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Abstract
Robust adaptive control is investigated using the

H∞ approach. An equivalent measure to the H∞-
norm is adopted to quantify the unmodeled dynam-
ics associated with adaptive estimation of the nomi-
nal model based on time-domain measurement data.
Such an equivalent description for modeling errors
allows H∞ optimization to be successfully used in
adaptive control to achieve robust stability and per-
formance comparable to H∞ control. The proposed
adaptive control consists of the total least-squares
(TLS) algorithm for adaptive model estimation, and
H∞-loopshaping for adaptive controller design. Our
results show that the proposed adaptive control sys-
tem admits robust stability and performance asymp-
totically, provided that the estimated plant model
converges.

1 Introduction
In our earlier work [7], a novel notion termed as

uncertainty equivalence principle is proposed that en-
ables the quantification of the modeling errors in an
equivalent measure to the H∞ norm based on the min-
imum a priori information on the underlying phys-
ical process. It is noted that the modeling errors
are inevitable in engineering practice for any nomi-
nal model adaptively estimated using the time domain
data. The equivalent quantification of the modeling
error allows H∞ optimization to be successfully ap-
plied to adaptive control. Hence the work presented in
[7] offers an H∞ approach to robust adaptive control
and provides new insights to coping with the model-
ing errors. However the results presented in [7] are
limited to stable systems only. Further study for H∞

based robust adaptive control is necessary.
In this paper we continue our investigation on

robust adaptive control based again on uncertainty
equivalence principle, contrast to the conventional cer-
tainty equivalence principle. Roughly speaking, the
modeling error in adaptive estimation can not be
quantified at each time instant in terms of H∞-norm
based on real time data which represent only one time
sample path. It turns out that even though the H∞-
norm of the error system can not be quantified, the
output signal of the error system can be guaranteed to
satisfy the same energy amplification constraint as the
H∞-norm, thereby providing an equivalent descrip-
tion of the dynamics uncertainty and enabling ap-
plications of H∞ optimization in adaptive control to
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achieve equivalent stability margin and performance
comparable to those achievable in H∞ control. More-
over we will propose a specific adaptive feedback con-
trol system and prove its asymptotic stability and
performance under some mild condition. The pro-
posed adaptive control system employs the total least-
squares (TLS) algorithm for adaptive model estima-
tion capable of quantifying and minimizing the mod-
eling error in terms of the normalized coprime factors
of the physical system. It employs robust stabiliza-
tion of uncertain systems described by normalized co-
prime factors for adaptive controller design leading
to the performance index reminiscent of H∞-based
loopshaping [11, 19]. Simulation results are presented
to illustrate the robustness of the proposed adaptive
feedback control system. The notations of our paper
are standard and will be made clear as we proceed.

2 Preliminaries

Denote ℓ2+ as the collection of all the causal signals
(which can be vector-valued for each time instance t)
having bounded energy. Then for any s(t) ∈ ℓ2+, its
ℓ2-norm is defined by

‖s‖2 :=

√

√

√

√

∞
∑

t=0

‖s(t)‖2 =

√

√

√

√

∞
∑

t=0

s′(t)s(t) < ∞.

Assume that the uncertainty represented by its trans-
fer function ∆(z) is ℓ2-BIBO stable. Then its H∞-
norm ‖∆‖∞ is bounded, determined by its frequency
response. Let µ = {µ(t)}∞t=0 ∈ ℓ2+ be the input. Then
the output ν = {ν(t)}∞t=0 ∈ ℓ2+. Moreover

δ = ‖∆‖∞ := sup
ω∈R

σ
(

∆(ejω)
)

= sup
µ∈ℓ2

+

‖ν‖2

‖µ‖2
(1)

with σ(·) the maximum singular value. That is, H∞-
norm is the square-root of the worst-case energy am-
plification, or ℓ2-gain. The collection of all stable ra-
tional transfer functions is denoted by RH∞, and its
closure is denoted by H∞.

