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Bias Compensation Based Recursive Least-Squares
Identification Algorithm for MISO Systems

Feng Ding, Tongwen Chen, and Li Qiu

Abstract—For multi-input single-output output-error systems,
the least-squares (LS) estimates are biased. In order to obtain the
unbiased estimates, we present a recursive LS identification algo-
rithm based on a bias compensation technique. The basic idea is
to eliminate the estimation bias by adding a correction term in the
LS estimates, and further to derive a bias compensation based re-
cursive LS algorithm. Finally, we test the proposed algorithms by
simulation and show their effectiveness.

Index Terms—Bias compensation, bias correction, least squares
(LS), multivariable systems, parameter estimation, recursive iden-
tification.

I. PROBLEM FORMULATION

INCE a multi-input multi-output system may be decom-
S posed into several multi-input single-output (MISO) sub-
systems, we here consider a MISO system described by the
output-error state-space model [1]

{x(t + 1) = Ax(t) + Bu(t),
y(t) = Cxz(t) + Du(t) + v(t).

Here, z(t) € R™ is the state vector, u(t) =
[u1(t), ua(t),...,u.(t)]T € R" the system input vector (the
superscript T denoting the matrix transpose), y(t) € R! the
system output, v(t) € R! the observation white noise with zero
mean, and A € R"*", B = [by,ba,...,b,] € R"*" C € RI*"
and D = [dy,ds,...,d,] € RYX" the system matrices.

Taking the z transforms in (1) gives

ey

y(t) = [C(2z] — A)™' B + Dlu(t) + v(t) )

b= N RSN

LS B + o 4)

a(z) <

Manuscript received January 31, 2005; revised July 28, 2005. This work
was supported by the Natural Sciences and Engineering Research Council of
Canada, the Hong Kong Research Grants Council (HKUST6171/02E), and
the National Natural Science Foundation of China (60474039, 60574051,
60528007). This paper was recommended by Associate Editor F. C. M. Lau.

F. Ding is with the Control Science and Engineering Research Center,
Southern Yangtze University, Wuxi 214122, China (e-mail: fding@sytu.edu.cn;
fding@ece.ualberta.ca).

T. Chen is with the Department of Electrical and Computer Engineering, Uni-
versity of Alberta, Edmonton, AB T6G 2V4, Canada (e-mail: tchen@ece.ual-
berta.ca).

L. Qiu is with the Department of Electrical and Electronic Engineering, Hong
Kong University of Science and Technology, Kowloon, Hong Kong (e-mail:
eeqiu@ust.hk).

Digital Object Identifier 10.1109/TCSII.2005.862281

with «(z) being the characteristic polynomial in the unit delay

operator z~1[z71y(t) = y(t — 1)] of degree n and B;(z) a
polynomial in z~!, and both represented as

a(z) = z7 " det[z] — A] 5)

= 14aiz a2z 24+ a2z ", a; € R (6)

Bi(z) = Cadj[I — Az7']b; + d;z~" det[z] — A] 7

= Bio+ Bzt 4+ + Buz™", B €RL(8)

The output-error model in (2) cannot be identified by standard

least-squares (LS) algorithms since it differs from the multi-
input autoregressive with exogenous input (ARX) model [2]

alz)y(t) = 3 Bilz)ui(t) + o(0)

