be an arbitrary open set; (ii) the convex set S can 
be assumed to have an arbitrary shape. 

A special case of the above problems occurs 
when each column and row of F have at most 
one nonzero element, the stability region is the 
open left half part of the complex plane, and the 
convex set S is a hyper-rectangle. In this case, 
the polynomial p(s ,k )  is called an interval 
polynomial. The remarkable theorem of Kharit- 
onov (1978) gives an elegant solution to the 
robustness checking problem of an interval 
matrix. It says that p(s, k) is stable for all k in S 
if and only if four specially constructed 
polynomials are stable. The maximal robustness 
problem for an interval polynomial can be easily 
solved in terms of Kharitonov's four polynomials 
using the Hurwitz stability criteria (Bialas and 
Garloff, 1985; Fu and Barmish, 1988). 

The stability of interval polynomials with 

respect to the open left half part of the complex 
plane is a very restricted special case of the 
general problem, in which the matrix F, the 
stability region and the convex set S are 
arbitrary. Although some attempts have been 
made to generalize the result of Kharitonov to 
the general problem, see Bartlett et al. (1988), 
Barmish (1989) and Chapellat and Bhat- 
tacharyya (1989), no results obtained have the 
same level of simplicity as Kharitonov's 
theorem. Recently, a considerable amount of 
research has lead to the development of feasible 
numerical methods to solve the maximal 
robustness problem and the robustness checking 
problem for polynomials whose coefficients are 
general affine functions of uncertain parameters. 
Bartlett et al. (1988) using the concept of the 
"root space", and Barmish (1989), using the 
concept of the "value set", considered the 
robustness checking problem for the case when 
the set S is a polytope. Since Bartlett et al. 
(1988) need to check all the edges of S and 
Barmish (1989) needs to use all the vertices of S, 
the computation required is combinatorially 
explosive when these methods are applied to an 
important class of polytopes--parallelotopes. 
This is because a parallelotope in ~k in general 
has k2 k-1 edges and 2 k vertices. The maximal 
robustness problem is solved in Biernacki et al. 
(1987) and Hinrichsen and Pritchard (1988) for 
the case when the set S is a hyperellipsoid by 
using Euclidean space projection theory. In this 
case the gauge of S is actually the weighted 
H61der 2-norm. The case when S is a polytope is 
solved in Fu (1989) by using the geometry of the 
value sets and in Tesi and Vicino (1990) by using 
a linear programming method. Fu (1989) also 
considered parallelotopes. It is shown that the 
method given in Fu (1989) for general polytopes 
can be simplified for the case when S is a 
parallelotope. Saridereli and Kern (1987) studied 
the maximal robustness problem when the size 
of the parameter uncertainty is measured by the 
H/51der oo-norm. The method in Fu (1989), when 
applied to the parallelotope case, and the 
method in Saridereli and Kern (1987) completely 
eliminate the combinatorical explosion of the 
computational complexity with respect to the 
number of uncertain parameters. A new method 
based on the Hahn-Banach theorem is de- 
veloped in Qiu and Davison (1989a) to solve the 
maximal robustness problem for the case when 
the stability robustness is measured by norms, 
which are just special kinds of gauges. The same 
problem is also studied in Hinrichsen and 
Pritchard (1989) independently using a similar 
method. In this paper, the method used in Qiu 
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and Davison (1989a) is extended to the case 
when S is any bounded closed convex set 
containing the origin as an interior point. This 
method unifies all different cases studied before 
and simplifies the computation in many cases. It 
also generates many new and interesting results. 

One of the motivations in studying general 
convex sets lies in the case when S is a polytope; 
this case has been studied extensively in the 
literature and arises in applications where the 
parameters have to meet  certain linear con- 
straints. On applying the proposed general 
approach, a method for the polytope case is 
obtained, which is distinct from the ones in the 
literature with certain advantages. Another  
motivation in studying the general convex set 
comes from the practical situation where the 
uncertain parameters enter  the coefficients of the 
polynomial in a complicated non-affine way. This 
will in general lead to a non-convex set of 
polynomials. Since there is no general exact 
analysis method available for this situation, one 
usually uses a convex set to overbound the 
non-convex set so that a sufficient condition on 
robust stability can be obtained. Clearly, a rich 
family of exploitable convex sets can help to 
reduce the conservatism of this analysis. 

The extension of the theory in Qiu and 
Davison (1989a) to general convex sets is not 
trivial. Since we want to accommodate convex 
sets which are not necessarily given by the unit 
balls of norms, many natural notions related to a 
norm, such as the dual norm, have to be 
extended. This is done in this paper by 
introducing some powerful tools and concepts in 
convex analysis, such as gauge, polar, dual 
gauge, as well as the Hahn-Banach  theorem. In 
fact, we believe that the successful application of 
these concepts to the robust stability problem is 
one of the major contributions of this paper. 

The structure of this paper is as follows. 
Section 2 provides some background of convex 
analysis required in the development  of this 
paper. Section 3 formulates the problem 
considered and shows that the problem can be 
solved by finding the infimum of a real valued 
function over the complex variable on the 
boundary of the stability region. The main result 
concerning the evaluation of this function at 
each point on the boundary of the stability 
region is given in Section 4. Applications of this 
main result in some important special cases are 
considered in Sections 5-6.  Some problems 
involved in the one-dimensional search to find 
the infimum of the real valued function are 
discussed in Section 7. Section 8 contains a 
numerical example and Section 9 is the 

Conclusion. 
The following notation is used throughout  this 

paper: 

(or C) 

~(s)  (or ~(s)) 

cl(S) 
co(S) 

In this paper, 

is the field of real (or complex) 
numbers, 
is the real (or complex) part of 
s E C ,  
is closure of the set S, 
is convex hull of the set S. 

we have to consider algebraic 
operations in [0, oo]. If these operations involve 
~, the conventional rules are used. In addition to 
the obvious rules, these rules include: 0~ = 0cO = 
0 and inf0 = ~. However ,  the following opera- 

~ 0  
tions are avoided: - ,  ~, and ~ - oo. 

2. PRELIMINARIES 
Assume that the vector space ~ "  is equipped 

with the usual inner product  ( x , y ) = x ' y  for 
x , y  ~ ~n. This inner product induces a norm (the 
H61der 2-norm) Ilxl12 = (x, x)  1/2 for x ~ R '~. Let  
S, T be subsets of R"* and let re, fl be scalars in 
~.  We use orS to denote the set {ax :x e S} and 
S + T to denote the set {x + y : x  • S , y  e T}. As 
is well-known, a set S is said to be convex  if 
trS + (1 - te)S c S for all oc e [0, 1]. This section 
introduces some results in convex analysis which 
will be used in the development  to follow. The 
proofs of the results presented can be found in 
many standard references, (e.g. BrCndsted, 
1983; Rockafellar, 1970; Rudin, 1973). Refer- 
ence Qiu and Davison (1989b) also provides a 
complete and concise source of these proofs. 

Definition 1. A set S c R " is said to be 
(a) bounded if there exists t ~ > 0  such that 
Ilxl12-< ~ for every x ~ S, 
(b) absorbing if for each x e •m, there exists 
tr > 0 such that x e flS for every fl -> tr, 
(c) balanced if orS c S for every tr e [ -  1, 1], 
(d) ellipsoidal if S = {x • ~'~ : (x ,  M x  ) <- 1} for 
some positive definite matrix M e R "× ' ' ,  
(e) polyhedral if S is the intersection of a finite 
number of sets of the form {x e ~"* : (x, y ) -< a~} 
for some y e W" and some a~ e ~.  

A set containing the origin as an interior point 
must be absorbing, but the converse is not 
necessarily true. However ,  if a set is convex and 
absorbing, it must contain the origin as an 
interior point. 

