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Abstract 
In this paper we study the problem of tracking a step refer- 
ence signal using sampled-data control systems. We inves- 
tigate the best achievable tracking performance, where the 
performance is deemed hest for it is the minimal attain- 
able by all possible sampled-data stabilizing controllers. 
Our primary objective is to investigate the fundamental 
tracking performance limit in sampled-data systems, and 
to  understand whether and how sampling and hold in a 
sampled-data system may impose intrinsic barriers to per- 
formance. For this purpose we derive an analytical ex- 
pression for the optimal t.racking performance. The result 
shows that a performance loss is generally incurred in a 
sampled-data system, in comparison to the tracking per- 
formance achievable by continuous-time controllers. This 
loss of performance, as so demonstrated by the expression, 
can be attibuted to  the non-minimum behaviors and the 
aliasing effects generated by samplers and hold devices. 
Keywords: performance limitation, Hz control, sampled- 
data feedback system, non-minimum phase zeros 

1 Introduction 
For a given plant, the optimal tracking ability, measured 
by the minimal tracking error between its output and a 
reference input to be tracked via a stabilizing controller, 
depends on the plant, the class of controllers, as well as the 
reference signal. When the plant and the reference input 
signal are given, and the controller has been designed, the 
implementation mode of the controller, i.e. by means of an 
analog or a digital implementation will also lead to differ- 
ent tracking performance. In this paper, we consider the 
tracking performance problem for sampled-data systems, 
in which the plant operates in continuous time while the 
controller in discrete time. 

We consider singloinput, singlooutput (SISO), linear 
time invariant (LTI) plants. As a benchmark test signal, .~ 
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the reference input will he the unit step signal. The con- 
troller will consist of a zero order hold (ZOH), a discrete 
time controller, and an ideal sampler. The tracking per- 
formance is defined as the integral square of the error h e  
tween the output of the plant and the unit step input, 
and the tracking capacity is measured hy the minimal er- 
ror achievable by all possible sampled-data stabilizing con- 
trollers. Our main objective is to  find out what may affect 
the tracking performance in a sampled-data system, and 
whether any limit to this performance may exist, and if 
any, how it arises. 

The tracking capability of feedback systems is an im- 
portant problem and has been the subject of research for 
many years. For SISO and stable plants, the ability to  
track step signals with an LTI stabilizing controller is con- 
sidered in [l l ,  12, 131. I t  has been shown that the t,rack- 
ing capability is completely determined hy the location of 
non-minimum phase zeros of the plant, whether in contin- 
uous time or in discrete time. Recently, t,hese studies have 
been extended to multi-input multi-output, possibly un- 
stable systems [6, 141, wherein i t  has been found that the 
tracking performance is determined by both the location 
and the directional properties of the unstable poles and 
non-minimum phase zeros in t,he plant, and t,hat the ef- 
fects of pole and zero locations as well as their directional 
properties can he completely described via closed form 
expressions. A similar conclusion holds with respect to  
other benchmark test signals than the step signal, includ- 
ing complex sinusoids. real sinusoids, and ramp signals. 

Problems concerning tracking with sampled-data sys- 
tems have been widely studied as well; see, e.g., 19, 4, 1, 71 
and the references therein. These problems become sub- 
stantially more difficult: and closed form expressions for 
tracking performance are not yet available. Among sev- 
eral issues which are unique to sampled-data tracking sys- 
tems, one important problem is whether the tracking per- 
formance in a sampled-data system may be worse than 
that of the corresponding continuous-time system. If this 
is the case, why then is a performance loss incurred in 
the sampled-data system? Furthermore, what may he the 
cause contributing to this loss of performance? Would the 
loss be fundamental to the sampled-data implementation 
of the controller? If so, can the loss be recovered with 
arbitrarily fast samplers? These issues form the primary 
objectives in the present paper. 

We adopt a frequency-domain lifting approach in our 
analysis. This analysis, in essence, amounts to convert.ing 
a hybrid continuous-time/discretotime system into one 
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solely operating in discrete time, while fully taking into ac- 
count the continuous-time inter-sampling characteristics. 
Thus, a key step in our analysis is to  construct an equiva- 
lent LTI discretetime system, and to reduce the problem 
to one of the tracking problems in the equivalent discrete- 
time system; the solution for the latter is readily available. 
It is worth pointing out that this can be achieved using 
both t ime  and frequency-domain lifting techniques. A 
distinguishing advantage with the frequency-domain lift- 
ing, however, lies in that it preserves well the structure of 
the zeros relative to the lifted plant, and this will prove 
critical. 