The bias correction or bias elimination identification method
is an effective way of obtaining unbiased parameter estimates of
stochastic systems. It has been used to study the identification
problem of various system models, e.g., output-error systems
[3]-[5], ARX models with correlated noise [6], autoregressive
moving average (ARMA) models [7], MISO systems [8], au-
toregressive models [9], errors-in-variables models [10]-[12],
feedback or closed-loop systems [13]-[17]. However, most cor-
relation analysis based contributions mentioned above require
the assumption that the system input is ergodic, which is very
difficult to satisfy in practice, and few address recursive identi-
fication methods based on the bias correction technique, which
is the focus of this work. This paper uses the bias compensation
or bias correction technique to study the recursive identification
problem of MISO systems in (2). The basic idea is to use a cor-
rection term to compensate the biased LS estimates, and then to
derive a bias compensation based recursive LS (BCRLS) algo-
rithm to estimate the unknown parameters («;, §;;) in (2) from
the given input-output measurement data {u;(t),y(t) : ¢t =
1, 2,...}, and further, to study the numerical convergence of
the algorithm presented by simulation. The approach here dif-
fers not only from the ones mentioned above because we do not
assume that the system input is ergodic, but also from the ones
in [18]-[20] which used the auxiliary model technique to iden-
tify and estimate the parameters and missing outputs of dual-rate
sampled-data systems. The proposed approach is also different
from the method in [21] which used a hierarchical identifica-
tion principle to study the identification problem for multi-input,
multi-output systems.

Briefly, the paper is organized as follows. Section II derives
a basic identification algorithm for MISO systems based on a
bias compensation technique. Section III presents an illustrative
example for the results in this paper. Finally, concluding remarks
are given in Section IV.
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II. ALGORITHM DERIVATION
Let

e(t) == a(z)v(t). )
Equation (2) can be written as

a(z)y(t) = ZBZ(z)uZ(t) + e(t). (10)

Define the parameter vector 6, information vector o(t), and
noise vector t(t) as

0=l a2 - an fro Pu Bin
Bro  Br1 Brn]t €R™,
o(t) =[-yt-=1) —y(t-2) —y(t —n)
ur(t) wi(t—1) ui(t —n)
ur(t) wp(t—1) u,(t —n)]* € R™
P(t) = [v(t — 1) vit—mn) 0O 0T € R™
ng:=n+r(n+1).
From (9) and (10), we have
e(t) = 9" (1)0 +v(t) (an
y(t) = ¢ (1)8 + e(t) (12)
y(t) = (B + YT (1) + v(t). (13)
Further, let
Y(t)=[y(1) 2 y(t)]" € R, (14)
o(t) = [p(1) ¢(2) p(B]T R (15)
E(t)=[e(1) e(2) e(t)]* € R (16)
It is easy to get
Y (t) = ®(t)0 + E(t). (17)

Form a cost function [2]
J(0) = [|Y (1) — ®(1)0]|

where || X||? := tr[X XT]. According to the LS principle, we
can obtain the LS estimate of # as follows:

bus(t) = [@T ()2 @ ()Y (1).

Because e(t)(F(t)) is a correlated noise (vector), this LS esti-
mate g is a biased one of the parameter vector . In fact, using
(17), we

Bus(t) = [@T (O] 1T (1)[@(1)6 + (1)
— 6+ [T (1)D(1)] 7 ST (1) (1)

. -1
> wli)e" ()

i=1

Using (11), it follows that

[z w(i)wT(i)] (us(t) = 6) = 3 ¢(0)e(i)

(18)
19)
t

—o4 Z <p(i)e(i)] e

= @[T ()8 + v(i)].
=1
2D

Dividing by ¢ and taking limit yield
t
. 1 . Ty- N
Jim { [?::1 oli)e (z)] (Bus(t) - e)}

1 t
= lim lz > ey (i)
=1

Since v(t) is a white noise with zero mean and variance o and
is independent of the inputs, i.e., E[v(¢)] = 0, E[v(¢)v(t+7)] =
0,5 # 0,E[v2(t)] = 02, and E[v(t)u;(j)] = 0, the second term
on the right-hand side of the above equation converges to zero,
and the first term converges to [—a2Af], which means

lim 12 ()T (i) = —2Ab
=1

t—oo { 4

t
0+ lim % 2 o(i)(i). (22)

(23)

where

L In 0 noXng
nie [l O] e,

Define the data product moment matrix
R(t) := ®T(t)®(¢).
Provided that the inputs are persistent excitation signals, for
large ¢, the following persistent excitation (PE) condition holds:
R(t)
t
This includes the generalized PE condition [19], the weak PE

condition [19] and the strong PE condition [22]. Hence, from
(22), we have

Jlim Ors(t) =0 — o Jlim ¢R7Y(£)AS.

