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Abstract: The design of an adaptive sinusoidal disturbance rejection controller for Single-
Input-Single-Output (SISO) systems is presented in this paper. Sinusoidal disturbance rejection
problems exist in industry applications such as velocity ripples in a CNC milling machine.
The controller is first developed based on the Internal Model Principle (IMP) and the pole-
zero placement technique, then a Gain Scheduled (GS) robust Two-Degree-of-Freedom (2DOF)
regulator is constructed to eliminate the sinusoidal disturbances with known frequencies and
to achieve a desirable tracking response simultaneously, but without estimating the amplitude
and the phase values of the sinusoidal disturbances. Using the small gain theorem, the system
stability radius is obtained for n slow time varying sinusoidal disturbances. Finally, the proposed
controller is applied to eliminate the torque and velocity ripples in the Alternating Current (AC)
Permanent Magnet (PM) motor control systems.

1. INTRODUCTION

Sinusoidal disturbance rejection problems always exist in
industry applications such as velocity ripples in CNC
milling machines (Liu and Chen [1994]) and precision
mechanisms (Spindler [2004]). Therefore, sinusoidal dis-
turbance rejection controller development is important in
precision motion control industry. In this paper, an adap-
tive sinusoidal disturbance rejection controller is devel-
oped for Single-Input-Single-Output (SISO) systems and
the disturbance frequencies are assumed to be known.
The controller is first developed based on the Internal
Model Principle (IMP) and the pole-zero placement tech-
nique, then a Gain Scheduled (GS) robust Two-Degree-
of-Freedom (2DOF) regulator is constructed to eliminate
the sinusoidal disturbances with known frequencies and to
achieve a desirable tracking response simultaneously, but
without estimating the amplitude and the phase values of
the sinusoidal disturbances.

To validate the effectiveness of the controller, the proposed
control algorithm will be applied to the torque and velocity
ripple elimination of Alternating Current (AC) Permanent
Magnet (PM) systems due to its importance in precision
motion control industry (Chen and Paden [1993]; Liu and
Chen [1994]; Petrovic et al. [2000]; Ferretti et al. [1998]).

In the past, there were many different techniques to elim-
inate the torque ripples of AC PM motor control systems.
Broadly speaking, these techniques fall into two major

⋆ This work is supported by Hong Kong Research Grants Council
under Project HKUST6163/04E.

categories. The first class consists of techniques that con-
centrate on the motor design so that it can eliminate the
cogging and reluctance torque ripple generation of AC PM
motors. Secondly, different adaptive control algorithms
have been applied to eliminate the torque ripple of AC
PM motor control systems (Ferretti et al. [1998]).

The common way to eliminate sinusoidal torque ripples in
AC PM motor control systems is to purchase high-grade
components and the total cost of an automation machine
is thus much increased (Gan and Qiu [2004]). To replace
the inefficient and high-cost solution, the development
of a novel and cost-effective speed control algorithm to
eliminate the torque ripples is discussed in this paper.

In the present literature (Gan and Qiu [2004]), the DC
current offsets can be approximated by a sinusoidal func-
tion with a known frequency. The Internal Model Princi-
ple (IMP) and the pole-zero placement technique is then
used to design a robust 2DOF speed regulator to eliminate
the torque and velocity ripples with a single disturbance
frequency. However, an AC PM motor control system
usually has output sinusoidal ripples. For example, DC
offsets are always present at the motor terminals, gain
error exists between phase; in addition, gain nonlinearity
is difficult to avoid in the current control loop. The above
disturbances can be modeled as sinusoidal functions with
one, two and three times of the rotor electrical frequency
respectively (Gan et al. [2005]). In this paper, the ex-
tension work of (Gan and Qiu [2004]) is discussed and
the proposed controller can be generalized to n sinusoidal
disturbances. The stability radius of the system can also
be derived with the small gain theorem. If the acceleration
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profile, is available to the controller, then the stability
radius can be further enlarged.