While the problem being considered herein amounts to 
a sampled-data 7 1 2  control problem and can be tackled 
numerically (See, e.g., [7].), our result differs from com- 
putational solutions. Specifically, our main result is an 
analytical closed form expression for the minimal track- 
ing error, which serves to  answer the aforementioned is- 
sues and questions. First, it shows that the non-minimum 
phase zeros of the continuous-time plant will continue to 
impose a limit to  the tracking performance, in exactly the 
same manner as they do when the controller is one of 
continuous-time rather than that of sampled-data. Sec- 
ondly, it is well-known that with the use of samplers, a 
sampled-data system invariably involves discretization in 
one way or another, and such a discretization is likely 
to lead to additional non-minimum phase zeros, i.e., z e  
ros outside the unit disc, in the resultant discrete-time 
plant. Our result shows that such zeros will also have 
a negative effect on the tracking performance. Third, 
in order to remove sampling noise and prevent sampling 
aliases, a continuous-time prefilter is generally needed in a 
sampled-data system; likewise, discretization of this per- 
filter may also generate non-minimum phase zeros, and 
hence they too will affect the tracking performance. Fi- 
nally, for any physically realizable sampled-data system, 
aliasing is inevitable. Our result demonstrates further a 
relationship between the aliasing and the tracking perfor- 
mance. In summary, it is seen that sampling and hold re- 
sults in undesirable “byproducts” unfound in continuous- 
time systems, which contribute to a degradation of track- 
ing performance, while any of the performance limitations 
due to  the continuous-time plant remains unchanged. In 
simple terms, the expression for the minimal tracking error 
will now contain more terms, and each of these additional 
terms represents an additional limit on the best achiev- 
able tracking accuracy, resulting from sampling and hold 
operations. 

The remainder of this paper is organized as follows. In 
Section 2, we formulate the problem and present prelim- 
inary results required in the subsequent development. In 
Section 3, we carry out the frequency-domain lifting p r e  
cedure on the system, which leads to our main result in 
Section 4, that is, the closed form expression for the o p  
timal tracking performance. Section 5 provides a brief 
outline of the proof for this result. The paper concludes 
in Section 6 .  

The notation used throughout this paper is fairly stan- 

dard. For any complex number z, we denote its complex 
conjugate by 2. For any vector U, we denote its transpose 
by uT. For any signal u(t), we denote its Laplace trans- 
form by O(s). The transpose of a matrix A is denoted by 
AT. The trace of a matrix A is denoted by Tr(A).  All the 
vectors and matrices involved in the sequel are assumed t o  
have compatible dimensions, which for simplicity, will be 
omitted. Let the open right half plane (RHP) be denoted 
by C+ := {s : Re($) ’> 0}, the open left half plane (LHP) 
by 6- := {s : Re(s) < 0}, and the imaginary axis by Co. 
Moreover, let 1 1 .  11 denote the Euclidean vector norm and 
define 

&(CO) := {f : f(s) measurable in CO, 

Similarly, let Io and 4 denote the open unit disc and unit 
circle respectively, and define 

&(T) := {f : f(z) measurable in “E, 

Finally, we define 

‘&(Io) := {f : f(z) bounded and analytic in ID}, 

H,((C+) := {f : f(z) bounded and analytic in C+} 

A subset of ‘&,(ID), denoted by ‘R.‘&, is the set of all 
proper stable rational transfer functions in the discrete 
time sense. 

2 Problem Formulation 
The generic tracking scheme under consideration in this 
paper is the singleinput, single-output unity feedback sys- 
tem depicted in Figure 1, in which P represents the plant 
model and K the compensator. The signals r a n d  y are the 
reference input and the system output, respectively. For 
a given reference signal r, the compensator K is designed 
such that  the output y tracks T .  The signal e represents 
the tracking error response. In general, both P and K 

Figure 1: The general unity feedback system 

may be continuous-time or discretetime systems. Come 
spondingly, the signals r and y may be continuous-time 
or discrete-time signals. In all cases, we assume that P is 
stable and linear timeinvariant, whose transfer function 
is given by P ( s )  if it is continuous-time and P(z )  if it is 
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discrete-time. The reference input will be taken as the 
unit step signal; in the continuous-time case, 

2) F ( s )  is rational, proper, stable, and minimum-phase, 
3) Kd(z )  is rational and proper. 

