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Abstract
In this paper, we give a new owr bond on the

real stability radius of a real table matrix. We also
conjeure that thi new klw bound i equal to the
exct value of the real stabiity radu.

1 Introduc;tion

One of the long stading open problems in robust control is
the computation of the real stability radiu of a rel stable
matrix [3t 6]. The real stability radiusofA E rxs i defined
as

r.(A) = inf{W(AA): AA E rxm and A + £4 is unstable}

where o(-) is the largest singulr value.
A dosey rlated concept is the complex stablity radius of

a complex matrix. The complex stability radius of A E Caxs
is defined as

rc(A) = inf{W(AA): AA E CSXU and A + AA is unstable}.

The computation of rc(A) turs out to be easy. It is now
well-known that for stable A E Cmx

rc(A) = inf g(A - jwI4)weE
where g() is the smallest singuar value [4, 7, 2, 5]. This
infimum can be computed by using a bisection algorithm [1].

It is dear that for a real matrix, the complex stability
radius gives a lower bound of the real stability radius. In the
following, we wil always asume that A is a real n x n stable
matrix. Hence,

rm(A) > rc(A). (1)
Some other lower bonds of the real stability radius are

given in [6] as follows

r.(A) > min {SA), lr2-I(A 0 In + In o A)} (2)

rs(A) > la(A VIv +I4 V A)

r.(A) > min{¢(A),4oS(AAIn+4AA)}.

(3)

(4)

where ®, V, A denote the Kronecker (tenor) product, sym-
metrical tensor product and skew-symmetric tensor product
respectively [6]. In (2) and in the rest of this paper, we as-
same that singular values are ordered decreasingly and that
ak(.) denotes the k-th sigular value.

Inequalities (1)-(4) give easily computable lower bounds
to the real stability radius. Moreover, (l)-(4) are actually
equalities if A is normal, and (2) and (4) are equalities if A is
2 x 2. The tightness of (l)-{4) for a general stable matrix A,
however, is hard to judge.

In this short paper, we present another lower bond which
certainly improves (1) and likely improves (2)H(4). In fact,
for al the examples in which we have tested the new lower
bound, we have also managed to find destabilzing pertur-
bations whose norms are equal to the respective new lower
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bonds. This suggests tat the new lower bound may tur
out to be equal to the real stability radius. Unfortunaty, we
can neither prove nor disprove this conjeture at this time.

2 Main results
Let A E Frx be stable. For the convenience of analysis,
define

r,,(A) = inf{W(AA): AA E Rx and A+Ahas
a pair of imagi eigervalues}.

it is cear that

r.(A) = min{g$A), rm(A)}.
For w E (0, co), let B(w) be a 2 x 2 complex matrix with

eigenvalue jw and -jw. Thea the rank of

B(w) 04 +1 0 (A + AA)
is at most 2n - 2 if A + AA has eigevalues at jw and -jW.
This implie that 3(AA) = (I1204A) is at least o,alr[B(w)@
4 +1 0 A). Therefore

rmw(A)> inf SUp uO-1 [B(w) 0I+ 20 Al. (5)

The right hand side of (5) involves a complicated con-
strained minimax problem. However, it can be simplified as

followrs. Since B(w) has eigenvalues jw and -jw, then there

exists a unitary matrix U such that

where re [0,oo). Since B(w) 0I4+ I20 Aand UB(w)U0
4,, + 12 0 A have the same singular values, it folows that

sup ona-4[B(w)04 + b 1A]
B(w)

up 0'2ns1 w x 10 4n+12@A)
irefOc) 2# 0( W /

Cepa00 E +° A -jjwI

Therefore

wt(A) ., inf sup a72, A[A+1w4 A-jw1 (6)
we(0.oo)we o,w) I -j I,

The right hand side of (6) is a much easier minimax problem.
Now let us denote

j(A)= inf sup o,2-I A+ wA-jwI I
vC<(OD,oo) xEjO,co) L 0 A- jwl

and
a(A) = min{g(A),ii(A)).

