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BOUNDS ON THE REAL STABILITY RADIUS 

Li Qiu· Edward J. Davisont 

Abstract. In this paper, we give a new lower bound on the real stability radius ofa real 
stable matrix. We also formulate a nonlinear programming problem which can be used 
to obtain upper bounds for the real stability radius. Computational experience suggests 
that the new lower bound may in general turn out to be equal to the exact value of the 
real stability radius. 

1. INTRODUCTION 

139 

One of the long standing open problems in robust control is the computation of the 
real stability radius of a real stable matrix [1, 2]. Here we say that a matrix is stable 
if the real parts of its eigenvalues are negative. The real stability radius of A E Rnxn 

is defined as 

ra(A) = inf{O'(AA) : AA E Rnxn and A + AA is unstable} 

where 0'(.) is the largest singular value. 
A closely related concept is the complex stability radius of a complex matrix. The 

complex stability radius of A E cnxn is defined as 

rc(A) = inf{O'(AA) : AA E cnxn and A + AA is unstable}. 

The computation of j ,:(A) turns out to be easy. It is now well-known that for stable 
A E cnxn 

(1) 

where ~(.) is the smallest singular value [3, 4, 5, 6]. The infimum in the right hand 
side of (1) can be computed by using a bisection algorithm [7]. 

It is clear that for a real matrix, the complex stability radius gives a lower bound of 
the real stability radius. In the following, we will always assume that A is a real n x n 
stable matrix. Hence, 

ra(A) ;::: rc(A). (2) 

Some other lower bounds of the real stability radius are given in [2] as follows 

(3) 
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1 
r.(A) > 2"g:(A V In + In V A) 

r.(A) > min {g:(A), ~g:(A 1\ In + In 1\ A)} . 

(4) 

(5) 

where ®, V, 1\ denote the Kronecker (tensor) product, symmetric tensor product and 
skew-symmetric tensor product respectively. In (3) and in the rest of this paper, we 
assume that singular values are ordered decreasingly and that O'r.(.) denotes the k-th 
singular value. 

Inequalities (2)-(5) give easily computable lower bounds to the real stability radius. 
Moreover, (2)-(5) are actually equalities if A is normal, and (2) and (5) are equalities 
if A is 2 x 2. The tightness of (2)-(5) for a general stable matrix A, however, is hard 
to judge. 

The current paper is an enlarged version of [8]. In this paper, we present a new lower 
bound which certainly improves (2) and likely improves (3)-(5). We also formulate a 
nonlinear programming problem which can be used to obtain upper bounds for the real 
stability radius. For all the examples in which we have tested the new lower bound, 
the upper bounds obtained from the nonlinear programming solution coincide with the 
respective lower bounds. This suggests that the new lower bound may in general turn 
out to be equal to the real stability radius. Unfortunately, we can neither prove nor 
disprove this conjecture at this time. 

2. THE MAIN RESULT - A LOWER BOUND 

Let A E Rnxn be stable. For the convenience of analysis, define 

r.",(A) = inf{u(.llA) : .llA E Rnxn and A +.llA has a pair of imaginary eigenvalues}. 

It is clear that 
r.(A) = min{g:(A),r.",(A)}. 

For wE (0,00), let B(w) be a 2 x 2 complex matrix with eigenvalue jw and -jw. 
Then the rank of 

B(w) ® In + 12 ® (A + .llA) 

is at most 2n - 2 if A + .llA has eigenvalues at jw and -jw. This implies that 
u(.llA) = u(I2 ® .llA) is at least 0'2n-l[B(w) ® In + 12 ® A]. Define 

(6) 

Then r.",(A) ~ ,B(A). 
The right hand side of (6) involves a complicated constrained minimax problem. 

However, it can be simplified in two ways. First, notice that there exists a unitary 
matrix U such that 

U· B( w)U = [ jw ~ ] o -]W 



BOUNDS ON THE REAL STABILITY RADIUS 141 

where x E [0,00). Since B(w) @In+I2@A and U· B(w)U @In+I2 @A have the same 
singular values, it follows that 

sup 0'2n-dB(w) @ In + 12 @ AJ 
B(w) 

sup 0'2n-1 ([ j; _ ~ ] @ In + 12 @ A) 
"'E[O,oo) JW 

[ A + jwIn xIn ] 
sup 0'2n-1 0 A - . I . 