If y : / :0 ,  a set of the form { x e R m : ( x , y )  < - 
a~} is usually called a closed halfspace; its 
boundary { x e R m : ( x , y ) = t r }  is called a 
hyperplane. In the case when y = 0, the set 
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{ x e R " : ( x , y ) - < t r }  is either I~ or ~ " .  A 
bounded nonempty polyhedral set is called a 
polytope; equivalently, we can define a polytope 
to be the convex hull of a finite set of points. 

Let S c R m be a closed convex set containing 
the origin. 

Definition 2. The gauge (or Minkowski func- 
tional) of S is the function /Zs:~'--->[0, ~], 
defined by 

gs(X) = inf {tr > 0 :x  ~ aS}. 

The following corollary is immediately ob- 
tained from Proposition 3. 

Corollary 1. If S c ~ "  is a closed convex set 
containing the origin, then S ~ =  S. 

Since S O is a closed convex set containing the 
origin, its gauge is defined. 

Definition 4. Let  #s be the gauge of a closed 
convex set S c R "  containing the origin. Then 
the gauge #so of S ° is called the dual gauge of/Zs. 

Some properties of the gauge are given by the 
following proposition. 

The dual gauge of ~s can also be related to/~s 
through the following proposition. 

Proposition 1. Suppose that S c R "  is a closed 
convex set containing the origin. Then 

(a) tZs(X + y)  <-- I~s(X) + I~s(y), 
(b) Its(aX) = Oqts(X) if o : -  O, 
(c) #s(x)=O is equivalent to x=O if S is 

bounded, 
(d) I~s(X) < ~ for every x ¢ ~ "  if S is absorbing, 
(e) /~s is a norm if S is bounded,  absorbing and 

balanced, 
( 0  S = {x E ~ m  : ~,Ls(/) ~ 1}, 

(g) /~s is a continuous function if S is absorbing. 

It is seen from Proposition 1 that the gauge is 
a generalization of the norm. The set S is the 
generalized unit ball. For example, the H61der 

p-norm Ilxllp _E Ix/I p\I* = is the gauge of the 
i 1 

set S = Ix, I ~ = 1 . If p = 1 or ~,  the set S 
1 

is polyhedral (actually a polytope) and if p = 2, 
the set S is ellipsoidal. 

Let S c Nm be an arbitrary set. 

Definition 3. The polar of S, denoted by S °, is 
defined by 

S° = {y e R ' :  (x, y) <- l, Vx eS}.  

Proposition 2. The polar S o of any set S c R m is 
a closed convex set and contains the origin. If S 
is absorbing, then S O is bounded. If S is 
bounded, then S ° is absorbing. If S is balanced, 
ellipsoidal or polyhedral,  so is S °. 

Since S o is also a set in R" ,  it has a polar 
which is written as S °° instead of (S°) °. The  set 
S °° is sometimes called the bipolar of S. 

Proposition 3. For any set S (: ~ m, s 0 O  = 

cl [co ({0} u s)]. 

Proposition 4. Let /u s be the gauge of a closed 
convex set S c ~ m containing the origin. Then its 
dual gauge/~s 0 satisfies 

iZso(y ) = inf {tr _ 0: (x, y) <- trlts(X), Vx e Rm}. 

If /a s is a norm, the right hand side of the 
above equality provides a definition of the dual 
norm. Hence,  the concept of the dual gauge is a 
generalization of that of the dual norm. For 
example, if/~s is the H61der p-norm,  then #s,, is 

1 
the H61der q-norm, where 1 + _ = 1. 

P q 
A key result in our development is a direct 

application of the well-known Hahn-Banach  
theorem (Royden,  1968). 

Theorem 1. (Hahn-Banach  Theorem.)  Suppose 

(a) q~:Rm--->E is a function satisfying q~(x+ 
y) - q~(x) + q)(y) and tp(trx) = a~q~(x) for all 
x, y e R  m, o :>0 ,  

(b) f is a linear functional on a subspace V of R " 
and f (x)  <- (p(x) for all x ~ V. 

Then there exists a linear functional f on ~m 
such that f (x)  = f ( x )  for all x e V and f ( x )  <- 
q~(x) for all x e R ' .  

Note that the condition (a) of Theorem 1 is 
always satisfied by the gauge of any absorbing 
convex set. 

3. PROBLEM FORMULATION 
Let (~ be the one point compactification of C. 

It is known that (~ is homeomorphic  to the 
Riemann sphere. Partition (~ into two disjoint 
subsets Cg and Cb, i.e. (~ = Cg(.J(~b, such that Cg 
is open. The reason why we consider (~ instead 
of C is to avoid ambiguity at oo; we want oo to 
belong to either Cg or Cb but not both. Let  V' be 
the space of all real polynomials with degree 
bounded by n. The number of roots of each 
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polynomial in V' is made to be n by 
supplementing an appropriate number  of ~ 's  as 
its roots. It follows from the results in Stewart 
(1975) that the roots o f p ( s ,  k) are continuous in 
k. A polynomial in V' is said to be stable if its 
roots are contained in Cg. We use p(s, k) to 
denote the image of k • R m under  a fixed affine 
map from R m to P which is completely 
characterized by a matrix F • ~  (n+l)×m and a 
vector g • R n+l as 

p ( s ,  k )  = [sns n - l ' "  "ll(Fk +g) .  (3) 

For any bounded absorbing closed convex set 
S c R m, let us define 

p := inf {/~s(k) :k • R m and p(s, k) is unstable}. 

(4) 

The purpose of this paper  is to find a procedure 
to compute p when F, g, Cg and S are given. If 
p(s, 0) is unstable, we must have p = 0, so it is 
always assumed in the following that p(s, 0) is 
stable. Alternatively we can write p as 

p = inf {/~s(k) : k • Rm and 3s • C b 

such that p(s, k) = 0}, (5) 

where p (~ ,  k) = 0 means that p(s, k) has a root 
at infinity. 

Denote  the boundary of Cg by 0Cg, i.e. 
0Cg=Ct ,Ac l (Cg) .  If p ( s , k ) = O  for some 
sECt,, then the root locus of p(s, ok) as 
a~•[0, 1] contains a connected path which 
intersects both Cg and Ct,. The connectedness of 
this path assures that it must intersect 0Cg as 
well. This shows that 

p = inf {/zs(k) : k • ~ "  

and 3s • 8Cg such that p(s, k) = 0}, (6) 

which can be rewritten as 

p = inf {inf {~us(k):k • ~m and p(s, k) = 0}}. 
seaC s 

(7) 

Define a function r(s)  : aCg--* [0, oo] by 

r(s) = inf {Zs(k):k • ff~" and p(s, k) = 0}. (8) 

It is seen from (7) that the computation of p can 
be accomplished in two phases. The first phase is 
to find r(s)  for any fixed s • aC s. The second 
phase is to carry out a search over all points in 
aC v which is usually a one-dimensional curve in 
(3, to find inf r(s). 

s ~  s 
Now let s • 0 C ~  be fixed. The equation 

p(s, k) = 0 becomes 

I s " s " - ' . . .  1Irk = -[sn s "- '  . . . llg, (9) 

for s 4= 0o and 

[ 1 0 . . .  O]Fk = - [ 1 0 . . .  0]g, (10) 

for s = ~. The assumption on the stability of 
p(s, O) implies that the right hand side of (9) and 
(10) are nonzero. Let  

[" F'[s 
- ~_-77~_~--:T- . . . .  if s 4: o% 

, , / [s s " "  1]g 
w t s ) : = ]  F ' [ 1 0 - -  • 01' i f s = %  

L [ 1 0 . . . O l g  ' 

and let u(s) :=ff t[w(s)] ,  v(s):=~[w(s)]. Then 
u(s), v(s) • ~m and the equation p(s, k) = 0 is 
equivalent to 

u(s)'k = 1 and v(s) 'k =0 .  (11) 

Consequently, we have 

r(s) = inf {l~s(k):k • R"  

and u(s)'k -- 1, v (s ) 'k  = 0}. (12) 

Therefore,  the first phase of the problem to 
compute p becomes a specialization of the 
following problem: find 

inf {/~s(k) :k • ~m and u 'k  = 1, v ' k  = 0}, (13) 

for any bounded absorbing closed convex set 
S c R "  and any u, v • R m. A straightforward 
method to solve this problem can be directly 
obtained since this is just a nonlinear program- 
ming problem with a convex cost function Izs(k) 
and linear constraints. It can be shown that this 
nonlinear programming problem is reduced to a 
linear programming problem if S is a polytope. 
This is basically the method used in Tesi and 
Vicino (1990). The purpose of this paper is not 
to pursue this direction; instead, we will simplify 
this problem to a form which is much more 
tractable numerically. 

