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Abstract
In this paper, we give a new lower bound on the
real stability radius of a real stable matrix. We also
conjecture that this new lower bound is equal to the
exact value of the real stability radius.

1 Introduction

One of the long standing open problems in robust control is
the computation of the real stability radius of a real stable
matrix [3, 6]. The real stability radius of A € R**™ is defined
as

ra(A) = inf{5(AA) : AA € R**" and A + AA is unstable}
where 7(-) is the largest singular value.

A closely related concept is the complex stability radius of

a complex matrix. The complex stability radius of A € C***
is defined as

re(A) = inf{7(AA) : AA € C*** and A + AA is unstable}.

The computation of r¢(A) turns out to be easy. It is now
well-known that for stable A € C***

rc(4) = inf o(A - jwl,)
where g(-) is the smallest singular value {4, 7, 2, 5]. This
infimum can be computed by using a bisection algorithm [1).
It is clear that for a real matrix, the complex stability

radius gives a lower bound of the real stability radius. In the
following, we will always assume that A is a real n X n stable

matrix. Hence,
ra(4) 2 rc(A). m
Some other lower bounds of the real stability radius are
given in [6] as follows

m(4) 2 min{2(4)jou (48R +0eA)} (2)
r=(4) > %;(A VI, + IV A) @)
ra(4) > min {z(A), %Q(A Alu+ I A A)} . @

where ®, V, A denote the Kronecker (tensor) product, sym-
metrical tensor product and skew-symmetric tensor product
respectively [6]. In (2) and in the rest of this paper, we as-
sume that singular values are ordered decreasingly and that
oi(-) denotes the k-th sigular value.

Inequalities (1)}-(4) give easily computable lower bounds
to the real stability radius. Moreover, (1)—(4) are actually
equalities if A is normal, and (2) and (4) are equalities if A is
2 x 2. The tightness of (1)—(4) for a general stable matrix A,
however, is hard to judge.

In this short paper, we present another lower bound which
certainly improves (1) and likely improves (2)-(4). In fact,
for all the examples in which we have tested the new lower
bound, we have also managed to find destabilizing pertur-
bations whose norms are equal to the respective new lower
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bounds. This suggests that the new lower bound may turn
out to be equal to the real stability radius. Unfortunately, we
can neither prove nor disprove this conjecture at this time.

2 Main results

Let A € R**® be stable. For the convenience of analysis,
define
mo(A) = inf{7{AA):AAcR** and A+ AAhas
a pair of imaginary eigenvalues}.

It is clear that

=(A) = min{g(4), rn.(4)}.

For w € (0, 00), let B(w) be a 2 x 2 complex matrix with

eigenvalue jw and —jw. Then the rank of

Bw)@ L+ L®(A+ AA)
is at most 2n — 2 if A + AA has eigenvalues at jw and —jw.

This implies that 7(AA) = 3{[2RA A) is at least 02¢.1[B(w)®
I, + I; ® A). Therefore
reu(A)> inf supoms[B)®Ln+ L@ AL (5)
w€(0,%0) B(w)

The right hand side of (5) involves a complicated con-
strained minimax problem. However, it can be simplified as
follows. Since B(w) has eigenvalues jw and —jw, then there
exists a unitary matrix U such that

. _jiw =
U*B(w)U = [ 0 —jw ]
where z € [0,00). Since B(w)® I, + 2 ® A and U*B(w)U ®
I, + I; ® A have the same singular values, it follows that

sup o-1{B(w) ® In + 12 ® A]
B(w)

jw =z
= SUp Ozn-1 ([ ) .

L+L®A
o —Ju]® nt 12 ® )

A+jul,  zl,
A-jul, |’

= SUp On-1 [ 0
z€[0,00)

Therefore

. A+ jwl, zl,
> inf - . . {6
r.u(A) = HE’(0,00)g:[:go) O2n-1 [ 0 A - jwl, ] ( )

The right hand side of (6) is a much easier minimax problem.
Now let us denote

B(4) = Atgoh

inf sup opm-1 [ 0

zl,
v€(0,00) z€fo,00) A - jwl,

and
a(A) = min{g(A), f(A)}.