"'E[O,oo) JW n 

Therefore 

f3(A) . f [ A + jwIn xIn ] = In sup 0'2n-1 0 A' I . 
wE(O,oo) "'E[O,oo) - JW n 

The right hand side of (7) is a much easier minimax problem. 

(7) 

To obtain the second way to simplify the right hand side of (6), we need the following 
lemma, which will be proved in Appendix A. 

Lemma 1 There exists a unitary matrix V such that 

V. B(w)V = [_O~ ';] 
where, E (0, 1J. 

By using a similar argument as above, we then obtain 

sup 0'2n-dB(w) @ In + 12 @ AJ 
B(w) 

sup 0'2n-1 ([ .!! ~ 
"lE(O,I] "I 

sup 0'2n-1 [ -~I 
"lE(O,I] "I n 

Therefore 

() . [ A ,wIn ] f3 A = mf sup 0'2n-1 -~l A . 
wE(O,oo) "lE(O,lj "I n 

(8) 

An advantage of the right hand side of (8) over that of (7) is that it involves only 
real numbers. It is of interest to notice that the effect of, in (8) is equivalent to the 
diagonal similarity scaling used in the It-analysis [9J. 

On summarizing, we obtain our main result. 

Theorem 1 

r.(A) ~ min{Q:(A),f3(A)} 

where 

f3(A) . f [ A + jwIn xIn ] m sup 0'2n-1 . 
wE(O,oo) "'E[O,oo) 0 A - JwIn 

. f [ A ,wIn] m sup 0'2n-1 w I A . 
wE(O,OOhE(O,lj -:y n 
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Let us denote min{q:(A),,B(A)} by a(A). A few simple facts are given in the follow­
ing. 

Fact 1 a(A) ~ rc(A). 

Fact 1 follows easily from the fact that rc(A) :5 q:(A) and 

rc(A) !~'q:(A - jwIn) 

. f [ A + jwIn = In 0"2n-l 0 
we(o,oo) 

< . f [ A + jwIn zIn ] 
In sup 0"2n-l A . 1 

we(o,oo) .. e[o,oo) 0 -1W n 

Fact 2 If A is normal, then a(A) = r.(A). 

Fact 2 follows from Fact 1 and the well-known fact that rc(A) = r.(A) when A is 
normal [2]. 

3. AN UPPER BOUND 

To verify the tightness of the new lower bound on the real stability radius, we try to 
find the minimum of 0'( ~A) with the constraint that A + ~A has imaginary eigenvalues 
by using nonlinear programming technique. There are many ways to formulate such a 
nonlinear programming problem. The following formulation is used in our computation: 

Minimize 

with respect to 

subject to 

~A E Rnxn and w E R 

This nonlinear optimization problem may have local optima which are not global. Each 
local optimum certainly gives an upper bound to r.(A). For all the examples we have 
attempted to date, we are able to obtain the global optimum which in fact coincides 
with the lower bound a(A). 

4. EXAMPLES 

Some examples have been provided in [8]. Here we give some new examples. In all of 
the following examples, ,B(A) is computed according to (7). 

Example 1 
The following matrix A is taken from a model of a large flexible space structure 

with no rigid body mode. 

A= 

o 0 0 
o 0 0 
o 0 0 

-1 0 0 
o -2 0 
o 0 -10 

1 
o 
o 

-0.01 
o 
o 

o 
1 
o 
o 

-0.01 
o 

o 
o 
1 
o 
o 

-0.01 
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This matrix is stable with eigenvalues which have a real part -5 x 10-3 and various 
imaginary parts. The complex stability radius is given by rc(A) = 4.7140 x 10-3 • 

The solution to the minimax problem is ,8(A) = 5 x 10-3 with w = 1.4142 and 
:z: = 1. Thus 

a(A) = min{Q:(A),,8(A)} = min{0.99501,5 x 1O-3 } = 5 x 10-3 • 

On observing that the real part of the eigenvalues of A is -5 X 10-3, we easily conclude 
that for this A matrix, a(A) = rR(A). 