The second phase of the problem to compute 
p is usually carried out by a "brute  force search" 
over 0Cg, namely, choose a finite subset of OCg 
which is sufficiently "dense"  in OCg and find the 
minimum of r(s) over all s in this finite subset of 
OCg. Two numerical difficulties may occur here. 
The first difficulty is that when OCg is unbounded 
it may be hard to define a finite subset of cOCg 
which is sufficiently "dense"  in 8Cg. The second 
numerical difficulty occurs due to the fact that 
• (s) in general is not a continuous function on 
OCg, so it may be easy to miss the true infimum 
when a brute force search over OCg is carried 
out. Procedures to handle these two difficulties 
will be discussed in Section 8. Finally, we note 
that in most applications OCg is symmetric to the 
real axis. Since p(s, k ) = 0  if and only if 
p(g, k) = O, where ~ is the conjugate of s, it is 
sufficient in this case to carry out the search over 
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the intersection of OCg with the closed upper half 
of the complex plane. 

4. THE MAIN RESULT 

The purpose of this section is to analyze the 
quantity (13) which is essential in the computa- 
tion of the function r(~o) defined in the 
preceding section. The main theorem given in 
this section simplifies the quantity (13) to a form 
more readily computable. 

From the theory of linear equations it is 

known that if rank [u v] 4: rank [~ 0 ] '  then 

there exists no k • E m  such that the equations 
k ' u  = 1 and k ' v  = 0 are satisfied. Thus in this 
case 

inf{#s(k) : k • ~m and u 'k  = 1, v ' k  = 0} = co. 

Now assume that rank [u v] = rank [~ ; ] = 1  

or 2. Any k satisfying k ' u  = 1 and k ' v  = 0  
defines a linear functional f on the subspace 
V = span {u, v} c R "  by f ( a u  + f ly)  = o~. Define 
a function q~ : E m ~ [0, ~) by 

0( 
c~(x) = Uso(X) sup 

~ , ~  /aso(O~U + flu)" 
a,u + [3v.~O 

Then ~p(x) satisfies the conditions in the 
Hahn-Banach  Theorem. Consequently,  there 
exists a linear functional f on ~ "  such that 
f ( x )  = f ( x )  for all x • V, and f ( x )  <- ¢p(x) for all 
x • ~'~. This means that there exists k • R '~ such 
that k ' u  = 1, k ' v = O ,  and k ' x<-¢p(x )  for all 
x e [~' .  Furthermore,  the inequality becomes an 
equality for some x • V. By Proposition 4, we 
obtain 

~as(k) =/a~(k) 
O{ 

= sup 
, ~ , ~  Uso(O~u + t~v) ' 

otu+~v~O 

= max sup 
~ Uso(U + av) '  

u + oco 4= O 

sup . . 
,~ ~ ~ /a sot - u a'v 

- - u  + oco * O  

A special case happens when u , v  are linearly 
dependent.  Since we have already assumed that 

rank [u v] = rank [ 1 v ]  0 ' then u, v are linearly 

dependent if and only if u 4:0 and v = 0. In this 
case, we have 

1 1 
sup 
o,~ Uso(U + av)  Uso(U) 

u + o t ' v ~ O  

and 

1 1 
sup 
~ R  Us°(-u + av)  uso ( -u )  

- - u + a ' v ~ O  

The following theorem summarizes the above 
development. 

Theorem 2. For any bounded absorbing closed 
convex set S c ~ m and any u, v • R m, 

inf {/as(k ) : k • ~ "  and u 'k  = 1, v ' k  = 0} 

if rank [u v] 4: rank [~ 0] 
1 t ifu 0an v 0 max u)  /aso(-u)  

sup 1 1 "~ 
m a x  sup 

t ~  /aso(U + av) '  . ~  /aso(-u + ow) J 

if rank [u v] = 2. 

(14) 

In the special case when S is balanced, the 
gauges/as and/as 0 are actually norms. Theorem 2 
can be simplified as follows in this case, resulting 
in Theorem 1 of Qiu and Davison (1989a). 

Corollary 2. If S is a balanced bounded 
absorbing closed convex set in R ' ,  then for any 
U,~ • ~m 

inf {/as(k) : k • R '~ and u ' k  = 1, v ' k  = 0} 

=~ 

• [u 
if rank [u o] 4: rank 1 

1 
if u 4:0 and v = 0  

uso(u) 
1 

if rank [u v] = 2. sup 
.~R/aso(U + o~v) 

(15) 

It is apparent that if /as and /as o can be easily 
evaluated (which is the case in most practical 
applications), the computation of the right hand 
side of (14), which contains an optimization 
problem in a scalar variable c~, is much simpler 
than the direct computation of the left hand side 
of (14), which contains an optimization prob!em 
in a vector variable k. It follows obviously that 
the critical problem in the computation of (14) is 

1 
in the determination of sup for any 

~R Uso(U + av) 
u, v • ~ "  with rank [u v] = 2. Therefore ,  in the 
following when we refer to the computation of 
(14), we always mean the computation of 

1 
SH 
J ~,so(u + ~)'  
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or equivalently inf #so(U + av),  for any u,v • 
o~R 

R m with rank [u v]  = 2. 

If #so can be easily evaluated, the computation 
of inf #so(U + av)  is actually very straightfor- 

ote~ 

ward. It follows from Proposition 1 that 
#so(U + av),  when considered as a function of a~, 
is a continuous convex function on R and it goes 
to ~ as a: goes to =l=~. Consequently, 
inf #so(U + av)  = #so(U + fi'v) for a finite & and 
OtER 

any technique for a convex one-dimensional 
optimization, such as the Fibonacci search or the 
golden section search, can be used to find & and 
inf # so (u+av) .  It will be shown in the 

following sections that if #s is the weighted 
version of one of the commonly used H61der 
p-norms, or if S is a polytope with known 
vertices, then the computation of inf~0~ #so(U + 
av) becomes very simple, and no one- 
dimensional optimization is required. 

In some applications, however, the evaluation 
of #so may not be easy; techniques which can be 
used to simplify the evaluation of #so are 
developed in Qiu and Davison (1989b). 

5. ELLIPSOIDS, PARALLELOTOPES AND 
CROSSPOLYTOPES 

This section deals with the computational 
problem of (14) when the convex set S is an 
ellipsoid, a parallelotope or a crosspolytope. An 
ellipsoid is just an ellipsoidal set which is defined 
in Definition 1. The definitions of parallelotopes 
and crosspolytopes are given as follows. For 
simplicity, we denote the convex hull of two 
points x, y • ~m by [x, y]. 

Definition 5. Let xl ,  x2 . . . . .  Xm • ~'~ be linearly 
independent. A parallelotope in ~m is a set of 
the form 

Ix1, -Xx] + Ix2, -x2] + - ' '  + [x~, -Xm]. 

The set of vectors {xx, x2 . . . . .  Xm} is called the 
basis of the parallelotope. 

Definition 6. Let x~, x2 . . . .  , Xm • ~m be linearly 
independent. A crosspolytope in ~m is a set of 
the form 

CO ( [ X l ,  - - X l ]  , Ix2 ,  - - X l ]  . . . . .  [Xm, --Xm] ). 
The set of vectors {Xl, xz . . . . .  Xm} is called the 
basis of the crosspolytope. 