These assumptions are non-restrictive except the stabil- 
ity assumption on P(s) ,  which may be removed if we use { ;  t < O '  S two-parameter controllers. For example, P ( 0 )  # 0 is a 
standard requirement to  insure J, to be finite. 

With the given filter F and the sampling rate T ,  the 
best tracking performance attainable by sampled-data 
controllers is 

(1) 
1 R(s) = -, t > O  

T ( t )  = 

while in the discrete-time case, 

2 
(2) 

Assume that the system is initially a t  rest. The prob- 
lem then is to  seek to determine the best tracking perfor- 
mance achievable by all possible compensators that  stabi- where K~ is to be taken from all possible discrete-time 
lize the plant. Here we measure the tracking Performace compensators that, together with F ,  S, and H T ,  stabilize 
by the energy of the tracking error response. When e is a t,he continuous.time 
contiuuous-time signal, the tracking error, denoted as Jc,  Let ( F P ) d ( z )  denote the zero-order hold equivalent dis- 
is quantified by the integral cretirationof F ( s )P( s ) .  The stability assumption on F ( s )  

and P(s)  guarantees that (FP)d(Z) be stable. Hence, the 
set of all stabilizing controllers for the sampled-data sys- 
tern depicted in Figure 2 is given by 

1 n>O 
0 n < O '  R(z)=--. 2 - 1  

inf. Jc 1 
K d ( z )  rtabrlms P ( s )  ad '~ 

{ r ( n )  = 

J' __ 

p ,  

m m 

J ,  := 1 le(t)12dt = ly(t)  - r(t)12dt.  (3) 

Jd := le(k)lz = l y ( k )  - T(k)12. The tracking problem in this paper thus amouuts to  de- 
k=O k=O termining 

Clearly, the tracking performance depends upon the types J' - inf J, = inf J, . (6) 
sd ~ K d ( z ) € h .  Q(=)t'RW, of the compensator to be employed. Under the general 

setup alluded to above, of main interest in the present 
paper are sampled-data controllers, A sampled-data con- 
troller K consists of a discretetime compensator, followed 
by a hold device and preceded by a sampler, together with 
a possible low-pass, anti-aliasing filter. To emphasize, we 
explicitly draw the sampled-data tracking scheme in Fig- 
ure 2. Here we take ST as an ideal point sampler, and HT 

Similarly, for a continuous-time and discrete-time sys- 
tem as depicted in Figure 1, the minimal achievable error 
is given by 

J,' := inf Jc I 
K ( s )  stabilizes P ( 8 )  

J i  := inf Jd , 
X ( z )  stabilizes P ( z )  

respectively. These two cases have been studied exten- 
sively. With T being the unit step signal, the following 
results are known. 

I I Fact 1: Let T be given in (l),  and suppose that P ( s )  is 
stable. Furthermore, assume that P(0)  # 0. Then, 

Figure 2: The sampled-data tracking system 

a zero-order hold (ZOH), which are synchronized and are 
of the sampling period T > 0. Thus, the sampled sequence 
{ ~ k ) ~ = ~  is given by 

(7) 

m where z, E 6+, i = 1, ..., N , ,  are the non-minimum 
phase zeros of P(s). 

v k : = v ( k T ) ,  k = O ,  1, ..., 
and the ZOH yields as its output the signal 

u ( t )  := u k ,  kT 5 t < ( k  + l )T  

The transfer function of the zero-order hold is given by 

1 - e - ~ T  
H ( s )  = - . (4) S 

Throughout this paper we shall assume that 
Assumpt ion  1: 

1) P ( s )  is rational, proper, stable, and P(0) # 0, 

Fact 2: Let T be given in (f), and suppose that P ( z )  is 
stable. Furthermore, assume that P(l) # 0. Then, 

- where sE E ID , i = 1, .a Nd, are the non-minimum 
phase zeros of P ( z ) ,  and ID , the complement of m, rep- 
resents the exterior of the closed unit disc. 