Example 2 
Let 

[ -1 
1 1 

: 1 
-1 -1 0 

A= ~ 0 -1 
0 -1 -1 

This matrix is stable with eigenvalues -1 ± j1 and -1 ± j1. The complex stability 
radius rc(A) = 0.61803. 

The solution of the minimax problem is ,8(A) = 0.61803 with w = 1 and :z: = o. 
Thus 

a(A) = min{Q:(A),,8(A)} = min{1,0.61803} = 0.61803 

which is the same as the complex stability radius. 
We also find that 

[ 

2.8025 X 10-1 1.3680 X 10-1 

~A _ 4.5081 x 10-2 2.2008 X 10-1 

- 4.4415 X 10-1 -8.4699 X 10-2 

-2.3748 X 10-2 4.7929 X 10-1 

1.6842 X 10-1 

-6.8052 X 10-2 

2.7901 X 10-1 

3.7897 X 10-2 

-2.1707 X 10-1 1 
2.5301 X 10-1 

1.3196 X 10-1 

2.2996 X 10-1 

is a destabilizing perturbation matrix with A+~A having eigenvalues on the imaginary 
axis and O'(~A) = 0.61806. 

Example 3 
Consider the matrix 

[ 
-1 1000 0.001] 

A = -1 -1 0 
1 1 -100 

This matrix is stable with eigenvalues -1 ± j31.623 and -100. The complex stability 
radius rc(A) = 6.3179 x 10-2• 

The solution of the minimax problem is ,8(A) = 0.99829 with w = 3.1624 and 
:z: = 997.31. Thus 

a(A) = min{Q:(A),,8(A)} = min{1.0009,0.99829} = 0.99829. 

We also find that 

[ 
9.9872 x 10-1 -1.6258 X 10-2 6.8691 x 10-3 ] 

~A = 1.5120 x 10-2 9.9814 X 10-1 -3.8562 X 10-2 

-1.9686 X 10-1 -5.5692 X 10-2 -6.8466 X 10-1 
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is a destabilizing perturbation matrix with A + AA having eigenvalues on the imaginary 
axis and u(AA) = 0.99983. There is a small but noticable gap between the lower bound 
and the upper bound. We believe that it is due to the numerical problem in computing 
the upper bound. 

5. CONCLUDING REMARKS 

In this paper, we have derived a lower bound on the real stability radius of a real stable 
matrix and we conjecture that this lower bound is actually equal to the real stability 
radius. In addition to proving or disproving this conjecture, some other questions, 
mainly concerning the computation of ,B(A), are yet to be answerd. For example, 
computational experience shows that for fixed w E (0,00), 

[ A + jwln xln ] 
0"2n-l ° A - jwln and 

are functions with only one peak in intervals [0,00) and (0,1] respectively. If we can 
prove this, we would be able to improve the computational complexity of ,B(A). Another 
question is as follows: can we switch the order of the "inf" and the "sup" in (7) and 
(8) and what benefit can it provide if such a switch is possible. 

Finally, we would like to point out that the same idea used in this paper can be 
easily adapted to obtain a lower bound for the discrete time real stability radius of a 
real matrix. In fact, there is not much technical difficulty to extent the results in this 
paper to study the real stability radius with respect to an essentially arbitrary stability 
region in the complex plane provided only that the stability region is symmetric to the 
real axis. 

APPENDIX A. PROOF OF LEMMA 1 

It is enough to show that for each x E [0,00) there exists a unitary matrix V such that 

V· [j; _ ~w ] V = [ _0 ~ 7;] 
for some 7 E (0,1]. We will accomplish this by finding explicitly a unitary matrix W 
for each 7 E (0,1] such that 

and showing that x takes every value in [0,00) as 7 varies in (0,1]. In fact, a choice of 
such a W is given by the following Hermitian matrix 

1 [7 -j] 
W = v'l+T j -7 

. h 1-"Y' 
WIt x = "Y(H"Y')W. D 
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