This paper is organized as follows. In Section 2, the de-
velopment of the adaptive sinusoidal disturbance rejection
controller for SISO systems, is addressed in details. The
IMP and the pole-zero placement technique is used to
design a controller with the hypothesis that the distur-
bance frequencies are constants. Then the Gain Scheduled
(GS) robust 2DOF speed regulator is developed for a time-
varying disturbance frequencies in Section 3. The stability
issue of the proposed GS robust 2DOF speed regulator
is also addressed. In Section 4, the application of the
proposed controller to AC PM motor systems is given.
This includes a brief review on the vector control of AC
PM motors and the modeling of the torque ripples are
given. With the acceleration profile input, the stability
radius of the system is enlarged. The simulation results are
presented in Section 5 to support the proposed controller.
Finally, some concluding remarks are given in Section 6.

2. ROBUST 2DOF REGULATOR DESIGN

Robust 2DOF regulators were discussed in (Wolovich
[1994]). In the following we assume that the disturbance
and reference may have different modes. In reference to
Fig. 1, the plant G(s) is assumed to be a general SISO
system while the reference input r(t), and the disturbance
input d(t), are assumed to have possibly different modes.

Let G(s) be a SISO plant described by a strictly proper
transfer function G(s) = b(s)/a(s), where

a(s) = sna + a1s
na−1 + · · · + ana

b(s) = b1s
na−1 + b2s

na−2 + · · · + bna

and it is assumed that a(s) and b(s) are coprime. The
general 2DOF controller shown in Fig. 1 can be written as

[K1(s) −K2(s) ] =
1

k(s)
[ q(s) −h(s) ] (1)

where

k(s) = snk + k1s
nk−1 + · · · + knk

(2)

q(s) = q0s
nk + q1s

nk−1 + · · · + qnk
(3)

h(s) = h0s
nk + h1s

nk−1 + · · · + hnk
. (4)

Then the 2DOF control structure becomes the following
one as shown in Fig. 2. The transfer function from the
input reference to the output is given by

Y (s)

R(s)
=

b(s)q(s)

a(s)k(s) + b(s)h(s)
=
b(s)q(s)

δ(s)

and the transfer function from the disturbance input to
the output is given by

Y (s)

D(s)
=
b(s)k(s)

δ(s)

where δ(s) is the closed loop characteristic polynomial of
the system. Let the unstable modes of r(t) be the roots
of monic polynomial mr(s) and those of d(t) be the roots
of md(s). Let the least common multiple of mr(s) and
md(s) be m(s). It is well-known that the robust regulator
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Fig. 1. A 2DOF controller structure.

problem is solvable, i.e., it is possible to design a controller
so that the disturbance rejection and reference tracking
are achieved, if and only if m(s) and b(s) are coprime.
The detailed design of q(s), h(s) and k(s) using IMP and
pole placement technique can be found in (Gan and Qiu
[2004]).

3. GAIN SCHEDULED CONTROLLER DESIGN

In this section, the design of a Linear Time Invariant (LTI)
robust 2DOF controller for a constant speed reference is
first discussed. Then a GS robust 2DOF controller for a
slowly time-varying speed step reference is designed by
modifying the LTI controller.

The problem of accomplishing robust tracking and distur-
bance rejection is called the robust regulator problem. The
key idea is that the controller should include the unstable
modes of the reference and disturbance according to the
IMP. We also propose to use a 2DOF controller structure
to achieve better transient responses and simpler designs.
A 2DOF controller has a structure as shown in Fig. 1
with η denotes the sensor noise. One of its advantages, in
comparison with the usual one degree of freedom or unity
feedback structure, which amounts to setting K1(s) =
K2(s), is that the tracking performance depends mainly
on K1(s), the robustness and the disturbance rejection
performance depends only on K2(s). Hence K1(s) and
K2(s) can be designed with different considerations (Zhou
and Zhang [2000]).