Our aim in this paper is to derive a corresponding analyt- 
ical solution for the sampled-data tracking problem. Both 
these results will play a role in our subsequent analysis. 
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3 Frequency Domain Lifting 
Let us  first define the sampling frequency and the Nyquist 
frequency by 

respectively. We shall refer to the frequency range QEJ = 
[--wN,wN] as the baseband. For a continuous-time trans- 
fer function G(S),  define the discretetime transfer func- 
tiOlJ 

G d b )  = Z[G(s)l= 2 [ST [c-' [G(s)l]] , (10) 

where 2 is the 2-transform operator, & the sampling 
operator, and C-' the inverse Laplace transform operator. 
It is a well-known fact [a] that 

we may express JZd in terms of E(jw) .  To facilitate the 
analysis of J f .  we perform a frequency-domain lifting on 
E(jw) .  This is discussed below. 

Consider a frequency-domain signal Y(jw) in &(CO). 
Define the function sequence 

Yk(jw)=Y(jw+jlB.) k = 0 ,  1, ..., w E Q ~ . ( 1 5 )  

Furthermore, arrange the sequence yk ( jw )  as an infinite 
dimensional vector y( jw) ,  defined as 

Y ( j w )  = [ . . o  Yi(jw), Yo(jw), Y- i ( j~ ) ,  " , I T .  (16) 

In other words, the function Y ( j w )  is an infinite- 
dimensional signal defined on QN which takes values in 
&(CO). The space of such functions is a Hilbert space 
under the norm 

1 -  
Gd(e") = - G ( S  + j k w a )  . 

T E=-m 

which forms an isometry with the space &(CO), since Clearly, the frequency response Gd(gWT) of a sampled- 
data system, which consists of the fundamental harmonics 
G ( j w )  and the high-frequency harmonics G(s+jkww,), is a llY(j~)IlZ = IIY(jw)lln. (18) 
jus-periodic function. For simplicity, we shall write G ~ ( s )  
to represent G(s + jkw,):  

(I2) 

Before lifting E ( j w ) ,  we first analyze the plant P(s).  
With the assumption that P ( s )  is stable, we may factorize 
P(s)  in the form of Ge(s) = G(s + jkw.) . 

It is also known that 

Thus, we may write 

P(s)  = L(s)P(m)(s) , (19) 

where P("")(s) is stable and represents the minimum phase 
part of P(s) ,  and L(s) is an all-pass factor containing all 
the non-minimum phase zeros of P ( s )  in C+. It then fol- 
lows from a direct calculation that (14) can be equivalently 
written as 

E(34 

= [I - ,t(3w)P(m)?i(j~)Q(e)YT)pT0.~)] 1 'R ( jw ) ,  (20) 

where (13) 

Consider then the sampled-data system given in Figure 2. 

PO, 91 

L ( j w )  := diag [ ..., ~ ~ ( j w ) , ~ ~ ( j w ) , ~ - ~ ( j w )  ,... ] , 
It follows that the system output can be represented as p(m)x(j,) := , , . , , P ! m ) ( j w ) H , ( j w ) ,  

P p ) ( j w ) H o ( j w ) ,  PLY) (jw)H-1 ( j w )  ... $ 1  T. 

where 4 The Main Result 
&(Z) := [I + Kd(z ) (FP)d(Z) ] - ' .  

Using the parametrization of IC,, we have 
In light of the norm defined in (17) and the ensuing equal- 
ity (18), the best sampled-data tracking performance can 
be expressed as 

1 -  
E ( j w )  = R(jw)-P(jw)H(jw)Q(ej"T)T Fk(jw)Ra(w)(14) J:, 

"" 

1 k = - m  

= inf / /  [I - T L ( j w ) P ( m ) 7 i ( j w ) Q ( e j Y T ) ~ F T ( j w ) ]  R(jw)l lz" .  By means of the Parseval identity Q E Q  

The following theorem gives an analytical expression of 
J;d, which is the main result of this paper. 
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Theorem 1: Consider the sampled-data system depicted 
in Figure 2. Let the reference input r be the unit step 
signal given in (l) ,  and the holder be a ZOH. Then under 
Assumption 1, the best achievable tracking perJormance is 
given by 

(21) 
1 

where z; E 6+, i = 1 , ... , m,, and a; E ID , i = 
1, . ', md, are respectively the non-minimum phase ze- 
ros oJP(s) and the non-minimum phase zeros of the ZOH 
equivalent discretired transfer function 

pd(d(z) := Z ( P f f ) d ( Z ) F d ( Z )  , (22) 

with ( P H ) d ( z )  = 2[Pm(S)ff(s)] and F d ( Z )  = 2[F(s)]. 