> 0.

(24)

The following is to indicate that the results in [4] require the
stationarity and ergodicity assumptions. Define the correlation
function R, (t) of ¢(t) as follows:

R, (1) = Elp(t)e" (1))-
If the inputs are stationary and ergodic, i.e., p(t) is 2nd-mo-
ment-ergodic and lim,_, .. (R(t)/t) exists, then R, (¢) does not
depend on ¢ (denoted by R,) and R, = lim;_, R(t)/t ac-
cording to the definition of ergodicity. Under such assumptions,
(24) can be written as

Jim fus(t) = 0 — a*RTAS. (25)

Equation (25) is the basic equation of the bias compensation
methods for stationary cases, see, e.g., [4], and obviously re-
quires the assumption that the sample average R(¢)/t has limit.
For nonstationary data, R(t)/t is time-varying and has no limit;
thus R, does not exist—see the example later.

If the noise variance o2 and correlation function R, are
known or obtained by estimation, then from (25), an alternate
way to get the unbiased estimate A(t) of # can be simply
expressed as

8(t) = [I - o®RA] ™ drs(t).

Equation (24) shows that the LS estimate fys(t) is biased,
and is a basic equation for bias compensation menthods,
without assuming stationarity and ergodicity of input data. If
we introduce a compensation term o?tR~1(¢t)Af in the LS
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estimate fLs(t), then we can obtain the unbiased estimate
Ors(t) + o?tR=Y(t)A0 =: O.(t) of 0, i.e., O.(t) — 6. This is
the basic idea of the bias compensation LS method. Define a
covariance matrix P(t) := [@T( )®(t)]7". Let 6%(t) be the
estimate of the noise variance o2. We can write 0. in a recursive
form

be(t) = Bus(t) + 67 ()tP(8)0c(t — 1)
where 6. (t) and f1s(t) are the bias compensation LS estimate
and LS estimate of # at time ¢, respectively.

Now, the problem is changed into how to compute the vari-
ance estimate 62(t). The details are as follows. Let

(26)

eLs(t) := y(t) — @ (t)fs. 27)
Using (11)—(13) and the relation
Z eLs(i)' (i) =0 (28)
it is not difficult to get
26%5( = Z€Ls [ @T(i)éLS} (29)
=1 =1
= Z €LS
= ZELS )T ()0 + T (5)0 + v(i)] (30)
= Z&:Ls [1/) )0 + v(7)] 31
- Z (1) = @ISV +0()] (D)
_ Z [T ()8 + 0T (0)6 +v() — 97 (D)1s]
x [T ()0 + v(i)] (33)
=T ()6 — sl (1)6 + v(i)] (34)
=1
ZW( )6 + v(i)] (35)

Notice that v(t) is a white noise, dividing by ¢ and taking limit
give

tll>rgo p E%s( )
=1
= lim Z(p )0 — Ors][ ()0 + v(i)]  (36)
1 - Ty \12
+ tli)rglo n [ ()8 + v(7)] (37)
=1
= —0%¢"A lim [6 - Ors] + 0% +020TA0  (38)
= o°[1+67A lim frs] (39)
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or
o2 = limy—oo 1 25y €15(0) .
14 6TAlimy_ . fLs
The estimate %(t) of 0 may be computed by
LIt
63 (t) = —L (®).
1+ 60T (¢)Abrs(t)
where
t t R 2
I =Y ets) = Y [u) - " Whis(®)] . @0)
=1 =1

From the definition of P() and (18), we easily get the recursive
relation of rg as follows:

Ous(t) = Ous(t — 1) + P(t)e(t) (41)
[y(®) = o™ (B)frs(t — 1)] 42)
Pty =Pt = 1)+ o(t)e (1) (43)
or
oy P=Det)e" () P(t - 1)
PO= =0 = = TP — Dol
Thus, we have
= Z [y(t) - (pT(t)éLS(t)] ’ (44)
[ — o st~ 1))
=J(t—1)+ (45)

