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An Average Performance Limit of MIMO Systems in
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Abstract—This paper studies the best achievable reference tracking per-
formance of MIMO linear time-invariant (LTI) feedback systems with par-
tial reference information. The reference signal to be tracked is a multi-tone
sinusoidal signal. It is assumed that, other than the instantaneous values
of the reference signal, only the frequencies of the sinusoidal components
are known. The tracking performance is measured by the energy of the
tracking error. With this partial information of the reference signal, we
consider an averaged performance measure and obtain an explicit expres-
sion of the best achievable performance. The expression shows how the
harmonic frequencies and the zero directions may affect the performance,
and further, how a performance degradation may result under the avail-
able partial information.

Index Terms—Linear systems, nonminimum phase zeros, optimal con-
trol, performance limitation, tracking.

I. INTRODUCTION

This paper studies an optimal tracking problem for MIMO feedback
systems with a linear time-invariant (LTI) plant. The reference to be
considered consists of multi-tone sinusoidal components, with a step
and a finite number of harmonics at given frequencies. The tracking
performance of the system is measured by the integral square of the
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tracking error signal. We desire to obtain an explicit expression of the
best achievable tracking performance, and our essential objective is
to demonstrate via such a result how in a general MIMO setting, this
performance may suffer from incomplete information of the reference
input available to the tracking controller. Here by the incomplete infor-
mation of the reference signal, we mean that while the signal’s instanta-
neous values can be accessed for tracking, its evolution is nevertheless
unknown and must be estimated. In other words, the reference infor-
mation is only given partially, and as such, the tracking objective is to
be met in an information-constrained setting.

The work continues the authors’ previous studies in [4] and [5],
where the full information of the reference signal, i.e., the entire history
and evolution of the reference signal, is accessible by the feedback con-
troller. One should note that this assumption is always true when the
reference is a step signal. In the case of a multi-tone sinusoidal signal,
however, the assumption requires that the magnitudes and phases of the
harmonics must all be available to the controller, which can be rather
demanding. The problem of tracking under partial information, as al-
luded to above, presents a more realistic scenario. This case was inves-
tigated for SISO systems in [5], with respect to a pure sinusoid, which
led to an explicit formula of the best tracking performance and shows
that an additional cost must be paid when dealing with partial informa-
tion. The present work seeks to generalize the result to MIMO systems
with a multi-tone signal consisting of arbitrarily many harmonics. This
will allow us to see how in a general MIMO system the information
contents of the reference signal and the directionality properties of the
plant may couple to constrain the tracking objective. Indeed, we show
that while in the full information case an averaged performance index
is solely determined by the harmonic frequencies of the reference and
the zero locations of the plant, under partial information it will also be
affected by the zero directions.

Our work is none but a new endeavor in a long series of work devoted
to the understanding and characterization of the fundamental perfor-
mance limitation in reference signal tracking. Notable earlier results in
this effort includes [1], which revealed that the performance limit of
an MIMO LTI system in tracking a step signal is determined by the
nonminimum-phase zeros of the plant. This work has since been ex-
tended to various settings, e.g., with respect to sinusoidal signals [4],
for discrete time systems [3], [6], and for systems subject to modeling
uncertainties or disturbances [2].

The notation used throughout this paper is fairly standard. For any
complex number, vector and matrix, denote their conjugate, conjugate
transpose, real and imaginary parts by ����, ����, ����� and �����, re-
spectively. The phase or argument of a nonzero complex number is de-
noted by � ���. Denote the expectation of a random variable by ������.
Let the open right and left half planes be denoted by � and �, re-
spectively. �� is the standard frequency domain Lebesgue space. ��

and ��� are subspaces of �� containing functions that are analytic in
� and � respectively. It is well-known that �� and ��� constitute

orthogonal complements in ��. The Euclidean vector norm and the
norm in the space �� are both denoted by � � ��. The Frobenius norm
of a matrix is denoted by � � �� . ��� is the set of all stable, rational
transfer matrices. Finally, the angle between two unitary vectors �, �
is defined by �	
��� �	 �� 
���
, which quantifies the orientation be-
tween the two subspaces spanned by � and �, respectively.