3.1 Design of LTI 2DOF Controller with Constant
Frequencies

The 2DOF regulator structure employed in our analysis
is shown in Fig. 2. Here we follow the design procedure
for the robust 2DOF regulator using pole-zero placement
technique as in (Gan and Qiu [2004]). Since the reference
r(t) is a step reference, it follows that m(s) = s. The
disturbance d(t) contains n sinusoidal functions, it follows
that md(s) = s(s2 + ω2

1)(s2 + ω2
2) · · · (s2 + ω2

n). Therefore
m(s)=s(s2 + ω2

1)(s2 + ω2
2) · · · (s2 + ω2

n). It follows that
m(s)a(s) and b(s) are coprime and a solution to the robust
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Fig. 2. A 2DOF regulator structure.
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regulator problem based on the IMP exists. Since na = 1,
we can choose ng = 0. This leads to a controller of order
equal to nm, which is the lowest possible to achieve robust
regulator. Hence

k(s) = s(s2 + ω2
1)(s2 + ω2

2) · · · (s2 + ω2
n)

= s2n+1 + k1s
2n−1 + · · · + kns, (5)

and h(s), q(s) have the following forms

h(s) = h0s
2n+1 + h1s

2n + · · · + h2n+1

q(s) = q0s
2n+1 + q1s

2n + · · · + q2n+1.

Choose the closed loop poles α1, α2, · · ·, αi, · · ·, α2n+1

according to the disturbance rejection specification and
the remaining closed loop poles α2n+2 according to the
transient tracking response specification so that the closed
loop characteristic polynomial is

δ(s) = (s+ α1)(s+ α2) · · · (s+ α2n+2)

= s2n+2 + δ1s
2n+1 + δ2s

2n + · · · + δ2n+2.

Then by equating the coefficients of both sides of

δ(s) = k(s)a(s) + b(s)h(s)

= s2n+2 + (a+ bh0)s
2n+1 + (k1 + bh1)s

2n

+ · · · + (ki + bh2i−1)s
2n+2−2i

+(aki + bh2i)s
2n+1−2i + · · · + bh2n+1, (6)

we can get

h0 =
1

b
(δ1 − a), h1 =

1

b
(δ2 − k1)

...

h2i =
1

b
(δ2i+1 − aki), h2i+1 =

1

b
(δ2i+2 − aki+1)

...

h2i =
1

b
(δ2i+1 − aki), h2n+1 =

1

b
δ2n+2. (7)

Finally, as mr(s) = s, we can arbitrarily assign the roots of
q(s). Here we choose the 2n+1 roots of q(s) to be exactly
the same as the roots of δ(s) subject to the constraint

q2n+1 = h2n+1

q(s) =
h2n+1

∏2n+1
i=1 αi

(s+ α1) · · · (s+ α2n+1). (8)

The coefficients of q(s), qi (i = 1, 2 · · ·n) are obtained. The

transfer function is finally given by
Y (s)

R(s)
=

α2n+2

s+ α2n+2 .

3.2 Slowly Time-Varying Frequencies

When the sinusoidal disturbances have varying frequen-
cies, we need to include internal modes which vary with the
disturbance frequencies; other parameters of the controller
in general also need to be changed with time to ensure
that the closed loop system is stable. The disturbance
frequencies ωi and ki in (5), (6) and (7) are replaced
by ωi(t) and ki(t) (i = 1, 2 · · ·n) respectively. Using

the following observer canonical realization to implement
the regulator with x̂(t) = [ x1(t) x2(t) · · · x2n+1(t) ]′ and
v(t)=[ r(t) y(t) + η(t) ]’, we get

˙̂x(t) =AK(t)x̂(t) + [BK1 BK2 ]v(t)

u(t) =CK(t)x̂(t) + [DK1 DK2 ]v(t)

where

AK(t) =

(

N2n×1(t) I2n×2n

0 01×2n

)

BK(t) =



























q1 −h1(t)
q2 − q0n1(t) −h2(t) + h0(t)k1(t)

q3 −h3(t)
...

...
q2i − q0ni(t) −h2i(t) + h0(t)ki(t)

q2i+1 −h2i+1(t)
...

