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Abstract 

This paper considers the problem of robust performance 
of linear time-invariant system in 31, norm. The con- 
cepts of complex and real performance radii are intro- 
duced to describe the smallest size of dynamic or para- 
metric perturbations to a feedback system that either 
destabilize the system or destroy a performance bound 
in certain closed loop transfer matrix of the system. 
An algorithm to1 compute the complex performance ra- 
dius is given. For the real performance radius, a lower 
bound, which often turns out to be exact, is obtained. 

1 Introdluction 

I I I I 

Figure 1: Uncertain control system 

This paper concerns the robust 31, performance of a 
linear time-invariant (LTI) system under dynamic or 
parametric perturbation. Consider the uncertain sys- 
tem shown in Figure 1. Let R31, denote the ring 
of real rational functions in 31,. Assume that G = 

representing an LTI system and A E Fmxp, where F 
is either the complex field C or the real field R. The 
transfer matrix from w to t is then given by the fol- 
lowing linear frtactional transformation: 

F(G, A)  = G11-t G12(I - AG22)-'AGzl. 

The system is said to be internally stable if (I-AG22)-' 
exists and belongs to %!zxm. 

'Supported by the Hong Kong Research Grants Council under 
project number HKUST552/94E. 

Now assume that l l G ~ ~ [ l ,  < 1. Define the perfor- 
mance radius of G to be 

pq=(G) := sup{r : .T(G, A) is internally stable and 

llF(G, .< Ltl IlAll < r ,  A E I F m x p } .  (1) 
Here the norm of A is the spectral norm, i.e., the largest 
singular value. prc(G) will be called the complex per- 
formance radius of G and prR(G) the real performance 
radius. The purpose of this paper is to study the com- 
putation of prc(G) and prw(G). A complete solution 
to the problem of computing prc(G) is given in this 
paper. Roughly speaking, prc(G) can be computed 
via the computation of an 'ti, norm and a frequency 
sweep of a function which can be evaluated by per- 
forming a one dimensional convex optimization. The 
problem of computing prw is however not completely 
solved in this paper. Instead a lower bound is obtained. 
This lower bound can be obtained via the computation 
of a real stability radius and a frequency sweep of a 
function which can be evaluated by performing a two 
dimensional nonlinear minimization. It is also shown 
that the function to be minimized has only one local 
minimum. Numerical experience shows that this lower 
bound is often tight. 

It is clear that prlw(G) gives a measure to the robust 
performance of the system shown in Figure 1 under 
parametric uncertainty. It can be shown using standard 
techniques [2] that 

prc(G) = sup{r : F(G, A) is internally stable and 

llF(G, A)lloo <: 1,V IlAIl, < r ,  A E 312xp). 
Hence prc(G) gives a measure to the robust perfor- 
mance of the feedback system under LTI dynamic per- 
turbation. 

The robust performance measure p r ~  (G) is also con- 
nected to the robust stability of LTI systems under 
structured perturbakions, which has been studied ex- 
tensively in the ,u iLamework, see e.g., 13, 13, 6, 111. 
Consider the uncertain system shown in Figure 2. The 
small gain theorem implies that this uncertain system 
is internally stable for all A E R31",' with llAll, < 
r and A E R312" with llAl1, < 1 if and only if 
prc(G)  2 T .  In the ji framework, algorithms are avail- 
able to determine if the uncertain system in Figure 2 
is internally stable for all A E R31zXp with 11Al1, < T 

and A E R X Z q  with IlAll, < r.  Notice the slight 
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difference between the formulation of the complex per- 
formance radius and that of p.  Of course, a moment 
thought reveals that the p algorithm can be iteratively 
used to find p ~ c ( G ) .  -In this paper, we propose an 
algorithm specifically tailored to prc(G) so that it is 
computed directly without this additional iteration. 