II. PROBLEM STATEMENT

The system under consideration in this paper is shown in Fig. 1. Here
� ��� is the transfer function of a given plant whose output ���� and
measurement 	��� may not be the same, 
��� is the transfer function
of a two degree of freedom (2DOF) controller, � is a signal generator,
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Fig. 1. Two-parameter control structure with partial reference information.

whose output ���� is a multitone sinusoidal reference signal with a step
and � harmonics at the given frequencies �� , � � �� � � � � �, written as

���� �

�

���

����
��� � � ���

�� �

��

�

���

	
����� ������ ������ ������� (1)

where �� � � and ��� is the magnitude of the step signal. We use the
vector

� � 	���
�� � � � ���

�� ��� ��� � � � ��� �
�

to capture the magnitude and phase information of all frequency com-
ponents of the reference. The signal 	��� is the internal state of the
signal generator 
, which includes all information of the parameter
vector � and can be selected as

	��� �

����
��� � � ���

�� �

...
����
��� � � ���

�� �

� (2)

Denote the �-th component of 	��� by 	����. Then the reference signal
����, the output of the signal generator, is the sum of 	����, � �
�� � � � � �, i.e.,

���� �

�

���

	����� (3)

Write � �� � ����
����

, where ��� is the transfer function from ����

to ���� and ��� the transfer function from ���� to ����. The typical
tracking problem is to design a controller��� so that the closed-loop
system is internally stabilized and the plant output ���� asymptotically
tracks the signal ����.

In [4], we presented a complete result for the tracking performance
limit under the assumption that the controller can access 	���, and
hence all the past and future values of the reference signal in advance.
This case is referred to as the full reference information case [5]. In con-
trast, herein we limit the controller access to ���� only, referred as the
partial reference information case [5]. Additionally, we assume that ��
are known. This reference information entails that ���� is fully avail-
able to ���, but �� may not be known; in other words, both the mag-
nitudes and phases of the harmonic components of ���� are unknown.
Intuitively, one expects that due to this information constraint, a perfor-
mance degradation is likely to result. This constitutes the central issue
that we attempt to explore for general MIMO LTI systems in the present
paper.

The tracking performance is quantified by the energy measure

���� �

�

�

������ ������� �� �

�

�

�������� ��� (4)

For this measure to be meaningful, we make the following assumptions
throughout the paper.

Assumption 1:
1) � ��, ��� and ��� have the same unstable poles.
2) ��� has no zero at ����, ���, � � �� �� � � � � �.

The first condition means that the measurement can be used to sta-
bilize the system and at the same time does not introduce any addi-
tional unstable modes. This condition is satisfied in the case of output
feedback, where ���� � ����, and that of state feedback, where ����
is the state vector of the system ���. Alternatively, an equivalent
condition is that if � �� � 	���


���
����� is a coprime factoriza-

tion, then �������� and �������� are also coprime factoriza-
tions. The second condition is necessary for the tracking problem to be
well-posed.

In the full information case, the optimal tracking performance with
respect to � is given by

���	��� � ���
�
�����

which, naturally, depends on �. An averaged performance cost indepen-
dent of � can be obtained by averaging ���	��� over a set of random
vectors with zero mean, unit covariance, and uncorrelated conjugate,
that is

���	 � ��� ���	��� � ������ � ���������� � ��������� � � � �

Explicit expressions for ���	��� and ���	 were obtained in [4]. It
should be noted that the statistical properties�������� � � ,������� � �
� dictate that ���	
����
����� � � ���	����������� � � ������ ,
����
���������� � � �; i.e., the coefficients �
����� and ������� of
the reference in real form (1) are independent and the covariances of
the coefficients are �� .

In the partial information case, since �� are not available to the con-
troller, it is generally not possible to design a controller to minimize
����. Instead, it is more plausible to adopt an average performance
measure in the following sense. Consider again the set of random vec-
tors � with zero mean, unit covariance, and uncorrelated conjugate. An
average tracking performance can be formulated as

� � ��� ���� � ������ � ���������� � ��������� � � � �

The best achievable average performance, thus, is given by

���	 � ���
�
��

It is immediately clear that ���	 � ���	. Note that in the full infor-
mation case, ���	 � ���	, a consequence borne out of the fact that
the optimal tracking controller is independent of � [4]. This desirable
property, however, no longer holds when only partial information is
available, which leads to the outcome that ���	 � ���	; this strict in-
equality was established in [5] for one sinusoid and will be seen true
in general in the present work. Indeed, our purpose herein is to find an
analogous expression for ���	, with which we may analyze why and
how much ���	 is in excess of ���	.