For any signal s = {s(t)}∞t=0 ∈ ℓ2+, we define
πT , T ≥ 0, as the projection operator satisfying

πT [{s(t)}∞t=0] = {s(t)}T
t=0, ‖s‖[0,T ] = ‖πT [s]‖2.

By slight abuse of notation, ℓ2-gain can also be defined
over the finite time horizon by

δT = ‖∆‖∞,[0,T ] := sup
µ∈ℓ2

+

‖ν‖[0,T ]

‖µ‖[0,T ]
.
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For any input/output pair (µ, ν), there hold ‖ν‖[0,T ] ≤
δT ‖µ‖[0,T ] for T ≥ 0, and δ = limT→∞ δT . However it
is difficult to determine δT for each T ≥ 0 using only
the time-domain measurement data, which requires
the presence of the worst-case input/output signals.
Indeed for adaptive feedback control, only one time
sample-path is available. If ∆(z) represents the un-
modeled dynamics at time t = T , then it is in general
infeasible to estimate δT , based on the time-domain
measurement data, due to the possible absence of the
worst-case input/output signals. Moreover the mod-
eling error in adaptive control varies with respect to
time t, and depends on the input and output of the
true system, due to the use of the adaptive estimation
algorithm. Hence ∆ represents a time-varying nonlin-
ear system. For this reason it is more suitable to be
denoted by a nonlinear operator ∆N (·), even though
the true plant is linear and time-invariant, and the
nominal plant model is parameterized by fixed order
linear time-invariant systems. Such a time-varying
nonlinear system is said to be ℓ2-BIBO stable, if

‖∆N ‖∞,[0,T ] := sup
µ∈ℓ2

+

‖∆N (µ)‖[0,T ]

‖µ‖[0,T ]

< ∞ ∀ T ≥ 0.

(2)
The transition from ∆(z) to ∆N (·) is important.

Although the frozen model uncertainty at each time
t is linear, and may be represented by ∆(z), its
H∞-norm ‖∆‖∞ can not be quantified based on
input/output pair ({µ(t)}T

t=0, {ν(t)}T
t=0) in general.

But if an adaptive estimation algorithm can ensure
‖∆N (µ)‖[0,T ] ≤ ǫ‖µ‖[0,T ] for some ǫ > 0, and any

{µ(t)}T
t=0, and T ≥ 0, then ǫ can serve as an upper

bound for ‖∆N (µ)‖[0,T ]. This is essentially the uncer-
tainty equivalence principle introduced in [7].

For adaptive estimation there is no guarantee for
the H∞-norm of the frozen model uncertainty ∆(z)
at each time instant due to the lack of the worst-
case signal. But if the upper bound ǫ under which
‖ν‖[0,T ] ≤ ǫ‖µ‖[0,T ] can be estimated and ensured

for each pair ({µ(t)}T
t=0, {ν(t)}T

t=0), and each T ≥ 0,
then the underlying adaptive feedback control sys-
tem design can be approached via H∞ based robust
control. Hence if the adaptive feedback controller is
designed appropriately such that some suitable feed-
back transfer matrix is internally stable with upper
bound γ minimized, and γǫ << 1 at each time instant
t = T ≥ 0, then both stability and performance of
the adaptive feedback control system can be ensured.
This is illustrated in our earlier work [7] for adaptive
control of stable systems with demonstrated robust
stability. In this paper we propose a different adap-
tive feedback control system that is applicable to un-
stable plants. In the following section we investigate
how the equivalent uncertainty can be quantified by
employing the TLS (total least-squares) algorithm for
model estimation, and how a robust adaptive feedback
controller can be designed based on the H∞ loopshap-
ing method. The results will be demonstrated with a
simulation example with comparisons to a traditional
adaptive control system. Due to the space limit, all
the proofs are skipped.

3 Proposed Adaptive Control Algorithm
The RLS algorithm has been the center piece for

adaptive estimation. Its role in robust estimation has

been investigated in [5, 20]. However for robust adap-
tive control of unstable plants, the TLS algorithm
rather than the LS algorithm does a better job for
adaptive estimation of the left coprime factors of the
plant model in terms of the size of the equivalent mod-
eling error. In this section we consider a different
adaptive control system which consists of the TLS al-
gorithm for estimation of the normalized coprime fac-
tors of the true system and design of robust stabilizing
controllers for coprime factor uncertain systems.