Then we have arrived at our main resuit.

Theorem 1 rg(A) > a{A4) .
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At this moment, we are unable to say much analytically
about the new lower bound a(A). However, its computation
is a feasible task since it involves a minimax problem with
only two real variables. A few simple facts are given in the
following.

Fact 1 a(A) > rc(A).
Fact 1 follows easily from the fact that r¢(A) < g(A) and
rc(A) = :'léf.l(A - jwly)

%_l[ A+ jwl, 0 ]

inf

w€(0,00) 0 A—jwl,

inf -
we(0i0) sciono) ‘[ 0
Fact 2 If A is normal or if A i3 2 X 2, then o A) = rp(A).

The proof of Fact 2 is tedious but straightforward. It is
omitted here.

3 Examples

In the numerous examples studied, the lower bound a(A) ob-
tained has always been egual to the real stability radius rg(4).
In these examples, the destabilizing perturbation matrices,
whose norms are equal to a 4), are found by a global opti-
mization method. The following three examples are represen-
tative:

Example 1
Let matrix A be
790 x 10!  2.00 x 10 -3.00 x 10! -2.00 x 10!
—-4.10x 10! -1.20x10' 1.70x10' 1.30x 10!
1.67x 102 4.00%10' —6.00 x 10 -3.80 x 10!
3.35x 100  9.00x10° —1.45x 10! —1.10x 10!

This matrix is stable with eigenvalues —1 + 10§ and —1 £ ¢.
The complex stability radius r¢(A4) = 8.234 x 10-2,

The solution of the minimax problem is §(A) = 1.538 x
10~! with w = 1.0497 and z = 1.5549. Thus

o(4) = min{g(A),(4)}
= min{2.038 x 10~',1.538 x 10~'}
1.538 x 10~1.

We also find that the following AA matrix
-4.815% 10° 6.989 x 10°  1.091 x 10! —6.492 x 10?

8.846 x 107 7.207x 10° 3.627x 10?  7.927 x 10?
—4.382 x 107 2.191 x 10* —6.423 x 10 -2.426 x 102
—9.346 x 10° 6.663 x 10° -2.857x 10>  8.791 x 10?

is a destabilizing perturbation matrix with A + AA having
eigenvalues on the imaginary axis and 7{AA) = 1.539 x 10~

Example 2
Consider the matrix
—93.72 -9520 -121400
A= 1 0 0
0 1 0

This matrix is stable with eigenvalues —39.609 £ 82.476¢ and
—14.502. The complex stability radius r¢(A) = 5.4696 x 10~2.
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The solution of the minimax problem is 5(A) = 6.7545 x
10~2 with w = 35.896 and z = 0. Thus

o(4) = min{g(A),5(4)}
= min{9.9694 x 10~1,6.7545 x 10~}
6.7545 x 10732,
We also find that
2.4570 x 10~5 —3.0951 x 10~*  4.8768 x 102
AA=| ~-5.7705 x 10~  2.9900 x 10-2  1.6763 x 10~2
—6.7337 x 102 —-2.4890 x 10~3 —1.4116 x 10~2

is a destabilizing perturbation matrix with A + AA having
eigenvalues on the imaginary axis and F(AA) = 6.7584x10~2.

Example 3
Consider the matrix

0 1 100
A=]-10 -1 2

-1 1 -110

This matrix is stable with eigenvalues —0.90593 1 4.3984¢ and
—109.19. The complex stability radius r¢(A) = 5.0928x 101,

The solution of the minimax problem is S(A) = 7.6696 x
10! with w = 4.4190 and z = 10. Thus

o(A) = min{g(4),H(A)}
= min{1.4703,7.6696 x 10~}

= 7.6696 x 10~1,
We also find that
5.6912x 10~ —2.6767x 10~2  1.3494 x 10!
AA=| -1.5527x10"2 7.6475x 10-'  1.6390 x 102
5.1400 x 10~  5.2745x 102 —1.5247 x 10~!

is a destabilizing perturbation matrix with A + AA having
eigenvalues on the imaginary axis and 7(AA) = 7.6703x 10,
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