Figure 2 :  Augmented uncertain control system 

The complex performance radius, though not been 
called so, is also studied in [5]. An algorithm for its 
computation, free from the additional iteration, is given 
in [5]. The algorithm is based on the quasi-convex uni- 
variate minimization of the largest generalized eigen- 
value of a semi-definite matrix pair. Our algorithm, 
however, is different. It is based on the convex univari- 
ate minimization of the largest eigenvalue of a Hermi- 
tian matrix. Due to the better convexity property of 
our minimization problem, faster and more reliable line 
search methods can be applied. Also notice that gen- 
eralized eigenvalue problems has higher computational 
complexity than Hermitian eigenvalue problems (with 
roughly the same size). 

The emphasis of this paper is the real performance 
radius. Again the small gain theorem implies that the 
uncertain system in Figure 2 is internally stable for all 
A E R m x p  with IlAll < T and A E 'HEg with 11Al1, < 1 
if and only if p r ~ ( G )  2 T .  This type of robust stability 
problem with one complex full block and one real full 
block can also be studied in the p framework. However, 
no algorithm is readily available to compute the corre- 
sponding p value. The past literature in p favours to 
model parametric perturbations in the form of scalar 
times identity [6], which usually ends up with exponen- 
tial time algorithms. Our conviction is that modelling 
parameter perturbations in the form of full matrices 
may in some cases yield easier solutions. Although we 
are not able to  solve completely the computation prob- 
lem of the real performance radius at this moment, we 
believe that it is potentially solvable. 

The computation of p r ~  can also be used to find the 
worst 31, performance when the perturbation bound 
is given. 

The paper is organized as follows. Section 2 is for the 
preliminary development. We will convert the compu- 
tation of the performance radius to well-defined linear 
algebra problems. Sections 3 gives a formula for the 
complex performance radius. Section 4 gives a lower 
bound of the real performance radius and Section 5 
gives some properties of the lower bound. In Section 
6, two examples are presented. Section 7 is the conclu- 
sion. 

In the following, we define some notation used in this 
paper. For X E Cmxp, the real and imaginary parts of 
X are denoted by R e x  and I m X  respectively. The 
singular values of X are denoted by u i ( X ) ,  assuming 
nonincreasing order. The largest singular value of X is 
also denoted by .(X). We always set llXll = u ( X ) .  If 
X is Hermitian, then t,he eigenvalues of X are denoted 
by X i  (X), also assuming nonincreasing order. 

Due to space limitation, some proofs are omitted. 
For details, see [8]. 

2 Development 
Recall from [4, 2, 71 the definition of the stability radius 
of F E R'HL'": 

T F ( F )  = inf{llAll : A E F m x p  and ( I - -AF)- '  

For G E R31gtp)X("m) with llGllllm < 1, define 

'H,}. 

and 

S = GTz[I - G11Gyl]-1G12, (3) 

- R  = Gzl[I - GylG1l]-lGyl. (5) 
N = G& + GTZG11[I - G;",G~I]-~GY~, (4) 

Note that S(jw) 2 0 and R ( j w )  2 0 for all w E [-m, CO]. 

In fact, M equals to the transfer matrix from [:;I 
to [ !i ] in Figure 3. By the definition of star product 

[16] , we also have A4 = [ ( J G - J )  * G]J,  where J = 

Figure 3: System theoretic interpretation of M .  

Proposition 1 ~ T F ( G )  = min{rF(Gzz),pF(G)}. 

The computation of r ~ ( G 2 2 )  has been studied for 
a long time and the following formulas are now well- 
known [4, 2, 7, 121: 
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where 

Hence, we only need to focus on the computation of 
~F(G) in this paper. 

For Hermitian matrix M = [ :* :] with S E 

2 0 and R E CPxl' 2 0 ,  define C"X" 

then it follows that ~ F ( G )  = infW~[O,..] $ ~ [ M ( j u ) ] .  
Therefore, if & ( M )  can be obtained for each 

M = 1 ;* 1 with ,5 2 0 and R 2 0, then prF(G) 

can be computed by a frequency sweep. 

tation of $e and $B respectively. 
The next two sectionsi are dedicated to the compu- 

3 Complex performance radius 
It follows from the development in Section 2 that prc (G) 
can be obtained via the computation of ( M )  for each 

M E [ $ E ] with :i 2 0 and R 2 0. Hence, this 

section is dedicated to tlhe computation of $ c ( M ) .  In 
the following, we show that $ c ( M )  is the infimum of a 
convex univariate function. 