It is a trivial fact that the HOlder m-norm and 
1-norm are, respectively the gauges of the 
parallelotope and the crosspolytope with basis 
{el, e2 . . . . .  e,,,}, where ei, i = 1, 2 . . . . .  m, is a 

vector with 1 in the ith coordinate and 0 
elsewhere. It will be shown in this section that 
the gauge of any parallelotope is a weighted 
version of the H61der oo-norm, and the gauge of 
any crosspolytope is a weighted version of the 
H61der 1-norm. It is also taken as a trivial fact 
here that the images of a parallelotope and a 
crosspolytope with basis {Xl, x2 . . . .  , xm) under 
a nonsingular linear map H on R "  are, 
respectively a parallelotope and a crosspolytope 
with basis {Hxl, Hx2 . . . . .  Hxm). 

Case I. Ellipsoids 
The following proposition shows that if S is an 

ellipsoid, then #s and #so are both weighted 
H61der 2-norms. We denote the unique positive 
definite square root of a positive definite matrix 
M by M 1/2. 

Proposition 5. If S c R m is an ellipsoid of the 
form S = { y • R m : ( y ,  M y ) ~ l } ,  then #s(X)= 
IIMl/2xlh and #so(X)= IIM-V2xlh. 

Proof. Since (y, M y ) - I  if and only if 
(M1/2y, M1/2y)1/2~ 1, the ellipsoid S can also be 
expressed as 

S = {y • Rm: (MX/2y, M1/2y) 1/2<- 1} 

= {y • Rm : IIMV2yll2-< 1}. 

This implies that the gauge #s(X) is equal to 
IIMlr~xll2. By Proposition 2, we know that S o is 
also an ellipsoid. Consider the set T =  {y • 
R m : ( y , M - l y ) < - l } .  It is clear that T is 
ellipsoidal and for x • S and y • T, 

(x, y )  = (M~r2x, M-1/2y ) ~ IIM~'2xlI2 IIM-a'2Ylh 

= (x, M x ) ( y ,  M - l y )  <-1. 

This implies T ,-- S °. On the other hand, if y ~: T, 
then (y, M - l y )  > 1. Let x = M-~y /  
(y, M - l y )  1/2. Then it is easy to check that x • S 
and (x, y ) >  1. This proves T = S °. Hence, the 
gauge #so(X)= [l(M-1)1/2xl12 = I I M - ~ x l h  . 

Given S = (y  • R "~ : (y, My)  <- 1}, we obtain 
#so(U + oco) = IIM-V2u + o:M-lC2v]12. The in- 
fimum of #s0(U + a'v) is then achieved at the 
least square solution of the linear equation 
ocM-1/2v=-M-1/2u, which is given by a~= 
-(v'M-1u)-lu'M-lu. Thus  

inf #so(u + av)  
tr~R 

= [ u ' M - l u v ' M - l v  - (u'M-lo)2l'CZ (16) 
(v ,M- lv )  1/2 

Similar results for this case are obtained in 
Biernacki et al. (1987) and Hinrichsen and 
Pritchard (1988). 
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Case II .  Parallelotopes 
The  following propos i t ion  shows that  if S is a 

para l le lo tope ,  then  /~s is a weighted  HS lde r  
oo-norm and/ ts , ,  is a weighted  H61der  1-norm. 

Proposition 6. A s s u m e  that  S c N'~ is a paral -  
le lotope with basis {xl,  x z , . . . ,  Xm}. Let  H =  
[ x ~ x 2 . . . x , , ] e N  m×m and [ y a y 2 " " y m ] = H  '-1. 
Then  S O is a c rosspo ly tope  with basis 
{Yl, Y2, • • • , Ym}. M o r e o v e r ,  lts(X) = IIH-~xlI~ 
and/Uso(X ) = IIn 'xl l~.  

Proof. Consider  H as a l inear  m a p  on ~m and 
let T be the pa ra l l e lo tope  with basis 
{el, e2 . . . . .  e,,}, where  e~ is a vec tor  with 1 in 
the i th coord ina te  and 0 e lsewhere .  T h e n  S is 
just the image  of  T unde r  the m a p  H.  Since H is 
nonsingular ,  it follows that  x • S if and only if 
H - ~ x  • T. By noticing tha t  the gauge of  T is the 
H61der oo-norm, we obta in  I~s(X)=/~r(H-~x) = 

IIn-axl l~ .  
By Propos i t ion  4, we obta in  

t~so(X) = inf {oc---0: (y,  x )  --< IIn-~yllo~, Vy • ~ " }  

= inf { o c -  0: (Hz ,  x )  <- oc IIz I1~, Vz • ~ ' }  
(by letting z = H-~y)  

= inf {oc -> 0: (z,  n ' x  ) <- oc IIz II~, Vz • ~ " }  

---IIn'xlt~. 
It  remains  to show that  S ° =  {x 

N " : l l n ' x l l ~ < l }  is a c rosspoly tope .  Let  y =  
H'x. Then  x • S O if and only if Ilyll~-< 1. It  
follows that  S O is the image  of  R = { y •  
Nm:llyl l~-< 1} under  the  l inear  m a p  H ' - l .  Since 
R is a c rosspoly tope ,  so is S °. 

G iven  a paraUelo tope  S c ~ "  with basis 
{ X 1 ,  X 2 ,  . . . , Xm} , we obta in  l~so(U + ocv) = 

jln'u + ocH'vlll, where  H = [xlxz" • • x,,]. Let  
H'u  = [ ¢ J ( z "  • " ~,,] '  and n ' v  = [ 0 1 0 2 "  " • 0 m ] ' ;  

then 

IIH'u + ocn'vJl~ -- I~  + ocOd 

+ I ¢ 2 + O C r / 2 I + ' ' ' + I ~ m + O C r / m  j. (17) 

A cont inuous  funct ion on N is cal led 
polygonal (or  piecewise linear) if there  exists 
finite points  oq, oc2 . . . . .  ocp e N with oc~ < oc2 < 
• . . < o c t  such tha t  the funct ion is affine on 
( -0% ocl], [oct, oo) and [oc~, oci+l], i =  
1, 2 . . . . .  l - 1. I f  such points  oct, oc2 . . . . .  ocz are  
chosen so that  they have  least  n u m b e r ,  then  they  
are called vert ices of  the  po lygona l  funct ion.  If  
(17) is cons idered  to be  a funct ion of  oc, then  it is 
a polygonal  funct ion with at mos t  m vert ices.  

g .  

The  set of  ver t ices  is just ~ - ~ : i  = 1, 2 . . . . .  m 
L rli 

and r/~ 4: 0~. T h e  s u p r e m u m  and inf imum of  a 
J 

polygonal  funct ion on R can only occur  at oo, - ~  
or  one  of  its vert ices.  Since IJH'u + o~H'oll~ goes  
to infinity as oc goes to oo or -o0,  its inf imum can 
only occur  at one  of  its vert ices.  This  shows that  

inf Uso(U + a v )  = inf JJH'u + o~H'vlJ~ 
otER o ~  

= rain { l l n ' u  + ocn'vJl~ : 

o~e - - - - : i = 1 , 2  . . . . .  m a n d t l i ¢ 0  . (18) 

To  compu te  (18), we only need  to compu te  
the 1-norm of  at mos t  m vectors  in N m. 

The  paraUelo tope  case is also cons idered  in Fu 
(1989), whose  m e t h o d  is different  f rom ours.  A 
me thod  given in Sariderel i  and Kern  (1987), for  
the case when  /u, = I1"11~, has cer tain similarity 
with our  m e t h o d  here  a l though the der ivat ion is 
comple te ly  different.  It is to be  no ted  tha t  all of  
these three  me thods  comple te ly  e l iminate  the 
"combina to r i a l  exp los ion"  possessed  by some  
early me thods  which require  the use of  all of  the 
vert ices of  the para l le lo topes .  