...
q2n+1 −h2n+1(t)



























CK(t) = [ 1 0 · · · 0 0 ]1×(2n+1)

DK(t) = [ q0 −h0(t) ]

and N2n×1(t) = [ 0 k1(t) 0 k2(t) · · · 0 kn(t) ]′. Fig. 3
shows the block diagram of the GS robust 2DOF speed
regulator and the linearized AC PM motor system plant
can be represented by the following state space equa-
tions (Vidyasagar [1985])

ẋ(t) =−ax2n+2(t) + b[u(t) + d(t)]

y(t) = x2n+2(t). (10)

Let

x̃(t) = [ x1(t) x2(t) · · · x2n+2(t) ]′

w(t) = [ r(t) d(t) η(t) ]′

ỹ(t) = [ u(t) y(t) ]′,

the closed loop state space equations can be written as
follows

˙̃x(t) =A(t)x̃(t) +B(t)w(t)

ỹ(t) =C(t)x̃(t) +D(t)w(t).

The problem now boils down to choose the transformation
matrix P (t) to transform A(t) into an observer canonical
form so as to facilitate the stability analysis by the small
gain theorem. Let z(t)=[ z1(t) z2(t) · · · z2n+2(t) ]’ be the
new state variables. We have x̃(t) = P (t)z(t) and

- AK(t) BK1(t) BK2(t)
CK(t) DK1(t) DK2(t)

-

6

r u

y + η

Fig. 3. The GS robust 2DOF speed regulator.
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P (t) =



































0 0 1 0 · · · 0 0
0 0 0 0 · · · 0 −kn(t)
...

...
...

... · · ·
...

...
...

...
...

... · · ·
... 0

...
...

...
... · · ·

... −ki(t)
...

...
...

... · · ·
...

...
0 0 0 0 · · · 0 −k1(t)
1 0 0 0 · · · 0 0
0 0 0 0 · · · 0 b



































.

The closed loop system state space equations can be
transformed into the following

ż(t) =Az(t)z(t) +Bz(t)ũ(t)

ỹ(t) =Cz(t)z(t) +Dz(t)ũ(t)

where Az(t) =





























0 0 1 · · · −δ2n+2

1 0 0 · · · −δ2n+1 − k̇1(t)
...

...
... · · ·

...
...

...
... · · · −δ2i

...
...

... · · · −δ2n+1−2i − k̇i(t)
...

...
... · · ·

...
0 0 0 · · · −δ1





























Bz(t) =































q2n+1 0 −h2n+1(t)
q2n nn(t) −h2n(t)
q2n−1 0 −h2n−1(t)
q2n−2 nn−1(t) −h2n−2(t)

...
...

...
q2i nn−i+1(t) −h2i(t)
q2i−1 0 −h2i−1(t)

...
...

...
bq0 b −bh0(t)































Cz(t) =

(

0 0 1 0 · · · 0 −bh0(t)
0 0 0 0 · · · 0 b

)

Dz(t) =

(

q0 0 −h0(t)
0 0 0

)

.

Here Az(t) is a (2n+ 2)× (2n+ 2) matrix. Suppose Ikj is
the entry of the the first 2n+ 1 columns in Az, where

Ikj =

{

1 k = 2i, j = 2n− 2i+ 2
k = 2i− 1, j = 2i+ 1 (i = 1, 2 · · ·n)

0 otherwise

and Bz(t) ∈ R(2n+2)×3 and Cz(t) ∈ R2×(2n+2). Next let

L(t) = P−1(t)Ṗ (t)

= [ 0 −k̇1(t) 0 · · · −k̇n(t) 0 0 ]
′

and M=P−1(t)Az(t)P (t). Therefore,

M =



























0 0 1 · · · −δ2n+2

1 0 0 · · · −δ2n+1

...
...

... · · ·
...

...
...

... · · · −δ2i

...
...

... · · · −δ
...

...
... · · ·

...
0 0 0 · · · −δ1



























.