Note that 

Theorem 1 Let M = [ ;* 

R 2 0.  Then 

] satisfy S >_ 0 and 

Furthermore, XI 

y on (0,m). 

is a convex function of 

Several lemmas are needed for the proof of Theo- 
rem 1. 

Lemma 1 ([l, p. 1491) Let F(y)  E CnXn be a Hermi- 
tian matrix function anahytic on an open set c R. 
Then there exist a unitary matrix function V(y) = 
[Vl(y), . ijn(y)] E CnX" and a diagonal matrix func- 
tion i ( y )  = diag [;\~(y),...~;\,(y)] E PX", both ana- 

lytic on J?, such that F(y) = p(y)A(y)v*(y).  Further- 
more. 

Lemma 2 Let F(y)  E Cnxn be a Hermitian matrix 
function analytic on an open set r c BB. Let XI(y) 2 
&(y) 2 . . . 2 X,(y) be its ordered eigenvalues. Zf Xi(y) 
has a local extremum at 'yo E I', then F(y0) has an 
eigenvector v E 43" corresponding to Xi(y0) such that 

Lemma 3 Let F = [ y". ] E C(m+F')x("+P) be a 

Hermitian matrix. Suppose X 2 0 and Z 2 0 ,  then for  
i = 1 , 2 , . ~ ~ , m i n ( m , p } ,  Xi(F) 2 -X,+,-i+i(F). 

Proof of Theorem 1: 

. Then from Lemma 3, [ N* YRI  
Denote F(y)  = 

X I  [ F ( y ) 1 2  -Xmtp [F(y)l for ally > 0, Hence XI [F(y)l 

$ c ( M )  2 (inf 7,>0 WW}-'. 

= ii [F(y)]. We see from (9) that 

The fact that ii [ F ( y ) ]  is convex follows from [14]. 

show that $=(Ad) 5 A;'. 

assume that A0 > 0. There are two cases. 

Case 1: inf,>o A,[F(y)] is attained at  yo E (0, CO). 

Let Xo = inf,>o Ai[F(y')]. The rest of the proof is to 

If XO = 0, we certainly have $ c ( M )  5 A;'. So we 

By Lemma 2, there exist v = [ " y ] .  t E C" and 

y E 43P such that F(y0)v := XOV, i.e., 

Multiplying (11) and (12:) from the left by z* and y* 
respectively, subtracting the resulting equations, and 
noting that x * N y  must be real, we get 

1 

3'0 
Xo(x*z - y*y) = - -x*sz  - yoy*Ry = 0.  
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Hence, z*z = y*y. Now construct A = (Xo)-'zy*/z*z, 
then it is easy to verify that IlAll = (Ao)- ' ,  and 

which means that det { I - [ :* t ] M } = , . ~ - o m  

the definition of $ c ( M ) ,  we have $ c ( M )  5 (AD)-'. 

Case 2: A0 = lim,.,.+o Al[F(y)] or A0 = lim7+w Al[F(y ) ] .  
This case occurs only when S = 0 or R = 0. Assume 

S = 0,  then 

det { I - [  :* ] M }  =det(l-AN') det(I-A*N), 

which shows $c(A4) = [r?(N)]-'. 
On the other hand, since R 2 0, we have 

Therefore, $ c ( M )  = A,' in this case. 0 

4 A lower bound of the real per- 
formance radius 

Recall from Section 2 that p r ~ ( G )  = min{m(G22), 
paa(G)}. The computation of rR(GZ2) can be done us- 
ing formula (7). The computation of pne(G) depends 
on the computation of $,(M) for a given Hermitian 

matrix M = [ :* E ] with S 2 0 and R 2 0. Un- 

fortunately, we are not able to compute & ( M )  at this 
moment. In this section, a lower bound of $ R ( M )  will 
be given. 