Case I I I .  Crosspolytopes 
The  following propos i t ion  shows that  if S is a 

c rosspoly tope ,  then  ~s is a we igh ted  H61der 
1-norm and/~s,, is a weighted  H61der  oo-norm. 

Proposition 7. A s s u m e  that  S c R  m is a 
c rosspoly tope  with basis {Xl, x2 . . . . .  x,~ }. Le t  
H = [ X I X 2 " ' ' X m ] E ~  m x m  and [ y l y 2 . . . y m ] =  
H '-~. Then  S O is a pa ra l l e lo tope  with basis 

{Y~, Y2 . . . . .  Ym}. M o r e o v e r ,  t~s(X) = JlH-~xll~ 
and #s  o=  IIH'xlJ~. 

Proof. The  p roo f  follows the same  line as the 
p roof  of  Propos i t ion  6 and hence  is omi t ted .  

G iven  a c rosspo ly tope  5c7-~ m with basis 
{xl, x2 . . . . .  xm}, we obta in  I~so(U + ocv)= 
[[H'u+olH'vll~,  where  H = [ x l x 2 . . . x m ] .  Let  
H'u  = [ ¢ ~ 2 "  • • ¢,,] '  and H ' v  = [rh~T2" • • r/, ,] ' ;  
then 

IIH' u + ocn 'vl l~  

= max  {1¢1 -~ OC~I[, J~2 + ocr/zJ . . . . .  

J~m -k- ocr/m[}. (19) 

It  is easy to see that  IIH'u + ocH'vll= is also a 
polygonal  funct ion of  oc which goes  to oo as a 
goes to o~ or -0% so its inf imum occurs  at one  of  
its vertices.  H o w e v e r  it appea r s  tha t  the vert ices 
of  IIH'u + ocH'vll= cannot  be  ob ta ined  as easily 
as those of  IIH'u + ocn'vJl~. Note  tha t  at any 
ver tex  of  Ila'u+ocH'vll~, we must  have  
[~i + ocr/iJ = [~i + oct/j[ for  some  i,] = 1, 2 . . . . .  m 
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and i 4:j. So the set of vertices is contained in 
the following set 

V =  {tr: ~i + trt/i = ~;+ trrb-, l<-i<j<-m} 
U {t~'-~i31 - o ~ i =  - -~ j - -  o(~j, l<--i<j<--m} 

~i-  ~j:l~_i<j<_m and r l i -  ~j¢O} 
= { -  r l i -  ~j 

H {-~i+~J:l<-i<j<mandTli+~b~O}.?~i.~_~j 

This shows that if S is a crosspolytope, then 

inf ltso(U + try) = inf IlH'u + ~rH'vll~ 
a~ER treR 

= min {lIH'u + trn 'vl l~ : tr~ V). 

(20) 

In the worst case, V has m(m - 1) elements, 
while the number of the vertices of IlH'u + 
olH'vll~ may be much less than m ( m -  1). It is 
possible to devise a search scheme to find the 
vertices, but this requires extra computational 
effort. Thus formula (20) should be used, at least 
in the case when m is not too large. 

6. POLYTOPES 
The problem considered in this section is to 

compute (14) in the case when S is an absorbing 
polytope, i.e. a polytope which contains the 
origin as an interior point. We first present some 
theoretical results on the facial structure of 
polytopes and their polars. These results give 
some insight into the relationship between a 
polytope and its polar. All the results are from 
(Br~ndsted, 1983); hence the proofs are not 
included here. We then develop methods to 
compute (14) when the polytope S is represented 
either as the convex hull of a finite number of 
points or as the intersection of a finite number of 
half spaces. 

The faces of a polytope S c ~m are defined to 
be the intersections of S and the hyperplanes 
which do not intersect the interior of S. The set 0 
and S are also considered to be faces of S (called 
improper faces). The dimension of each face is 
defined to be the dimension of the affine space it 
spans; the dimensions of 0 is assumed to be -1 .  
The zero-dimensional faces of S are called the 
vertices of S, the one-dimensional faces of S are 
called the edges of S, and the (dim ( S ) -  1)- 
dimensional faces are also called the facets of S. 
Denote the set of all faces of S (including 0 and 
S) by F(S). Then F(S) becomes a partially 
ordered set if the set inclusion " c "  is defined as 
the partial order in F(S). Using intuition, we 
may conjecture that F(S) is a finite set and that 
the intersection of two faces in F(S) is also a 
face in F(S). These two statements can be 
proved to be true and they imply that F(S) is a 
complete lattice (Sz~isz, 1963), since the meet of 

two faces can be defined to be their intersection 
and the join of two faces defined to be the 
intersection of all (finite many) faces containing 
them. This lattice is called the face-lattice of S. 

If S is an absorbing polytope, Proposition 2 
shows that S O , the polar of S, is also an 
absorbing polytope. The face-lattice of S O is 
denoted by F(S°). 

Recall (Szfisz, 1963) that a bijective map from 
one lattice to another is called an dual 
isomorphism if it reverses the partial order. Two 
lattices are said to be dual isomorphic to each 
other if there exists a lattice dual isomorphism 
between them. 

Proposition 8. 
(a) /:(S) and F(S °) are dual isomorphic. 
(b) A dual isomorphism from F(S) to F(S °) is 

given by 

q~(P) = {y e sO: (x, y )  = 1 Vx e P}. 

(c) Let ~p be any dual isomorphism from F(S) 
onto F(S °) and P be any face in F(S). Then 
dim (P) + dim [w(P)I = n - 1. 

An advantage of the dual isomorphism given 
in Proposition 8(b) over any other possible dual 
isomorphism is that? @ ( ~ ( P ) ) = P  for each 
P eF(S) .  Hence (P, ~(P))  forms a so-called 
mutually conjugate pair. 

A polytope is usually represented either as the 
convex hull of a finite nonempty set of points in 

" ,  which is known as the internal 
representation, or as the intersection of a finite 
number of closed halfspaces, which is known as 
the external representation. The internal repre- 
sentation is also called the vertex representation 
since the vertices of polytope co {x,, x2 . . . . .  x~} 
are contained in the set {x,, x2 . . . . .  xt}. The 
external representation is also called the facet 
representation since the facets of polytope 

I 
A {x e Nm : <x, Yi) <- ai} are contained in the 
i=1 

u n i o n  o f  hyperplanes {x ~. ~m ._ (X, Yi} =O[i}, 
i = 1, 2 . . . . .  l. The convex hull of an arbitrary 
finite set of points is not necessarily an absorbing 
polytope. A necessary and sufficient condition 
for co{xl ,  x2 . . . . .  xt} to be an absorbing 
polytope is that some of (x, xi) are strictly 
positive and some of (x, xi) are strictly negative 
for each nonzero x e R m. Similarly, the intersec- 
tion of an arbitrary finite number of halfspaces, 
which is a polyhedral set, is not necessarily an 
absorbing polytope. A necessary and sufficient 

t Strictly speaking, the two ~ps in this expression are 
o o different; one is V(S)-* V(S ) and the other is V(S )---~ V(S). 

They share the same notation since they are defined using 
the same rule. 
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I 

condition for O {x • N " :  (x, Yi) -< Oil} to be an 
i = 1  

absorbing polytope is that it must be possible for 
each of the halfspaces {x • ~'~ : ix,  Yi) ~ Oli} t o  

be rewritten as { x • N " : ( x ,  zi) <--1} and 
co {z~, Za . . . . .  z~} is an absorbing polytope. 

Given an absorbing polytope S with either 
internal or external representation, it is not a 
trivial task to find its other representation. 
However,  it is very easy to find its polar in the 
other representation. This fact is actually implied 
by Proposition 8, for the facets (or vertices) of S O 
are just the image of the vertices (or facets) 
under any dual isomorphism from V(S) onto 
r : ( s ° ) .  