3.1 Adaptive Model Estimation via TLS

Consider an m-input, p-output, and possibly un-
stable linear time-invariant system represented by
its transfer matrix P (z) which may have infinitely
many poles but admits normalized coprime factor-
izations: P (z) = M̃−1Ñ(z) = N(z)M−1(z) where

M̃(z), Ñ(z), M(z), N(z) ∈ H∞ have continuous fre-
quency responses and satisfy

M̃(z)M̃ ′(z−1) + Ñ(z)Ñ(z−1) = I

M ′(z−1)M(z) + N ′(z−1)N(z) = I
(3)

with I the identity matrix. Let

M̂(z) =

κ
∑

i=0

αiz
−i

, N̂(z) =

κ
∑

i=0

βiz
−i

, (4)

be approximants to the left normalized coprime fac-
tors M̃(z) and Ñ(z), respectively. Let

∆M̃ (z) = M̃(z)−M̂(z), ∆Ñ (z) = Ñ(z)−N̂(z), (5)

be the associated modeling errors. Then by the in-
put/output relation M̃(q)y(t) = Ñ(q)u(t),

e(t) =
[

M̂(q) −N̂(q)
]

[

y(t)
u(t)

]

= ∆(q)
[

y(t)
u(t)

]

with ∆(z) = [ −∆M̃ (z) ∆Ñ (z) ] and q the unit ad-
vance operator. In the above equation, noise free mea-
surements are assumed for simplicity. Then the nom-

inal plant is given by P̂ (z) = M̂−1(z)N̂(z). We shall
assume that

δ
∗
κ := inf

M̂,N̂
‖∆‖∞ = inf

M̂,N̂

∥

∥

[

M̃ − M̂ Ñ − N̂
]
∥

∥

∞

is a decreasing sequence of κ with limit zero where

the infimum is taken over all possible M̂(z) and N̂(z)
as parameterized in (4). It is easy to verify that the
error function can be written as

e(t) = Θψ(t), Θ = [ α0 · · · ακ β0 · · · βκ ] .

An ideal adaptive estimation algorithm is the one
which minimizes

‖e‖[0,T ] :=

√

√

√

√

T
∑

t=0

e′(t)e(t) =

√

√

√

√trace

{

T
∑

t=0

e(t)e′(t)

}

for each T > 0, subject to the condition that

M̂(z)M̂ ′(z−1) + N̂(z)M̂ ′(z−1) = I. (6)
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But this is very difficult to achieve, if not impossible.
Thus we are led to consider replacing (6) by the set

SΘ(r) = {Θ = [ α0 · · · ακ β0 · · · βκ ] :
ΘΘ′ = R2, 1 ± σ(I − R) = r

}

.

The matrix R in the above equation is assumed to be
symmetric and non-negative definite. The constraint
1 ± σ(I − R) = r is equivalent to σ(I − R) = |1 − r|.
If r = 1, then the parameter set is simply denoted
by SΘ. It is obvious that those parameter vectors Θ
satisfying (6) belong to SΘ. Our objective is to search
for Θ ∈ SΘ which minimizes ‖e‖[0,T ] for each T ≥ 0.
The key is quantification of the equivalent uncertainty
bound associated with such a minimization scheme in
hope that it is comparable to δ∗κ.

Let ET = [ e(0) e(1) · · · e(T ) ] ∈ Rp×(T+1)

for each T ≥ 0. Then

ET = ΘΨT , ΨT = [ ψ(0) ψ(1) · · · ψ(T ) ] .

Define ‖ET ‖2 := ‖e‖[0,T ] and

Θ∗
T := arg min

Θ∈SΘ

‖ET ‖2 = arg min
Θ∈SΘ

‖ΘΨT ‖2. (7)

Then the following result can be established.