According to Theorem 1, the minimal tracking error 
consists of three parts. The first term in (21) is caused 
by the non-minimum phase zeros of the continuous-time 
plant. This term coincide with the minimal tracking error 
attainable by continuous-time controllers. Thus, Theorem 
1 shows that the influence on the tracking performance 
by these zeros remains in complete existence, when the 
continuous-time controller is replaced by a sampled-data 
controller. In other words, sampled-data controllers can- 
not improve tracking performance. 

In fact, sampled-data controllers will only worsen the 
tracking performance. The second term in (21) is at- 
tributed to the non-minimum phase zeros of the dis- 
cretized plant and the discretized anti-aliasing filter, which 
occur due to sampling, and hence are the undesirable 
"byproducts" due to the use of sampled-data cont.rollers. 
Since sampled-data systems are prone to such zeros (even 
when the continuous-time plant is minimum phase) even 
if the sampling period may be sufficiently small [Z], the 
tracking performance will thus become worse than that 
of the corresponding continuous-time system. Note that 
these terms will be diminishing when the sampling period 
T tends to zero, since the limiting zeros are finite. 

The third term in (21) captures the aliasing effects re. 
sulted from sampling and hold operations. This is seen by 
its explicit dependence on the high-frequency harmonics of 
P(s) and H ( s ) .  While to suppress such effects a prefilter 
is introduced in the system, they can never be eradicated; 
indeed, this term is independent of the anti-aliasing pre- 
filter F(s) .  It can be shown as well that this term will tend 
to zero as T goes to zero. As a result, when the sampling 
period T becomes infinitely small, the best tracking er- 
ror of the sampled-data system will approach that of the 
continuous-time system. The following example further 
demonstrates this point. 

Figure 3: J;do(T) in the example 

Example: Consider the sampled-data system given in 
Figure 2, with 

(1 - 4 1 
p ( s ) =  S ( l + S ) ( S ~ + O . 2 S + 1 ) '  F ( s ) = -  as + 1 

where LY is an arbitrary positive number. The top plot in 
Figure 3 shows J;do, which can be confirmed to coincide 
with the values computed by numerical met,hod. JZd0(T) 
consists of JO = 2, Jdo(T) ,  the second term in (21), and 
J,o(T), the third term in (21), as illustrated in the figure. 

5 Proof of Theorem 3 

A series of lemmas below lead to the proof of Theorem 1. 
Lemma 1: 

J:d = Jo + Jk , (23) 
where 

In order to evaluate Jk, let us define 

1 -  C d ( g u T )  := - I p k ( ' j W ) f f k ( j W ) 1 2  
k=-m 

T 

1 
T = -P"( jw)PN(jw) ,  

I P k ( j W ) H k ( j W ) l *  = P k ( - j W ) H k ( - - j W ) P k ( J W ) H I ; ( j W ) .  

where 

We may then carry out the spectral factorization 

C d ( g Y T )  ei(E?WT)@d($WT) , (24) 
with &(r)  E '%(ID), e;'(z) E '&(ID). We may assume 
further that the sign of & ( I )  is the same as that of P(O), 
with no loss of generality. 
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Lemma 1 shows that we can completely separate While the first source inherits completely and exactly 
from other effects the effect by the continuous-time non- from the continuous-time tracking problem, the rest re- 
minimum zeros. Therefore, we assume that P(s)  is min- sults from the use of a sampled-data controller, and is seen 
imum phase in the following lemmas, and the notation as a tradeoff for other advantages offered by sampled-data 
(PH)y(r) will be used instead of (PH)?(t). controllers. 

T h e  following lemma evaluates J;. 

B&) is defined by ($4). Then, we have 
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