Assume that 

S = co  {x, ,  x~ . . . .  , x,}, 

where x~, x2 . . . .  , xg • Nm. Then by definition 

SO= {y • N m :  (y, x)  -< 1, Vx • S }  

m {y e N m : ( y ,  xi) - < l , i =  l, 2 . . . .  , l }  
I 

= f-'l {Y • [~m:(y ,  xi) -<1}. 
i = 1  

On the other hand, if (y ,x~) -<l  for all 
i = 1, 2 . . . .  , l, then 

~, ZiiY, xi) = y, ~.ixi -< 1, 
i = 1  i = l  

1 

for all ~.~ -> 0, i = 1, 2 . . . . .  l, with E Z; = 1. This 
i = 1  

implies (y, x ) -< 1 for all x • S. Therefore ,  it 
follows that 

l 
S O= 0 {Y ~ . ~ m :  (y, xi) -<1}. 

i = 1  

Assume now that 

I 

S = ~ { x  • ~ m :  (X,  Y i )  <-~ 1 } ,  
i=1  

where Yl, Y2 . . . .  Yl • R ' .  Let  T = co {yl, 
Y a , . . . , Y t } .  Then T ° = S .  Since T is also an 
absorbing polytope, it follows that S O= T°°=  T. 

A representation of a polytope 

o r  

S ~ c o  { X l ~  x 2 . . . . .  Xl} ~ 

I 

S =  CI (x e R " ,  (x, y,) -<1}, 
i = 1  

is said to be irreducible if 

o r  

S : ~ c o  {{xl ,  x2 . . . . .  x 3 ' , x A ,  

I 
s . f - ' l  

i=l, i~j 
(x e W", ix,  Yl) -< 1}, 

for each j = 1, 2 . . . . .  I. It is not assumed in this 
section that any representation of a polytope is 
irreducible. It is natural to believe, however, 
that if the representation is irreducible, then the 
computational complexity of the following 
proposed procedure to compute (14) would be 
minimized. 

In the remaining part of this section, we 
develop methods for the computation of (14) 
when the polytope is represented either inter- 
nally or externally. 

Case I. The internal representation o f  S is given 
Let 

Then 

S = c o  {x1,  X 2 . . . . .  XI}.  

I 

S O = N {Y e ~'~: (y, Xi) <-- 1}, 
i=l 

and 

Uso(U + av) 

= inf {fl > 0: (~--l(u "~ OgV), Xi) *~ 1, 

i = 1 , 2 , . . . , 1 }  

= i n f  {fl > 0 :  (u + a,v, xi) -<fl, 

i = 1 , 2  . . . . .  l} 

= m a x  {(u + av, xi) :i = 1, 2 , . . . ,  l} 

= max ((u,  xi} "~ O[(V, Xi) :i = 1, 2 . . . .  l}. 

Again we see that #s,(U + tro) is a polygonal 
function of o~ and its infimum can only happen at 
its vertices or at +oo. The fact that S is absorbing 
implies that some of (v, xi) are strictly positive 
and some of (v, xi ) are strictly negative. Hence 
#so(U + a,o) goes to infinity as tr goes to -l-~. 
Consequently, #so(U + a'v) achieves its infimum 
at one of its vertices. At each vertex of 
#so(U + av),  there must be i,j with 1 -< i, j -< ! 
and i 4: j such that (u, xi ) + ol ( v, xi ) = i u, xj ) + 
ociv, xj}. Therefore ,  the vertices of #so(U + av)  
are contained in the set 

v = {6:  (u, x ,)  + . ( v ,  x ,)  = (u, xj) 

+ ol(v, xj),  1 -< i< j -< l }  

(u. x,> - ( . ,  xj) 
(v, xi) - (v, xj) "l <-i < y -<l 

and (v, xi) - (v, xj} * 0 } .  

This shows that if S is a polytope with an internal 
representation, then 

inf #so(U + we) = rain {max {(u, x,) 
o.s~l a-~V 

+ ol(v, xi) :i = 1, 2 . . . . .  1}}. (21) 
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The set V generally contains redundant points 
which are not the vertices of /~so(U + av). The 
following result however can be used to reduce 
such redundancy. Two distinct vertices of a 
polytope are said to be adjacent if their convex 
hull is an edge of the polytope. 

Proposition 9. The vertices of #s 0 are contained 
in the set 

f (U, Xi} -- (U, X j ) .  vl 
t (v, x,) - iv,  xj)" 

l<_i<j<_l ,  ( v , x , )  - (v, x j ) ~ O  

xi, xj are adjacent vertices of S}. and 

Proof. We can assume without loss of generality 
that the representation 

S = CO { X l ,  X 2 . . . . .  Xl} , 

is irreducible, i.e. {x~, i = 1, 2 . . . . .  l} is the set 
of all vertices of S. Let ¢p be the dual 
isomorphism given in Proposition 8(b). Then 
{q~(x~) : i = 1, 2 . . . .  , l} is the set of all facets of 
S °. The boundary of S °, denoted by OS °, is 

l 

[..J dp(xi). Let T be the union of all ( m -  2)- 
i = 1  

dimensional faces of S °. Then OS°\ T consists of 
the relative interior of all rP(xi), i = 1, 2 . . . . .  I. 
For each a:, the ray starting at the origin and 
passing through u + a'v intersects OS ° at a point 
Yo,- The point y~, is either in OS°\ T or T. If y~ is 
in 3S° \T ,  then y~ is in the relative interior of 
q~(xi) for some 1 - i - < l .  This not only means 
that I~so(U + ocv) is equal to (u + a'v, x~) = 
(u, xi) + ol(v, xi),  but also means that laso(U + 
fly) is equal to (u, xi) + f l (v ,  xi) for all fl in a 
neighborhood of or. This implies that a: is not a 
vertex of lZso(U + av). Accordingly, if a: is a 
vertice of I~so(U + av),  then y~ E T, i.e. y¢ e 
q~(xi) f3 q~(xj) for some 1 < i, j -< l with dp(xi) N 
q~(xj) being an (m - 2)-dimensional face. Since ~p 
is a dual isomorphism, the fact that qffx;) N qffx/) 
is a ( m -  2)-dimensional face implies that the 
convex hull of x~ and x~ is a one-dimensional 
face, i.e. an edge. 

Proposition 9 implies that V in (21) can be 
replaced by its subset V1. We obtain 

inf I~so(U + a~) 
a '~R 

= min {max {(u, Xi) "J¢- O{(V, Xi) "* 
oteV1 

i =  1,2 . . . . .  /}}. (22) 

Although Proposition 9 is theoretically inter- 
esting, extra computational effort is needed to 

test whether or not xi, Xj a r e  adjacent vertices, 
when we are given S = c o { x l ,  x2 . . . . .  xt}. 
Hence, (21) may be more convenient to use in 
actual computation than (22). 

The results for this case are new and have 
certain advantages over the results in Barmish 
(1989) and Fu (1989), e.g. we do not need a 
sweep over an auxiliary variable as is required in 
Barmish (1989), and we obtain closed form 
formulas which are easy to compute. It is also of 
interest to note that the information given by the 
edges of S plays an important role in the 
analysis, which gives an analogy between the 
edge theorem in Bartlett et al. (1988) and our 
results. 

Case II. The external representation o f  S is given 
Let 

l 
S =  ("] {X Eff~m: (x, yi) <- l}. 

i = 1  

Then 

S ° = c o  { Y l ,  Y2 . . . . .  Yl} 

and 

u:(u + 

= inf > 0: ~ ~.iYi = fl-X(u + ~v),  
i = 1  

' / 
3.i -> 0, i = 1, 2 . . . .  , l, and ~ ~.i = 1 

i = 1  

= i n f  > O : ~ Z~ y~ = u + a'v , 
i = 1  

3.i -> 0, i = 1, 2 . . . .  , l, and ~ /~i = 

i = 1  

= i n f  ~ i :  ~ iy~ = u + av  
~ ' i=1  i ~ 1  

and 3. i -> 0, i = 1, 2 . . . . .  l}. 