Let S,. = R e s ,  Si = ImS,  R,. = Re RI  Ri = Im R, 
Nr = ReN,  Ni = I m N .  Then, Sr = $, R, = RF, 
Si = -TI Ri = -RF and S, 2 0, R, 2 0. 

We follow the idea in [12] to convert the problem of 
computing $R ( M ) ,  one with complex data and realness 
constraint, into a pure real problem. Let 

O A O  
R e M - I m M ] ,  [ 0 

The following lemma will be frequently used. 

Lemma 4 Given HGrmitian matrix Z = X + jY  with 

0 A '  a, = ";[ I m M  R e M  
0 AT 0 

X,Y E Rnx". Let Q = 

X z i  (Q)  = Xi (2) 

, then X,i-,(Q)= 

For a ,  P > 0, define scaling matrix 

D ( a , p )  = diag [ m  -I, 1 1 ,  E I ,  e] , (13) 

Assume PO = P(1,l) has R positive and v negative 
eigenvalues. Lemma 4 says that R and v are even. 
Also observe that R 2 U which follows from applying 
Lemma 3 and Lemma 4 to a similarly permuted version 
of Po: 

S, -Si N,. -Ni 

Sr Ni Nr 1 -NT N: si N,' N,' Rr Ri -Pi] R, 

By the law of inertia, P(a ,P)  also has R positive and 
v negative eigenvalues for all a l p  > 0 and its second 
eigenvalue is always nonnegative. 

Another interesting property of P ( a ,  P )  is that 

(15) 
1 

Xi[P(%P)I = Xi[P(,:P)I 

Theorem 2 $ R ( W  2 {infa€(o,l],p>o W ( a , P ) l ) - l .  

for i = 1 , 2 , .  . ., 2(m + p ) ,  a ,  P # 0. This property can 
be obtained by a similarity permutation of P .  

To prove Theorem 2, we need two lemmas. 

Lemma 5 ([15, p. 2031) Let M , A  E CnXn be Hermi- 
tian matrices. Denote the eigenvalues of M as 71 2 
72 2 . . .  2 qn and the eigenvalues of M + A as [I 2 
E2 2 . . .  2 E n .  Then, I& - 5 @(A). 
Lemma 6 For A E C m x p  and B E C p x m ,  

m - rank (I + AB) = p - rank (I + B A ) .  

Proof of Theorem 2: 

It follows from (15) that 

Since rank (Po) = R + Y ,  it follows from Lemma 4 
that rank(M) = (R+ v) /2 .  Suppose that M is decom- 
posed as M = UMAMU$,  where UGUM = I ,  UM E 

nonsingular. Then 
c(m+P)X(q) ,  and AM E WC='Y)"(='Y) is diagonal and 

= U h U T  1 R e M  -1mM 
I m M  R e M  PO" [ 

where 
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Let X ( a ,  0) = D(a, P)V, then X ( a ,  p) has full col- 
umn rank. Carry out the Gram-Schmidt ortho-normali- 
zation to the columns of X ( a , p ) ,  we get X ( a , p )  = 
V(a ,P)R(a ,P) ,  where V T ( a , p ) V ( a , p )  = I and 
R(a,  p) is nonsingular. It is easy to see from the ortho- 
normalization process that the maps from X to V and 
R are analytic when X has full column rank. Hence, 
V ( a ,  p) and R(a,  @) are analytic in (a ,  p). 

Let E ( a ,  p) = R(a,  ,8)ART(a, p) ,  then E(&,  p) is an- 
alytic and nonsingular. From PO = UAUT and (14) we 
get 

Since D(1, l )  = I ,  we get V ( 1 , l )  = U ,  E(1,l) = A. 
Since V ( a ,  p) is orthonormal, the eigenvalues of 

E ( a ,  p) are equal to the non-zero eigenvalues of P(a ,  p). 
Note that 

P ( a ,  P)  =: V ( a ,  P)E(a, P)VT(a, P). (16) 

rank ( I  - A,Po) = rank { I  - A,P(a, p ) }  
= rank { I  - A,V(a, P)E(a ,  P)VT(a,  p ) }  . 