Here M is a (2n+ 2) × (2n+ 2) matrix.

According to the small gain theorem (Vidyasagar [1985]),
the associated autonomous system

ż(t) =Az(t)z(t)

=
(

M +RL(t) [ 0 · · · 0 1 ]
1×(2n+2)

)

z(t)

is internally uniformly exponentially stable if the following
condition is satisfied:

‖L(t)‖∞ <
∥

∥

∥[ 0 · · · 0 1 ]
1×(2n+2)

(sI −M)−1R
∥

∥

∥

−1

∞

=

∥

∥

∥

∥

∥

[ 0 s · · · 0 s2i−1 · · · s2n−1 0 0 ]

δ(s)

∥

∥

∥

∥

∥

−1

∞

= rs (11)

where R is a (2n+ 2) × (2n+ 2) matrix. In the 2ith row,
the 2ith column is 1, the other entries are zeros and rs
is defined as the stability radius. The internal stability of
the closed loop system is preserved as long as ‖L(t)‖∞ is
less than rs in (11). Since the matrices Bz(t), Cz(t) and
Dz(t) associated with the closed loop system are bounded,
it follows from, the closed loop system is also bounded-
input bounded-output stable if (11) is satisfied. If the
acceleration profile, is available to the controller, then the
stability radius can be further enlarged by modifying the
feedback gains h2i(t) as h2i(t) = 1

b
(δ2i+1 − aki(t)− k̇i(t)).

4. MODELING OF AC PM MOTORS AND
DISTURBANCES

A three phase AC PM motor current input model in the
d − q frame is given by the following equations (Novotny
and Lipo [1998]),

τe(t) =
3

2

P

2
[λmiq(t) − (Lq − Ldid(t)iq(t))] (12)

and

τe(t) − τl(t) = Jm

dω(t)

dt
+Bmω(t) (13)

where the parameters and variables have the following
meanings
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P number of poles (even number);
Ld, Lq d− q frame stator inductances;
Jm moment of inertia;
Bm friction constant;
λm constant magnetic flux;
id(t), iq(t) d− q frame stator currents;
τe(t) electro-mechanical torque;
τl(t) load torque;
ω(t) rotor mechanical speed;
ωe(t) = P

2 ω(t) rotor electrical speed.

The vector control technique suggests to set id(t) = 0.
This converts the nonlinear AC PM motor system into a
linear system and the torque is linearly proportional to the
input iq(t),

τe(t) =
3

2

P

2
λmiq(t). (14)

4.1 Modeling of the Sinusoidal Disturbances

The sinusoidal ripples are always present in the output of
the AC PM motor (Gan and Qiu [2004]). For example,
periodic disturbances may be shown as several sinusoidal
functions with known frequencies Therefore, we can as-
sume that there are n sinusoidal disturbances in SISO sys-
tems and the frequencies of these n sinusoidal disturbances
are already known. In this case, the disturbance input,
d(t), is given by

d(t) =C +A1 sin (ω1(t)t+ φ1) +A2 sin (ω2(t)t+ φ2)

+ · · · +An sin (ωn(t)t+ φn) (15)

where C is an unknown constant, the disturbance fre-
quency ωi(t) (i = 1, 2 · · ·n) is a known time-varying func-
tion.

Our goal is to design a speed controller so that the
output speed tracks a constant reference or a time-varying
step reference and rejects the disturbances. The design
objectives of the proposed controller are to have an order
as low as possible, a good transient response, and a
fast disturbance rejection response even when the system
parameters vary slightly.