It is easy to see that " inf"  in above equation 
can be replaced by "min" .  Therefore 
inf/~so(U + av)  can be obtained by solving the 
t r~R 

following linear programming problem: 

l 

minimize ~ A~ 
i = 1  

1 

subject to -or'l) d- E ~iYi = u (23) 
i=l 

and ~.i -> 0 

with respect to variables ~ and Ai, i =  
1,2 . . . . .  l. 

The solution in this case is not as simple as in 
Case I where no linear programming is needed. 
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It is not obvious whether a simpler solution 
exists in this case. We have mentioned in Section 
3 that the problem of finding quantity (13), 
which is the problem we are trying to solve, can 
be directly reduced to a linear programming 

t 
problem. In the case when S =  (-) {xe  

i=1 

R r, : (X, Yi) <-- 1 }, the linear programming prob- 
lem becomes 

minimize )~ 
subject to k'yi <- 2~, i = 1, 2 . . . .  l (24) 
and k 'u  = 1, k ' v  = O, 

(cf. Tesi and Vicino, 1990). To transform the 
linear programming problem (23) to the 
standard form which is assumed by the simplex 
method, we only need to replace tr by tr~ - 0(2, 
where oq and 0( 2 are positive; this results in a 
standard linear programming problem with l + 2 
variables and m constraints. The corresponding 
standard form of the linear programming 
problem (24) has 2m + 1 + 2 variables and l + 2 
constraints. It is to be noted that to make S an 
absorbing polytope, l has to be greater than m. 
The advantage of (23) over (24) now becomes 
apparent. 

7. SEARCH PROBLEM 

Recall that our major problem of this paper is 
to compute the robustness measure p defined as 
a function of a four-tuple (F,g, C u, S) in 
(4)-(7). It is shown in Section 3 that 
p = inf r(s), where • is a function from 0Cg to 

seOCg 

[0, o0] which can be evaluated at any fixed 
s e OCg by using the various methods developed 
in Section 4 through Section 6, if S is an 
bounded absorbing convex set. The quantity p 
can then be obtained by a "brute force" search 
over OCg, i.e. choose a finite subset of OCg which 
is sufficiently "dense" in OCg and find the 
minimum of r(s) over all points in this finite 
subset. Since OC s is usually a one-dimensional 
curve in (~, this "brute force" search is 
numerically feasible to do in engineering 
applications. However as we mentioned earlier, 
two numerical difficulties may occur during the 
search. The first difficulty is that when OCg is 
unbounded (or virtually unbounded, i.e. part of 
OCg is large), it may be impossible (or 
unrealistic) to find a finite and sufficiently 
"dense" subset in 0C~. The second difficulty 
occurs due to the fact that r(s) is generally not a 
continuous function on 0C 8, so it may be easy to 
miss the true infimum when a "brute force" 
search over OCg is carried out. This section 
discusses methods to deal with these difficulties. 

The first difficulty can be overcome completely 

by using a "tricky" but simple method which 
generalizes a similar method in Chapellat et al. 
(1988) to our setup. If (F, g, Cg, S) is given, then 
aCg, the boundary of the stability region, and 
p(s, k), the affine map from ~ "  to g', are also 
specified, and the function ~ is defined in (8). 
Let 

j =  I°110 
and P =JF, g =Jg. Define a new map/~(s,  k) 
from ~ " to P by 

p(s, k) = [s" s"- '  . . . ll(/~k + g), 

a reciprocal set O~.g of OCg by 

O~g= {s ~ c : l ~  OCg} 

and a new function ~ : 0(~g---, [0, ~] by 

~-(s) = inf {#s(k) :k  ~ ~m and 10(s, k) = 0}. 

Since , (s ,  k ) = O if and only if p(~,  k ) = 0 ,  we obtain 

Therefore 

p = inf r(s) 
s~OC e 

= min / inf inf 
tseaCgnU seOCgnU c ) 

= m i n  t inf ~(s), inf r (~ )}  
Ls¢~Cgn© s¢aC~NU 

= m i n i  inf r(s), inf ~(s)/ 
Ls~c~C~NU s~OCeAI) ) ' 

(25) 

where U is the closed unit disk in C and U c is the 
complement of U in (2. 

The function ~ has exactly the same form as r 
except that F and g are replaced by F and g; it 
can be evaluated at each s c a(~g by using the 
same method as carried out for r at each point 
s e aCg. This shows that p can be obtained by 
two independent searches and that each of these 
searches is carried out over a "small" bounded 
set. 

Some discussion about the treatment of the 
second potential difficulty is given as follows. 

Recall the expression of z(s) given by (12) and 
the definition of vectors u(s), v(s). Define 

~Cg 1 = {s E ~Cg : u ( s )  =1~ 0 and v(s) = 0}, 

aCg2 = {s e aCg :rank [u(s) v(s)] = 2}. 
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It is known from Theorem 1 that r(s) = oo for all 
S e 0 C g \ { 0 C g  I O 0Cg2}. Hence 

inf ~r(s)=min / inf ~-(s), inf ~(s)} (26) 
s~aaC~ l.s~s~ seOC~\0Cst 

=min  / inf r(s), inf r(s)}. (27) 
I.s ~ ,9C~ \ 0C~2 s ~ 6~2s2 

Denote by zls%, i = 1,2, the restrictions of z 
to 0C~, i = 1, 2, respectively. 

Lemma 1. z[~c~ is a continuous function for 
i=  1,2. 

Lemma 1 implies that if we can identify either 
O~g I o r  0Cg 2 from OCg and carry out the "brute 
force" searches according to either (26) or (27), 
respectively, then we will have very little chance 
to miss the true infimum of r(s) over 0Cg. 

The set 0Cs~ is contained in the intersection of 
OCg and 

{s e C : ~ (  ~ _  1 ] g /  

The latter set contains ~ U {0o} and usually 
consists of some curves and points in C. Hence 
the set  0Cg 1 usually contains discrete points in 
3Cg. If these points can be sorted out, and 
special care is taken when the "brute force" 
search is carried out, then the search should 
reliably reach the real infimum. (There are 
straightforward but tedious ways to sort out 
these points from 0Cg.) In most cases when m, 
the dimension of k, is greater than 1, these 
points are just the elements of the intersection of 
0C~ and a U {oo}. 

Proof. (Lemma 1.) First note that u(s) and v(s) 
are continuous functions of s e 0Cg. 

It follows from Theorem 2 that 

{ 1  1 }  
rl~q,(s) = max /~so[U(S)]' I~so[-u(s)] " 

Since /~so(U) and l~so(-u) are continuous 
functions of u if S o is absorbing, or equivalently 
if S is bounded, the continuity of ~1~%, follows. 

Define a function 0 : OCg2 x fl~--> [0, o0) by 
O(s, a 0 = t~so[U(S) + av(s)] and another function 

~: aCg2--~ [0, oo) by ~(s)= inf O(s, o O. 

Proposition l(g) implies that the function 0 is 
continuous in both variables and it is shown in 
Section 4 that the infimum in the definition of 
occurs at a finite point for each s e ~Cg 2. 

Therefore, we actually have ~(s)= min O(s, oc). 