Theorem 3.1 Let 0 < δ∗κ < 1 and Θ = Θ∗
T as in

(7) for each T ≥ 0. Then for each input/output pair
({y(t)}, {u(t)}) where t = 0, 1, · · · , T , there holds

inf
Θ∈SΘ

‖e‖[0,T ] = ‖Θ∗
T ΨT ‖2 ≤

δ∗κ
1 − δ∗κ

∥

∥

∥

[

y
u

]∥

∥

∥

[0,T ]

.

Theorem 3.1 provides an equivalent uncertainty

bound for the frozen time error model ∆(z) = Ĝ(z)−
G(z) with ΘT = Θ∗

T at time T where the measure-
ment data are over the time horizon [0, T ]. The
computation of the optimal solution Θ∗

T as in (7) re-
quires to compute the p eigenvectors of the N × N
matrix ΨT Ψ′

T corresponding to the p smallest eigen-
values. There exist numerically efficient algorithms to
compute Θ∗

T , given Θ∗
T−1 which requires only O(N2)

comparable to the computational complexity for the
RLS algorithm. Such algorithms are referred to as
subspace tracking which track the subspace spanned
by Θ∗

T for each T > 0. See [13, 15] for details.
Because we are concerned with the under modeling

issue, α∗
0 consisting of the first p×p elements of Θ∗

T is
nonsingular generically especially when T >> N . In
this case, Θ∗

T as in (7) can be written as

Θ∗
T = α∗

0 [ I a∗
1 · · · a∗

κ b∗0 · · · b∗κ ] ,
a∗

i = (α∗
0)

−1α∗
i , b∗i = (α∗

0)
−1β∗

i ,

(8)
for i = 0, 1, · · · , κ. Denote φ(t) as the regressor vector.
Let

YT = [ y(0) · · · y(T ) ] ,

ΦT = [ φ(0) · · · φ(T ) ] ,

Θ̂T = [ a1 · · · aκ b0 · · · bκ ] .

Then by assuming that α0 is nonsingular, the error
can be written equivalently into

ÊT = α
−1
0 ET = YT − Θ̂T ΦT . (9)

With a∗
i and b∗i as in (8) and in light of [17],

Θ̂TLS = [ a∗
1 · · · a∗

κ b∗0 · · · b∗κ ] (10)

is in fact the TLS solution to YT ≈ Θ̂ΦT that mini-
mizes

JTLS(T ) := trace
{

Ê
′
T

(

I + Θ̂T Θ̂′
T

)−1
ÊT

}

. (11)

Therefore the optimal solution Θ∗
T as defined in (7) is

equivalent to the TLS solution to (11) and there holds

Θ∗
T =

(

I + Θ̂TLSΘ̂′
TLS

)−1/2 [

I Θ̂TLS

]

∈ SΘ.

At this moment, it is beneficial to compare the TLS

solution Θ̂TLS with the LS solution Θ̂LS that mini-
mizes

JLS(T ) := trace
{

Ê
′
T ÊT

}

. (12)

Because of the lack of the analytical expression for

Θ̂TLS in the case p > 1, we restrict our discussion to
single output systems or p = 1. The following result
characterizes the relations between the equivalent un-
certainty bounds of the modeling errors in using the
TLS and LS algorithms.

Theorem 3.2 Let Θ̂TLS and Θ̂LS be TLS and LS
solutions which minimize (11) and (12), respectively.
Then for T > N , there holds generically

‖eTLS‖[0,T ] ≤ ‖eLS‖[0,T ] ≤
ξδ∗κ

1 − δ∗κ

∥

∥

∥

[

y
u

]∥

∥

∥

[0,T ]

,

ξ =

[

1 +
σ(ΨT )

σ(ΦT )

]

√

1 + Θ̂TLSΘ̂′
TLS

1 + Θ̂LSΘ̂′
LS

The modeling results in this subsection can be gen-
eralized to the case when noise and disturbance are
present. However due to the space limit, they are
not presented here. Interested readers can obtain the
full version of our paper by contacting either of the
authors.

3.2 Controller Design via H∞ Control

The previous subsection establishes an equivalent

uncertainty bound associated with the model Ĝ(z) =
[

M̂(z) −N̂(z)
]

estimated at sampling time t = T .