5. SIMULATION RESULTS

Table 1. motor parameters

Jm 0.144 × 10−4kg · m2

Bm 5.416 × 10−4Nm/rad · s−1

λm 0.0283Wb
P 8

Kt = 3

2

P

2
λm 0.1698Nm/A

A 50 W AC PM motor is used in our simulations
tests and the motor parameters are listed in TABLE 1.
The gain difference between motor driver phases and
the offset currents are always present in the AC PM
motor system, so the torque ripples can be modeled
as two sinusoidal functions whose frequencies depend
on the motor speed,τoff(t) = Ad1

sin (ωd1
(t)t− φd1

) +
Ad2

sin (ωd2
(t)t− φd2

) where ωd1
(t) = ωe(t) ≈

P
2 ωr(t) and

ωd2
(t) = 1

2ωe(t) ≈ P
4 ωr(t) are defined as the disturbance

frequencies respectively.
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Fig. 4. Speed output with a general 2DOF regulator.

According to the design procedure listed in Section 3, one
of the possible solutions is to choose the six closed loop
poles at 140, 150, 160, 170, 180 and 190, and the five closed
loop zeros at 150, 160, 170, 180, and 190 respectively.
Other choices of the pole and zero locations are possible
but too fast closed loop poles may lead to the signal
saturation problem and the current loop dynamics may
not be neglected if the bandwidth of the speed loop is close
to that of the current loops. The GS robust 2DOF speed
regulator is designed to satisfy the motion specifications
with zero overshoot and rise time< 60ms.

The stability of this GS robust 2DOF speed regula-
tor depends on the stability radius rs. Let ψ = [
0 −(ω2

d1
(t) + ω2

d2
(t))′ 0 −(ω2

d1
(t)ω2

d2
(t))′ 0 0 ], according

to the small gain theorem

‖ψ‖
∞

= sup
t>0

max
i

|ψi(t)|

<

∥

∥

∥

∥

∥

[ 0 s 0 s3 0 0 ]

s6 + δ1s5 + δ2s4 + δ3s3 + δ4s2 + δ5s+ δ6

∥

∥

∥

∥

∥

−1

∞

= rs.

We can then evaluate the stability radius using the follow-
ing formula, ‖ψ‖∞ = sup

t>0
| − (ω2

d1
(t)ω2

d2
(t))′|.

For the simulations, two profiles with the maximum
values of sup

t>0
| − (ω2

d1
(t)ω2

d2
(t))′| < rs and sup

t>0
| −

(ω2
d1

(t)ω2
d2

(t))′| > rs are employed to test the proposed
GS robust 2DOF speed regulator.

In order to demonstrate the effectiveness of the use of the
IMP, another robust 2DOF regulator is designed without
including the sinusoidal disturbance modes to track the
first input profile. This can be done by simply assigning
k(s) = s and the dominant closed loop pole of this robust
2DOF regulator is placed at −140, the same one of the
GS robust 2DOF speed regulator. Fig. 4 shows the speed
output is contaminated with ripples by the two sinusoidal
disturbances. On the other hand, with the help of the
sinusoidal modes inside the speed regulator, the output
speed response of the GS robust 2DOF speed regulator
achieves a desirable tracking response without any velocity
ripple contamination as shown in the Fig. 5.
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For the second input profile, we first test it without the
acceleration profile input. The speed response is shown in
Fig. 6 and the output speed response is not good in general
and at t = 3s as the value of sup

t>0
| − (ω2

d1
(t)ω2

d2
(t))′| > rs,

the output speed becomes unstable and oscillatory. How-
ever, if the improved GS robust 2DOF speed regulator is
implemented with the acceleration profile input, a com-
paratively good speed response is obtained and shown in
Fig. 7, and the stability of the whole system remains.
Smooth transitions can still be maintained during the high
speed reference change at t = 2s and t = 3s. This simula-
tion result shows the stability radius of the overall system
can be enlarged with the availability of the acceleration
input profile.

6. CONCLUSIONS

In summary, an adaptive sinusoidal disturbance rejection
controller for SISO systems is developed and can be used
to eliminate the ripples due to sinusoidal disturbances, as
long as the disturbance frequencies do not change too fast.
When the condition in (11) is satisfied, implementing with

k̇i(t) in h2i(t), an infinity stability radius can be achieved.
The proposed controller is not limited to the application
of AC PM motor systems, but can be applied to any
servo problems with n sinusoidal disturbances with known
frequencies.
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