To show that ~'[oa:,~ is continuous, it is enough to 

show that ~ is continouus, or equivalently, to 
show that lim ~(si)= ~(i) for any g ~ 0Cs2 and 

/--.*0o 

any sequence {si} c 8Cg2 such that s~--> ~. 
Let g ~ 8Cs2 and let {Si} be a sequence in ~Cg 2 

such that s~--> ~. Since v (~) :# 0, there exists e > 0 
such that /Zs0[V(Si)]-> e for all large enough i. 
Since {u(si)} is a convergent sequence in R", 
there exists y > 0 such that l~so[U(S~) ] <- y for all i. 
The sequence {~(si)} is bounded since ~(si) < 
laso[U(Si)] <- y for each i. Now suppose that we do 
not have lim~(si)=~(g).  This means that 

i----~oo 

{~(si)} has a subsequence {~(sij)} such that 
~(si)---~ or q: ~(~). Let i/=si~ and o¢~ be a real 
number satisfying ~(ij) = O(gj, o0). The sequence 
(as-} must be contained in a compact subset of 

~,  since each t~ must satisfy [a~jl-<2-Y; this 
E 

implies that {a~j} has a convergent subsequence 
{a%}. Let o~/--> &. Then 

0(~, &)= lim O(gj~, 0%) 

= lim ~(~/) 
j--.oo 

= o r  

Let # be chosen so that ~(g)= min 0(g, o:)= 
a ~ e R  

0(g,#). If #=d : ,  then ~ ( g ) = 0 ( L / ~ ) =  
0(g, &)= a, which contradicts our hypothesis. 
Now assume # :# &. In this case ~(~) = 0(g, #) -< 
0(g, O) = cr. Hence we must have 

o(s, #) < 

This also means that there exists 6 > 0 such that 

O(s, < O(s, o0, 

for all s e a C s t  with [ s - g [ < 6 ,  all cr with 
[a~ - &l < 6 and all fl with Ifl -/~1 < 6. Choose gJv 
such that [Yj. - g[ < t5 and [trj. - &[ < 6. Then 

O(gj., fl) < O(~j~, o~jv ). 

This contradicts the fact that min 0(~j,, a0 = 
o~R 

O(gjv, o~j,). Therefore, we conclude that there is 
no subsequence of {~(s~)} which does not 
converge to ~(~). This means that {~(si)} must 
converge to ~(g). 

8. A FLEXIBLE BEAM EXAMPLE 
A possible model with parameter uncertainty 

for a flexible beam studied in MacLean (1990) is 

AUTO 28:5-G 
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given by the following transfer function 

= 

-8.1876(1 + ks)s 2 
+ 0.7895(1 + k6)s + 219.57(1 + k7) 

5(1 + kl)s 4 + 0.8707(1 + k2)s 3 
+ 139.61(1 + k3)s 2 + 0.0933(1 + k4)s 

where k =  [kl k 2 " ' "  kT] represents the uncer- 
tainties. A feedback controller, which has a 
transfer function 

0.8745s 2 + 4.0787s 2 + 2.4574s + 0.6105 
C(s) = s 3 + 3.7897s 2 + 5.9143s ' 

is designed for P to solve the robust ser- 
vomechanism problem with respect to constant 
signals, i.e. to make the closed loop system track 
constant reference signals and reject constant 
disturbance signals. 

After a straightforward but tedious manipula- 
tion, we obtain the characteristic polynomial of 
the closed loop system as 

p(s, k) = [ $ 7 s 6 s 5 s 4 s 3 s 2 s  1](Fk + g), 

where 
m 

F =  

5 
18.948 
29.571 

0 
0 
0 
0 
0 

0 0 
0.8707 0 
3.2996 139.61 
5.1494 529.07 

0 825.68 
0 0 
0 0 
0 0 

0 
0 

-7 .1597 
-33.395 
-20.120 
-4 .9988 

0 
0 

-- 5- -  

19.819 
165.32 
501.61 

g = 1001.1 
893.06 
540.07 
134.06 _ 

0 
0 
0 

0.0933 
0.3535 
0.5517 

0 
0 

0 0 -  
0 0 
0 0 

0.6904 0 
3.2202 192.01 ' 
1.9402 895.56 
0.4820 539.58 

0 134.06 _ 

The polynomial is nominally stable and from 
(25) the stability robustness measure is given by 

p =  inf r(jco) 
~o~[o,~1 

= m i n  I inf r (p9) ,  inf ~(jo))}, 
L.coe[O,l] o2~[0,11 

where 

r(j~o) = inf {#s(k) :k  ~ ~m and p(jw,  k) = 0}, 

~'(jto) = inf {#s(k) :k e ~'~ and ~(jto, k) = 0}, 

and 

~(s, k) = [s7 s6 s5 s4 s3 s2 s 1](Pk + g ) ,  

where 

0 
0 
0 

29.571 
18.948 

5 
m 

p= 

0 0 0 0 
0 0 0 0 

0 0 0.5517 
0 825.68 0.3535 

5.1494 529.07 0.0933 
3.2996 139.61 0 
0.8707 0 0 

0 0 0 

0 0 134.06- 
0 0.4820 539.58 

-4 .9988 1.9402 895.56 
-20.120 3.2202 192.01 
-33.395 0.6904 0 ' 
-7 .1597 0 0 

0 0 0 
0 0 0 

- 134.06 - 
5 4 0 . 0 7  

893.06 
1001.1 

= 501.61 
165.32 
19.819 

5 

Case I. S is the unit ball of the H6lder 2-norm 
In this case, r( j to)  and t ( j to)  can be evaluated 

by using (15) and (16). We obtain 

inf z(jto) = r(jto)l,o=o4856 = 0.5924, 
toe[O,l] 

inf ~(jto) = e(#o)1o,=o2876 = 0.3268. 
m~[0,1) 

Therefore/9 = 0.3268. 

Case II. S is the unit ball of  the Hflder ~-norm 
In this case, ~(jto) and ~(jto) can be evaluated 

by using (15) and (18). We obtain 

inf z(jto) = "t(jto)[~o=o.4871 = 0.4534, 
~[0,1]  

inf ~r(jog) = ¢(jo9)1,o=o.2748 = 0.1977. 
toelO, l) 

Therefore/9 = 0.1977. 

Case III. S/s the unit ball of  the H61der 1-norm 
In this case, r( j to)  and ~(jto) can be evaluated 



Stability robustness of polynomials 959 

by using (15) and (20). We obtain 

inf r(jo2) = r(jto)l,o=o.4ss4 = 0.6340, 
¢o~[0, II 

inf ~(jog) = ~(jto)1~,=0.29o6 = 0.3638. 
~o~[0,1) 

Therefore p = 0.3638. 

Case IV. S is a simplex in R 7 
A polytope with nonempty interior in R"  is 

called a simplex if it has exactly m + 1 vertices. 
For a simplex, the convex hull of every pair of 
vertices is an edge. If S is 
in ~7 given by 7111il S = c o ,  - 1  , - 1  , 

- 1  
- 1  

- 1  

" - l i l  " - 1 "  
- I  - 1  - - 1  
- 1  , - 1  , 

- 1  
__- 7 

an absorbing simplex 

r ' - I "  - - 1  - 
- 1  , 1  

! 7 - 1  
- i  , 7 
i - 1  - 1  

- 1  - 1  
L . -1 .  _ - 1 _  

" -1  1 - - 1 "  - 1  - 1  
- 1  - 1  
- 1  [, - 1  ,, 
- 1  I - 1  
- 1 J  - 1  

_ 7 _ _ 1 .  

(28) 

then r(jto) and ~(jto) can be evaluated by using 
(14) and (21). We obtain 

inf r(jo)) = r(j¢o)]~=o.4863 = O. 1730, 
toe[0,1l 

inf ~(jw) = ~(ja0lo,=0.z9o6 = 0.0968. 
toeD, l) 

Therefore p = 0.0968. 

9. CONCLUSION 

An approach based on the framework of 
convex analysis is developed in this paper to 
study the stability robustness of polynomials. 
This approach unifies and improves some recent 
results in the area of the stability robustness of 
polynomials, motivates and solves new related 
problems, and provides a rich mathematical 
insight to this area. The approach is quite 
general; it allows the stability region in the 
complex plane to be an arbitrary open set and 
allows the convex set which contains the 
uncertain parameters to have an arbitrary shape. 

Acknowledgement--The authors are grateful to Dr D. Miller 
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