Based on the uncertainty equivalence principle, Ĝ(z)
is now treated as a frozen time model with equiva-
lent uncertainty bound ‖∆‖∞ ≤ ε for some ε > 0
quantified in the previous subsection and a robust
controller will be synthesized to stabilize the set of
frozen time uncertain systems described by the nor-
malized coprime factors of the true system. This prob-
lem is completely solved for continuous-time multi-
variable systems (cf. [4, 11, 19]) based on which H∞

loopshaping is developed. It has successful applica-
tions to MIMO (multi-input/multi-output) feedback
control system design. However there lacks a corre-
sponding solution for discrete-time multivariable sys-
tems that will be investigated in this subsection.

Given the estimated model Ĝ(z) at time T , the

nominal plant is given by P0(z) = M̂−1(z)N̂(z). We
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assume that it admits an nth order state-space real-
ization as

P0(z) = D0 + C0(zI − A0)
−1

B0 =:
[

A0 B0

C0 D0

]

,

(13)
where (A0, B0) is stabilizable and (C0, A0) is de-

tectable. Because Ĝ(z) =
[

M̂(z) −N̂(z)
]

has
an FIR form, a minimal realization can be easily ob-

tained for Ĝ(z) from which the realization of P0(z) is

also available. It is reasonable to assume that Ĝ(z)
is strictly minimum phase due to its good approxi-
mation to the normalized coprime factors of the true
system that ensures stabilizability and detectability of
the realization (A0, B0, C0). Denote R0 = I + D′

0D0.
Let X ≥ 0 be the stabilizing solution to the following
algebraic Riccati equation (ARE):

X = A
′
0XA0 + C

′
0C0 − F

′
0(R0 + B

′
0XB0)F0,

F0 = −(R0 + B
′
0XB0)

−1(B′
0XA0 + D

′
0C0)

Then the normalized right coprime factors of P0(z) =
N0(z)M−1

0 (z) are given by

G0(z) =
[

M0(z)
N0(z)

]

=
[

A B
C D

]

=

[

A0 + B0F0 B0Ω
−1
0

F0 Ω−1
0

C0 + D0F0 D0Ω
−1
0

]

Our controller design aims to computing Ginv
0 (z), sta-

ble left inverse of G0(z), that has the minimum H∞

norm. In fact Ginv
0 (z) is parameterized by

[

A − BD+C + LD′
⊥C −BD+ + LD′

⊥
(

D+ + Q(z)D′
⊥

)

C
(

D+ + Q(z)D′
⊥

)

]

(14)

where L is stabilizing and Q(z) is stable.

Theorem 3.3 Consider the stable and proper left in-
verse Ginv

0 (z) as in (14). There exist stabilizing gains
L and Q such that ‖Ginv

0 ‖∞ < γ, if and only if the
following ARE

Σ = (A−BΠD
′
C)ΣΨ−1(A−BΠD

′
C)′+BΠB

′ (15)

with Ψ = I +C′(I −DΠD′)CΣ and Π = γ2(γ2D′D−
I)−1 has a stabilizing solution Σ ≥ 0. In this case, a
left inverse satisfying ‖Ginv

0 ‖∞,[0,T ] < γ is specified by

[

L
Q

]

=

[

BD+C − A

−D+C

]

ΣC
′
D⊥(I+D

′
⊥CΣC

′
D⊥)−1

.

That is, Q(·) can be chosen as a constant gain.

Theorem 3.3 provides a procedure for computing
the robust controller as required in this subsection.
Let Ginv

0 (z) be the stable and proper left inverse of
G0(z) whose H∞-norm is bounded by γ > 0. Par-
tition Ginv

0 (z) = [ V0(z) U0(z) ] conformally with
that of G0(z). Then

G
inv
0 (z)G0(z) = V0(z)M0(z) + U0(z)N0(z) = I (16)

and K0(z) = V −1
0 (z)U0(z) is the feedback controller

that stabilizes the uncertain system described by nor-
malized coprime factors [4, 11, 19] so long as the H∞-
norm of the uncertainty is no more than ε < γ−1. In
fact a two degree freedom controller can be employed
as in the following figure to achieve not only robust
stability but also good tracking performance [19]:

� P (z)

−K0(z)

V
−1
0 (z) � � �

�

r(t) u(t) y(t)

Fig. 1 Feedback system with K0(z) = V −1
0 (z)U0(z)

3.3 Asymptotic Stability and Performance

Our proposed adaptive control system employs the
TLS algorithm to adaptively estimate the left coprime
factors, and the full information H∞ control to adap-
tively tune the feedback controller based on the esti-
mated model. The key issue is the asymptotic stabil-
ity, and performance of the feedback system associ-
ated with the true plant. The following presents the
main result for our proposed adaptive feedback con-
trol system in this subsection.

Theorem 3.4 Consider the adaptive feedback control
system proposed in this section where the true plant is
linear and time-invariant. Assume that the adaptively

estimated left coprime factors model Ĝt(q) converges

to Ĝ(q) that is strictly minimum phase with the equiv-
alent uncertainty bound ε0. Suppose further that the
adaptively tuned feedback controller K0t(q) is designed
according to Theorem 3.3 for some γ > 0 that con-
verges to K0(q) as t → ∞. Then the proposed adap-
tive feedback control system in this section is asymp-

totically stable provided that δ0 = γε0‖R̂
−1‖∞ < 1,

and admits an equivalent and asymptotic robust per-
formance measured by

∥

∥

∥

[

P
I

]

(I + K0P )−1 [ K0 I ]
∥

∥

∥

∞

<
γ

1 − δ0
(17)

where R̂(z) is the left spectral factor of ĜĜ∼, i.e.,

R̂R̂∼ = ĜĜ∼.

The convergence assumption in Theorem 3.4 may
not hold in its generality [8] which deserves further
investigation in the future. However it is argued that
the disturbance {d(t)} and the noise {η(t)} are per-
sistently exciting generically that tend to ensure the
convergence of the adaptively estimated left coprime
factors of the nominal model. Such an assumption
holds for many adaptive estimation algorithms (cf.
Chapter 3 in [6]), and is implied by

σ (ΦT ) = σ ([ φ(0) φ(1) · · · φ(T ) ]) → ∞ (18)

as T → ∞.
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It should also be pointed out that the convergence
for estimated model says nothing about its limit due
to the dependence on the input/output signals. This
is the main reason why the asymptotic stability and
performance can be established. In the case when the
computational complexity is high in computing the
ARE solution to (15), the DRE can be used in adap-
tive controller design for which asymptotic stability
and equivalence performance in Theorem 3.4 still hold
true. We skip the details for this case.

4 An Illustrative Example
The previous section introduces a new adaptive

feedback control system based on the proposed uncer-
tainty equivalence principle. To illustrate this adap-
tive control system, we consider a common process
control example with the nominal plant described by
the continuous-time transfer function

P0(s) =
Ke−hs

s(s + 1
T0

)
, K = 40, h = 0.2s, T0 = 1.

With the sampling frequency 10 Hertz, the discretized
model admits transfer function

P0(z) =
z−3(0.1934 + 0.1872z−1)

1 − 1.9048z−1 + 0.9048z−2
. (19)

Often the model uncertainty is inevitable in high fre-
quency range or close to the half sampling frequency.
For this reason we introduce a simple second order
multiplicative uncertainty in high frequency range as
given by

P (z) = P0(z) [1 + ∆m(z)] , ∆m(z) =
Ku

z2 + 0.8z + 0.9

where 0.1 ≤ Ku ≤ 0.5. The following figure shows the
magnitude frequency response of P0(z) (solid line) and
also P (z) for Ku = 0.1 (dashed line) and for Ku =
0.5 (dot-dashed line) where normalized frequency is
employed.