L+ T (t)P(t — 1)e(t)
From the above equations, we can summarize the BCRLS algo-
rithm as follows:

be(t) = éLs< )+t a2 () P(DI(t = 1) (46)
fus(t) = frs(t = 1)+ L(2) [9(0) — " (0rs(t = 1)]4D)
L(t) = P(t= e + " (Pt - D] @8)
P(t) = [I = LOP"OIP(E=1), PO) =pol  (49)
[v(H) = (s (t — 1)]
U T O e =R
% (t) /0 (51)
t [1 OT(t - 1)A9LS(t):|

_ J(t) A )

¢ [1 + 3 Gt — 1)fiss (t)}
) =[=y(t=1) —y(t=2) - —yt—n) (3
w(B)u(t—1)-- ur(t—m)--- (54)
U () up(t —1) - up(t — n)]T (55)

where f.;(t) and fs;(t) represent the ith element of .(t) and
éLS (t), respectively. To initialize this BCRLS algorithm, we
take po to be a large positive number, e.g., po = 106, and take
both f5(0 0) and f(0 )) to be zero vectors or some small real vec-
tors, e.g., HLS( )= 0. (0) = 10~°1,,, with 1,,, being an n¢-di-
mensional column vector whose elements are 1.

To summarize, we list the steps involved in the BCRLS al-
gorithm to recursively compute the parameter estimation vector
f.(t) as t increases:
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TABLE I
ESTIMATES AND ERRORS FOR STATIONARY CASES (6,5 = 11.67%)

The LS estimates

t & Qg B Bz Bar Bas 3 (%)
100 |-0.76131 0.09559 0.13614 0.33696 0.23580 0.21105 | 11.06308
200 |-0.76471 0.09516 0.13093 0.32972 0.24768 0.20010 | 10.38983
300 |-0.77813 0.10698 0.12342 0.32762 0.24087 0.20527 | 8.66702
500 |-0.77729 0.10571 0.12474 0.32696 0.24470 0.20565 | 8.79196
1000 | -0.79208 0.11766 0.11525 0.32903 0.25082 0.19651 | 6.69538
1500 | -0.78688 0.11198 0.11481 0.32706 0.24718 0.19765 | 7.48387
2000 | -0.78585 0.11194 0.11628 0.32746 0.24987 0.19700 | 7.54072
2500 | -0.78548 0.11261 0.11448 0.32909 0.24941 0.19769 | 7.55706
3000 | -0.78708 0.11393 0.11558 0.32802 0.24989 0.19685 | 7.31889
True | -0.84000 0.16000 0.12000 0.32400 0.25000 0.18600

The bias compensation recursive LS (BCRLS) estimates

t a Qg Bu Bz B B2z 4 (%)
100 |-0.79515 0.12488 0.13634 0.33474 0.23842 0.20587 | 6.62243
200 [-0.81031 0.13452 0.13163 0.32642 0.25036 0.19123 | 4.23439
300 [-0.82854 0.15067 0.12441 0.32381 0.24248 0.19563 | 2.02125
500 |-0.83067 0.15192 0.12519 0.32287 0.24662 0.19553 | 1.72718
1000 | -0.84286 0.16141 0.11645 0.32540 0.25241 0.18624 | 0.56855
1500 | -0.83887 0.15644 0.11631 0.32340 0.24913 0.18750 | 0.57109
2000 | -0.83827 0.15682 0.11771 0.32373 0.25224 0.18688 | 0.50561
2500 | -0.83885 0.15834 0.11595 0.32569 0.25193 0.18713 | 0.54633
3000 | -0.84147 0.16067 0.11701 0.32489 0.25261 0.18599 | 0.44986
True | -0.84000 0.16000 0.12000 0.32400 0.25000 0.18600