By Lemma 6, we obtain 
2 ( m + p )  -rank(I-A,Po) = A + U  

-rank { E-- (a ,  p) - VT (a ,  p) A, V (  a ,  p) } . ( 17) 

Denote 
H(a ,O,A)  = E-l(a,O) - VT(%P)Ah,V(%P), (18) 

rank [ H ( a ,  P,  A111 

then by (17), rank [ H ( a ,  0, A)]  is independent of (a ,  p), 
and 

= n + u - { 2 ( m + p )  -rank(I--A,Po)}.(l9) 

In the following, we will show that if llAll < 
{inf,,p>o X 2 [ P ( a ,  19]}-', then rank [H(a ,  P, A)] = A + 
U ,  which leads to $ g ( M )  2 {inf,,p>oX2[P((~,P)]}-~ 

Since E(a ,P)  and V ( a , p )  are analytic, it follows 
that for a fixed A, the eigenvalues of H ( a ,  0, A) are 
continuous in (a ,  I?). Since the rank of H ( a ,  p, A )  is 
independent of ( a ,  p), we conclude that for a fixed 
A, the inertia of If(&, p, A )  are independent of (a, p). 
Consequently, it cain be denoted by { A A ,  U A ,  CA}. Fur- 
thermore, T A , U A  ;and CA are even numbers, since by 
Lemma 4 the eigenvalues of H( 1,1, A )  have even mul- 
tiplicity. 

The eigenvalues of H ( a , p , O )  = E-l(a,p), which 
are X i 1  [P(a ,  p)],  i = 1, . . . , A and i = 2(m + p )  - U + 
1, . . . ,  2 ( m + p ) ,  satisfy 

by (19). 

* * .  L X,l[P(a,P)l2 X,l[P(a,P)I > 0 
0 > Xz(tn+p)[p(% PI3 2 X;&+p)-l [P(% PI1 L . . . . 

Now consider the inertia of H ( a ,  p, A )  under pertur- 
bation. If ))AI) < {inf,,p>o X~[P((Y,P)]}-~, there exists 
(YO,,& such that 11A11 < X;l[P(a~,/?~)].  Note that the 
eigenvalues of P ( a ,  /3) are the same as those of 

(YPS,. -psi N, -aNi 

psi ,, tsr dNi Nr 
NT i N T  &Rr 

--ON? N,' i R i  $Rr 

Hence, if U 2 2, then Lemma 3 implies that llAll < 

IlAll, it follows from Lemma 5 that T A  > A - 2 and 
U A  > U - 2 .  Since TA and U A  are even numbers, 
we must have A A  = T ,  U A  = U .  This is also true if 
U = 0. Therefore if IlAll < {inf,,p>oX2P[(a,p)])-', 
then rank [ H ( a ,  p, A ) ]  = n + U ,  which shows rank(I - 
A,Po) = 2(m+p). Then it follows from Lemma 4 that 

0 

Remark : Let 00 = inf,,p>o u2 [P(a ,  p)],  then it is 
easy to see from the above proof that another lower 
bound for $ g ( M )  is go1. It is obvious that 60 2 

tained at ((YO, PO) ,  and uo is a singular value of P(a0, PO) 
with multiplicity greater than one, then ut1 may be 
strictly smaller than {inf,,p>o Xz[P(a, /3)]]-', if this 
multiplicity is caused by the intersection of X~[P((Y, p)] 
and -X2(m+p)[P(a,,B)], as is illustrated in Section 6. 