Then we have arrived at our main resut.
Theorem I rm(A) > a(A) .
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At this moment, we are unable to say much aaalytically
about the new lower bond a(A). However, its computation
is a fasible task since it involves a minimax problem with
only two real variables. A few simple facts are given in the
following.

Fact 1 a(A) > rc(A).

Fact 1 follows easily from the fact that rc(A) < g(A) and

rc(A) = inf L(A - jwI3,)
wen

= inf 02 I[A+jw4 0 1
WE(0,oo)

'- 0 A- jwI.]

< Jinf0)up)2,l E A + fbI,[WE(OIO)ZE[,oo)0
x1i1

A -jI. J

Fact 2 fA is normal or ifA is2x2, then c(A)= r(A).

The proof of Fact 2 is tedious but straightforward. It is
omitted here.

3 Examples

In the numerous examples studied, the lower bound a(A) ob-
tained has always bee equal to the real stability radius ra(A).
In these examples, the destablizing perturbation matrices,
whose norms are equal to a(A), are found by a giobal opti-
mization method. The following three examples are represen-
tative:

The solution of the minimax problem is S(A) = 6.7545 x
10-2 with w = 35.896 and r = 0. Thus

a(A) = min{g(A), i(A)}
- min{9.9694 x 10-',6.7W45 x 10-21
- 6.7Mb x 10-2.

We also find that

[2.4570 x 10-
AA= -5.7705 x 10-3

-6.7337 x 10-2

-3.0951 x 10-4
2.9900 x 10-2

-2.4890 x 10-3

4.8768 x 10-2 1
1.6763 x 10-2

-1.4116 x1io-3J

is a destabizing perturbation matrix with A + AA having
eigenvalues on the imaginary axis and W(AA) = 6.7584x 10-2.

Example 3
Consider the matrix

O 1 100
A = -10 -1 2

-1 I -110

This matrix is stable with eigenvalues -0.90593 t 4.3984i and
-109.19. The complex stability radius rc(A) = 5.0928x 10-1.

The solAution of the minimax problem is 8(A) = 7.6696 x
10-1 with w = 4.4190 and z = 10. Thus

a(A) = min{g.A),5(A)}
= min{1.4703,7.6696 x 10-1}
= 7.6696 x 10-i.

Example 1
Let matrix A be

7.90 x 101
-4.10 x 101
1.67 x 102
3.35 x 101

2.00 x 101
-1.20 x 101
4.00 x 101
9.00 x l10

-3.00 x 101
1.70x 101

-6.00 x 101
-1.45 x 101

-2.00 x 101

1.30 x 101
-3.80 x 101
-1.10 x 101

This matrix is stable with eigenvalues -1 ± 10i and -1 ± i.
The complex stability radius rc(A) = 8.234 x 10-2.

The solution of the minimax problem is ,(A) = 1.538 x
101 with w= 1.0497 and x = 1.549. Thus

a(A) = min{(A),s(A)}
= min{2.038 x 10-1, .538 x 10-1}
= 1.538x 10-.

We also find that the folowing AA matrix

[-4.815 x 102 6.989 x 102

8.846 x 102 7.207 x 102

-4.382 x 102 2.191 x 102

-9.346 x 102 6.663 x 102

1.091 x 101

3.627 x 102
-6.423 x 102
-2.857 x 102

-6.492 X 1021

7.927 x 102

-2.426 x 102

8.791 x 102

is a destabilizing perturbation matrix with A + AA having
eigenvalue on the imaginary axis and W(AA) = 1.539 x 10-1.

Example 2
Consder the matrix

-93.72
A= I

0

-9520
0

1

-121400]

This matrix is stable with eigenvalues -39.609 82.476i and

-14.502. The complex stability radius rc(A) = 5.4696x 10-2.

We also find tat

[5.6912 x 10-1
AA= -1.%527 x 10-2

5.1400 x 10-1

-2.6767 x 10-2
7.6475 x 10-1
5.2745 x 10-2

1.3494 x 10-1 1
1.6390 x 10-2

-1.5247 x 10-1 J

is a destabilizing perturbation matrix with A + AA having
eigenvalues on the imaginary axis and W(AA) = 7.6703x 10-1.
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