The bias compensation LS (BCLS) estimates

t a ay Bu B B Baa 3 (%)
100 | -0.77866 0.12949 0.13651 0.33526 0.23645 0.20784 | 7.79134
200 |-0.80189 0.13905 0.13099 0.32491 0.24793 0.19169 | 4.65091
300 |-0.81980 0.14086 0.12338 0.32151 0.24013 0.19594 | 3.22973
500 |-0.81641 0.12951 0.12399 0.32085 0.24420 0.19675 | 4.18709
1000 | -0.83606 0.15336 0.11541 0.32306 0.24991 0.18595 | 0.92779
1500 | -0.84112 0.15571 0.11530 0.31976 0.24643 0.18503 | 0.87976
2000 | -0.84138 0.15504 0.11673 0.31992 0.24948 0.18426 | 0.77649
2500 | -0.84390 0.16004 0.11489 0.32152 0.24915 0.18399 | 0.74193
3000 | -0.84845 0.16682 0.11584 0.32055 0.24977 0.18232 | 1.30282
True | -0.84000 0.16000 0.12000 0.32400 0.25000 0.18600

1) Collect the input—output data {u(t), y(t)}, and data length
L.

2) To iniAtialize, le} t = 1 : po =
p016>9LS(0) = 9(-(0) = lﬁ/po,J(O) = 0.

3) Form () by (53), compute J(t) by (50), P() by (49),
L(t) by (48) and 01,5(¢) by (47).

4) Compute 52(t) by (51) and éc(t) by (46).

5) If t = L + 1, then terminate the procedure and obtain
the estimate éC(L) of the parameter vector §; otherwise,
increment ¢ by 1 and go to step 3.

108, P(0) =

III. EXAMPLE

An example is given to show the effectiveness of the proposed
algorithms. Consider the 2-input and 1-output system

y(t) = ﬁwuz)ul(t) + B(2)ua(t)] + v(t)

az) =14+a127 +azz 2 =1-0.84z"" 4+ 0.16272
Bi(z) = Buz 14 Praz 2 =0.12271 +0.3242 2,
Bo(z) = Bo127 ! 4 Bagz™? = 025271 +0.186272

0 = (o1 a2 P11 Bi2 Ba1 Pra2) "

{u1(t),ua(t)} is taken as an uncorrelated persistent excitation
vector sequence with zero mean and unit variance 031 = 032 =
1.002, and {v(#)} as a white noise sequence with zero mean
and variance o2 = 0.10%. Under such conditions, this example
gives rise to a stationary problem. Apply the LS and BCRLS
algorithms and a comparable BCLS algorithm in [4] to esti-

mate the parameters of this system, the LS estimates éLs(t),
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Fig. 1. The parameter estimation errors é versus ¢ (stationary case).
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Fig. 2. The parameter estimation errors 6 versus ¢ (nonstationary case).

and bias compensation recursive LS (BCRLS) estimates éc(t),
bias compensation LS (BCLS) estimates O, (t) and their errors
are shown in Table I, and the parameter estimation errors § =
l6(t) — 6]|/||6|| versus ¢ are shown in Fig. 1, where §(t) repre-
sents Ars(t) or A.(t) or ,(t), and 8, represents the noise-to-
signal ratio of the system and is defined by the square root of
the ratio of the variance of the output of the system driven by
the noise v(t) and the noise-free output z(t) (namely, the output
y(t) when v(t) = 0). For the output error system in (2), 6, is
computed by the following:

% 100% = 2% x 100%

Oz

8
—~~

~
~

b 3 Bilyui(o).

The simulation results with nonstationary cases are shown in
Table II and Fig. 2, where the inputs {u}(¢), u5(t)} and noise
{v'(t)} are taken as

uh (t) = (1+ 1" us (1)
uy(t) = (141" ua(t)
V(1) = (1+t")o(t).

Under such cases, R(t)/t is time varying and has no limit as
t — oo even if v'(t) = v(t).