We shall need to conduct an allpass factorization on ���, which
we quote from [4]. Suppose that ��� has nonminimum phase zeros
��� � � � � �. Then ��� can be factorized in the form of

��� � ���� � � ��������

where ���� has only minimum phase zeros, and

���� �
� ��
� ���

���
�

� � ���
�

� �  �
���

�
�
�

� �
 �� (5)
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with �� being a unitary vector and �� � ��� ��� a unitary matrix. The
vector �� is referred to as a directional vector associated with the zero
��. We denote

������ � ����� � � �������

When���� contains only one pair of conjugate complex nonminimum
phase zeros � and ��, with the directional vector of � being �, then we
may take �� � �, �� � �, �� � �� ([9], [10])

�� �
�
� � � 	
�

��
� (6)

and

������ � ���������� � � � �	�

�� � �	�� ����

� �	
 ��
� � 	


�
��

� �	
����� � 	
��
�� (7)

where

	 � 	
���� 
 � �
�
�� � � �� 	��
��

����
��

� (8)

Since��������� is a coprime factorization of����,���� and���
share the same nonminimum phase zeros, and likewise, ��� can be
factorized as

��� � ���������� (9)

where ���� is an outer function (for details, see, e.g., [7]).

III. MAIN RESULTS

Our main result in this paper is the following explicit formula of the
best performance attainable under the partial reference information.

Theorem 1: Let���� have nonminimum phase zeros ��� ��� � � � � ��
with directional vectors ��� ��� � � � � ��. Then

���� � �

�

���

�

���

�

��� � ���
�

�

�� � ���

�

�

���

����������������������
���

� (10)

Furthermore, denote
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where ��� � 	
����	
����, �, � � �� � � � ��. Then

����������������������
� ����

� �
�	�

� �
�
�� ��

� ��
��

�	�
�

�
� (11)

The proof is given in the Appendix.
It can be shown, as in [5], that with full reference information, the

optimal tracking performance is given by

���� � �

�

���

�

���

�

��� � ���
�

�

�� � ���
�

Hence, Theorem 1 exhibits that a performance degradation will neces-
sarily result when only partial reference information is available. This
result also gives the indication that in an MIMO system, the additional
cost not only depends on the nonminimum phase zeros, but is likely
to depend on the relative orientation of the zero directional vectors as
well; the latter is seen from the dependence of ���� on the inner prod-
ucts ��� �� . While this aspect appears difficult to characterize in general,
an appeal to special and extreme cases may yield useful insight. In this
vein, we note from [5], or by a direct calculation of (11), that if ����
has two nonminimum phase zeros, then

����������������������
� � �������� ��� ���� �

��	
� � ���� �

��	
�

��������� ��� ���� �
��	
� � �

��	
� (12)

where ��, �� are nonminimum phase zeros with directional vectors ��,
��, and ���	� � �� ���� ����, � � �� �. This result reveals that indeed,
the performance degradation depends on the angle between the zero
directional vectors.

For SISO systems, we may also obtain a simple expression when the
plant has more than two nonminimum phase zeros. A direct calculation
of (11) shows that for a SISO plant����with nonminimum phase zeros
��� ��� � � � � ��

���� � �

�

���

�

���

�

��� � ���
�

�

�� � ���

�

�

���

�

��
���� �

�

���

� ��� � ���� � (13)

In particular, if���� has only one real nonminimum phase zero �, then

���� � �

�

���

�

� � ���
�

�

� � ���

�

�

���

�

��
���� �� �� � ����� (14)

These formulas extend a result in [5] with respect to one sinusoid.
Note from (12) that when ������� ��� � �, i.e., the two directional

vectors are orthogonal, then

���������������������� � � ���� �
��	
� � ���� �

��	
� �

Thus, in light of (14), the two zeros contribute to ���� independently
of one another. On the other hand, when ������� ��� � �, i.e., the two
directional vectors are parallel, then

���������������������� � � ���� �
��	
� � �

��	
� �
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As seen from (13), in this case, the zeros act in the same fashion as they
do in a SISO system.