10
−1

10
0

10
1

−80

−60

−40

−20

0

20

40

60

normalized frequency with log−scale

a
m

p
lit

u
d
e
 in

 d
B

Fig. 2 Magnitude frequency response

Normally for process control there is some a priori
information available. For this example we assume
that the gain K in the nominal system is between 10
and 50 and the time constant T0 is between 1 and 5.
Hence we take

P̂0(s) =
25e−sh

s + 3
=⇒ P̂0(z) =

0.4683z + 0.4381

z2 − 1.818z + 0.818

as the assumed nominal model that provides the ini-
tial guess of the true nominal parameters. For con-
venience the RLS algorithm is used for estimation of
the plant model that has a similar performance to the
TLS algorithm, and the proposed robust control al-
gorithm is employed to tune the feedback controller
adaptively. With Ku = 0.1 and the reference signal a
rectangular wave of ±1 and period of 10 seconds, the
output of the true plant model is shown on the top of
Fig. 3.
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Fig. 3 Step responses with Ku = 0.1 (top: robust
control algorithm; bottom: MDPP algorithm)

As a comparison the MMDP (minimum degree pole
placement) algorithm is also simulated. This algo-
rithm is probably the most sophisticated self tuning
algorithm [1]. To make a fair comparison, we as-
sume that the continuous-time reference model has
the characteristic polynomial λ(s) = s2+14.14s+100.
The complete characteristic polynomial for the cor-
responding discretized feedback system can be ob-
tained. The resulting adaptive control system based
on MDPP has a similar nominal performance to that
with the robust controller designed earlier. In fact
the two have almost identical output responses for the
case Ku = 0 or zero uncertainty. Moreover the gain
and phase margins for the two nominal loop trans-
fer functions are very close with only 3o difference
in phase margin and 1.4 dB difference in gain mar-
gin. However the output response based on MDPP
algorithm is worse in presence of uncertainty that is
shown at the bottom of Fig. 3. This is in spite of
the fact that the two different adaptive control sys-
tems employ the same estimation algorithm. If the
multiplicative uncertainty increases to Ku = 0.5, the
performance of the two different adaptive control sys-
tems diverges much further as shown next in Fig. 4.
The two output responses show that our proposed ro-
bust adaptive control is much more resilient to uncer-
tainties than the MDPP based adaptive control which
behaves much more poorly. We would like to comment
that the use of TLS in place of RLS algorithm in es-
timation has small impact on the performance which
is consistent with the result in Subsection 3.1.

Theoretically MMDP algorithm covers the robust
control algorithm as employed in this section by
choosing a suitable characteristic polynomial for the
closed-loop system. However it is difficult to build the
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robustness into the characteristic polynomial directly
and before hand that is why the MDPP algorithm
compares less favorably with the robust control algo-
rithm. One may wish to self-tune the characteristic
polynomial in order to boost the robustness of the
conventional adaptive control but it remains unclear
how such self-tunes can be accomplished.
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Fig. 4 Step responses with Ku = 0.5 (top: robust
control algorithm; bottom: MDPP algorithm)

5 Conclusion
Robust adaptive control has been tackled in this pa-

per. A new adaptive control system is proposed with
asymptotic stability and performance established un-
der some mild conditions consistent with H∞ loop-
shaping. It is seen that the successful unification of
adaptive control and H∞-based robust control em-
powers robust adaptive control, enabling the proposed
adaptive feedback control systems to achieve robust
stability and performance comparable to those achiev-
able by H∞ control. The results in this paper shed
some light to new direction for robust adaptive con-
trol, and compare favorably with some conventional
adaptive control in a simulation study.

A distinguished feature of our proposed robust
adaptive control is the use of state-space realizations
in tuning the controller parameters and in implement-
ing the feedback adaptive controller. It unifies the
treatment for single-input/single-output and MIMO
systems naturally. It is commented that polyno-
mial method can also be developed to design the re-
quired robust controller in Subsection 3.2. Indeed as
shown in [11], the Corona problem for the normal-
ized coprime factor model can be solved by the op-
timal Hankel-norm approximation for which a poly-
nomial approach is available in [10]. While this pa-
per presents our initial work on H∞-based robust
adaptive control, problems such as convergence of the
adaptively estimated left coprime factors and near
cancellation of the left coprime factors deserve further
attention in future research.
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