From Tables I and II and Figs. 1 and 2, we can see that the
BCRLS and BCLS algorithms have obvious advantages over the
LS algorithm, and the BCRLS estimates have higher accuracy
and are more stationary than the comparable BCLS estimates in
[4], especially in the nonstationary cases.
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TABLE 1II
ESTIMATES AND ERRORS FOR NON-STATIONARY CASES

The LS estimates
t a; Qg B bra Ba1 Baz 4 (%)
100 |-0.76806 0.10261 0.13862 0.33845 0.23329 0.21199 | 10.26160
200 |-0.76637 0.09556 0.12962 0.32865 0.24955 0.19783 | 10.18384
300 |-0.78328 0.11165 0.11993 0.32632 0.23926 0.20687 | 8.03036
500 | -0.78024 0.10816 0.12337 0.32689 0.24667 0.20625 | 8.40823
1000 | -0.79855 0.12337 0.11090 0.33033 0.25329 0.19273 | 5.84587
1500 | -0.78872 0.11319 0.11200 0.32687 0.24659 0.19569 | 7.26272
2000 | -0.78629 0.11249 0.11540 0.32729 0.25110 0.19557 | 7.45497
2500 | -0.78575 0.11353 0.11292 0.32984 0.25005 0.19697 | 7.48303
3000 | -0.78852 0.11560 0.11520 0.32786 0.25077 0.19555 | 7.08090
True | -0.84000 0.16000 0.12000 0.32400 0.25000 0.18600
The bias compensation recursive LS (BCRLS) estimates
3 a Qs Bu Pz B P22 0 (%)
100 | -0.80074 0.13112 0.13885 0.33667 0.23568 0.20641 | 6.08875
200 |-0.81541 0.13796 0.13070 0.32536 0.25224 0.18758 | 3.57969
300 |-0.83718 0.15851 0.12137 0.32229 0.24026 0.19628 | 1.50784
500 |-0.83697 0.15732 0.12385 0.32256 0.24838 0.19532 | 1.13787
1000 | -0.84924 0.16692 0.11237 0.32679 0.25469 0.18221 | 1.57723
1500 | -0.84135 0.15794 0.11380 0.32329 0.24858 0.18542 | 0.70677
2000 | -0.83956 0.15796 0.11701 0.32360 0.25376 0.18535 | 0.54386
2500 | -0.84034 0.16026 0.11453 0.32667 0.25287 0.18606 | 0.69233
3000 | -0.84452 0.16378 0.11670 0.32505 0.25385 0.18422 | 0.82658
True | -0.84000 0.16000 0.12000 0.32400 0.25000 0.18600
The bias compensation LS (BCLS) estimates
4 o %) i Pra B Ba 5 (%)
100 |-0.79429 0.15341 0.14009 0.33648 0.23333 0.20624 | 5.97219
200 |-0.81123 0.14967 0.13005 0.32312 0.24955 0.18697 | 3.30823
300 |-0.83113 0.14631 0.12041 0.31944 0.23765 0.19552 | 2.36476
500 |-0.82128 0.12719 0.12246 0.32026 0.24609 0.19676 | 4.08117
1000 | -0.84372 0.16294 0.11135 0.32438 0.25199 0.18148 | 1.13434
1500 | -0.84851 0.16361 0.11283 0.31896 0.24570 0.18174 | 1.44846
2000 | -0.84709 0.16011 0.11609 0.31919 0.25092 0.18170 [ 1.06745
2500 | -0.84979 0.16750 0.11345 0.32189 0.25006 0.18184 | 1.51210
3000 | -0.85557 0.17656 0.11550 0.32029 0.25104 0.17953 | 2.50296
True | -0.84000 0.16000 0.12000 0.32400 0.25000 0.18600

IV. CONCLUSION

According to the bias correction technique, a bias compen-
sation recursive LS identification algorithm is developed for
multi-input, single-output systems without assuming that the
system is stationary. The simulation results show that the pro-
posed algorithm can give higher parameter estimation accuracy
than the LS algorithm and bias compensation LS algorithm.
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