When the two nonminimum phase zeros are further confined to be a
pair of conjugate zeros, the zero coupling effect can be quantified more
explicitly. The following corollary addresses this special case.

Corollary 1: Suppose that ���� has a pair of conjugate nonmin-
imum phase zeros �, ��, and the corresponding zero directional vector
for � is �. Then

����������������������
�

�

�� ��� ��� ���� � �
� �� ��� ��� �	
� �

���
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� (15)

where ����� � �� �� � ����, �
���
� � �� ��� � ����. Furthermore

�� ��� �� ��	���
�

����� � ��
�
�
�
� �	���

�

� ����������������������
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�

����� � ��
�
�
�
� �	���

�

(16)

with 	, 
, and � given by (8).
Proof: We first note from (6) that
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��� �� 	

��

�

� ���� ��� �	
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In light of (12), and the fact that ���� � � � 	�����, we obtain (15).
To establish (16), we use the allpass factor (7). Denote
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It follows by a direct calculation that
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We then evaluate
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It can be shown that
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As such
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The remaining proof is then completed by evaluating ����, which
yields

���� � �

�
���� � ��

�

�
� �	���

� �

and by noting the inequalities ��
����� � ���
�� �� � �
�����.

IV. CONCLUSION

In this paper, the fundamental performance limit of general MIMO
feedback systems in tracking multitone sinusoidal signals is studied.
It is assumed that, in addition to the instantaneous values of the ref-
erence signal, only the harmonic frequencies of the signal are known,
whilst the information of magnitudes and phases of the harmonics is
unavailable to the controller. This formulation presents a more realistic
problem of tracking with a partial information structure, in contrast to
the previous studies where the controller can access the complete in-
formation (past and future values) of the reference signal. A formula
for the best achievable average tracking error has been derived, which
shows that a performance degradation results due to the lack of full in-
formation for tracking. The degradation is found to be dependent on
the nonminimum phase characteristics of the plant and the harmonic
frequencies of the reference signal, and as shown in special cases, also
on the angles between the zero directional vectors.

APPENDIX

Proof of the Theorem 1:
Proof: Let ���� � ���������� be a coprime factorization.

Then using the parameterization of all stabilizing 2DOF controllers [7],
we find the transfer function from ���� to ���� to be ��������, where
���� is an arbitrary 
�� transfer function which can be designed.
Denote the Laplace transforms of ���� and ���� by ���� and ����,
respectively. For a fixed �, the tracking performance ���� defined in
(4) can be written as

���� � ��������������������� � (A-1)

Since ���� is not available, ���� is unknown. Decompose ���� as

���� � ������� � � � � ������ �

It follows that

����������������� �

�

���

�� ����������������� (A-2)

Substituting (A-2) into (A-1) leads to

���� �
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�� ����������������
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�
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Similarly, ����� are unknown. However, by averaging ���� with
�������� � � , ������� � � �, we find

��� ������ ����
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�� �����������
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�
���� �

�

�

� (A-3)

Thus, in the partial information case while it may not be possible to
find a ���� � ��� such that ���� is well-defined, one may design
a ���� � ��� for ��������� to be. It follows from the inner-outer
factorization of ���� given in (9) that
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and
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The averaged cost function ��������� is further written as
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�
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Notice the facts that ����� belongs ��� , and ����� to �� for some
properly selected ����� � ���. This leads to
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To obtain an explicit formula for ���������, let us consider
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respectively. A simple manipulation gives rise to
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where
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It is clear that
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Analogously, we have
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Consequently, in view of (A-4), we have shown that
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Next, to calculate ���������, we construct the inner matrix function
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and denote
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Pre-multiplying the matrix function ����� to ������, its �� norm re-
mains invariant. Hence
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where ������ � ��� and �
�
� ��� is the pseudo-inverse of �����.

As in the earlier part of this proof, conducting an orthogonal decom-
position of ����� into the sum of two terms in �� and ��� , respec-
tively, and selecting ������ � ��� appropriately, we arrive at the
conclusion
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Consequently, it follows that
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To complete the proof, we note from [8] that a state-space realization
������ for 
����� is given by
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Since
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the result follows by noting that
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and hence that
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The proof is now completed.
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