-X-l 2(m+p)-l [P(ao, P o ) ] .  Since IlvT(%P)Auv(a, P)ll L 

$ a ( W  2 {infa,p>o X2[P(a, /3)1Y. 

infa,p>o X 2 [ P ( %  PI] .  If  6 0  = infa,p>o 6 2  P)] is ob- 

5 Properties of the lower bound 
A lower bound of $R ( M ) ,  given in terms of a two di- 
mensional nonlinear minimization problem, is derived 
in last section. Two questions remain to be answered: 

1. How tight is the lower bound? 

2. Is the minimization problem numerically tractable? 

The first question is partially answered in this sec- 
tion; we give sufficient condition under which the lower 
bound is tight (Theorem 3). The second issue is com- 
pletely answered; we slhow that the function X2[P(a, p)], 
which is to be minimized in the lower bound, is uni- 
modal in the area (0,1] x ( 0 , ~ ) .  The definition of a 
multivariate function being unimodal is nonstandard. 
We adopt the following definition: a real valued func- 
tion is said to be unimodal if the inverse image of 
(-CO, U) is connected for all y E R. 

Theorem 3 IfXz[P(a,p)] has a local minimum XO at 
(ao,Po) with ((YO,,&) E (0 , l )  x ( 0 , ~ )  and if XO is a 
simple eigenvalue ofP(aO,po) ,  then $w(M) = A,'. 

Theorem 4 X2[P(a,/?)] is unimodal in the area (Y E 
(O,lI,P > 0. 

Numerical experience shows that the condition in 
Theorem 3 is often sakisfied. Numerical examples also 
show that X2[P(a, p)] has rather weak convexity prop- 
erty: it is not quasi-convex. For fixed ( Y O ,  the univariate 
function X~[P((YO, p)] is not unimodal in general. Nev- 
ertheless, it is enough that X2[P(a,p)] is unimodal. 
Many nonsmooth local optimization methods can be 
applied to find the global infimum of X2[P(a, p)].  Nu- 
merical experience shows that the simplex method 
works quite well. 
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6 Examples 

- 79 20 -30 -20 
-41 -12 17 13 
167 40 -60 -38 

33.5 9 -14.5 -11 
0.25 0 0 0 

0 0.1 0 0.1 
0.4 0 0.5 0 

0 -0.5 0 0 
- 0 0 0 -0.2 

-0.5 -0.35 0 0 0.3 0 
0 0.15 0.2 0.4 0 0.2 

0.3 0 0 0 0 0  
0 0.3 0 0 0 0.2 

0.1 0 0 0 0 0  
0 0.1 0 0.2 0 0 

0.2 0 0.1 0 0 0 
-0.2 0.1 0 0 0 0 

0 0 0 0 0 0  

Figure 4: The solid line is a lower bound for 
$~[M(jw)] and the dased line is $c[M(jw)] 

In Figure 4, the dashed line is $c[M(jw)] and the 
solid line is the lowet bound for $a[M(jw)]. For this 
example, the condition in Theorem 3 is satisfied at all 
W .  Therefore, the solid line in Figure 4 is actually the 
plot of $ ~ [ M ( j u ) ]  and the real performance radius is 
exactly computed as pra(G) = 0.3998 

It is remarked in section 4 that another lower bound 
of $ p ( M )  is {inf,,p>o 02 [Pl,,p)])-l. As a compari- 
son, {inf,,p>o uz [P(a,  @)I}- , where P ( a ,  /3) is formed 
from M(j lO. l l ) ,  is computed and the value is 0.2491, 
whereas the lower bound given by Theorem 2 is 0.3998. 
This shows that the lower bound of $fa(M) given by 
{inf,,p>o uz [ P ( N ,  @)I}-’ is more conservative. 
Example 2: It  is of interest to know how tight the 
lower bound in Theorem 2 is. A sufficient condition 
is given in Theorem 3 for this lower bound to be the 
exact value of + ~ ( n / r ) .  Hence the probability that the 
condition in Theorem 3 is satisfied gives an indication 
on how often the lower bound is tight. 4000 complex - 
matrices G = [ ] are randomly generated 

with ii(G11) < 1 and M is computed from G by us- 
ing (2)-(5). The number of G matrices for which the 
condition of Theorem 3 is satisfied is 3661. This shows 
that the probability of the lower bound being tight is 
over 90%. 
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