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SUMMARY

This paper considers the problem of robust performance of a linear time-invariant system in the , norm.
The concepts of complex and real performance radii are introduced to describe the smallest size of dynamic
or parametric perturbations to a feedback system that either destabilize the system or destroy a performance
bound in a certain closed-loop transfer matrix of the system. An algorithm to compute the complex
performance radius is given. For the real performance radius, a lower bound, which often turns out to be
exact, is obtained.

International Journal of Robust and Nonlinear Control vol. 7, 187-209 (1997)
(No. of Figures: 4 No. of Tables: 0 No. of Refs: 15)

Key words: uncertain systems, robust stability, robust performance, #, norm

1. INTRODUCTION

This paper concerns the robust #,, performance of a linear time-invariant (LTI) system under
dynamic or parametric perturbation. Consider the uncertain system shown in Figure 1. Let 2,
denote the ring of real rational functions in #,,. Assume that G = [§!! §2] e Z @ P*¢+m ig
a transfer matrix representing an LTI system and A € F™*?, where [ is either the complex field
C or the real field R. The transfer matrix from w to z is then given by the following linear

fractional transformation:

'%(GaA) = G11 + G12(I - AGzz)_lAGm

The system is said to be internally stable if (I — AG,,) ! exists and belongs to #7*™.
Now assume that |Gy, < 1. Define the performance radius of G to be

pre(G) = sup{r: Z (G, A) is internally stable and
| 7(G,A)|, <1 forall AeF™*? with [[A] <r} (1)

Here the norm of A is the spectral norm, i.e., the largest singular value. pr-(G) will be called the
complex performance radius of G and prg(G) the real performance radius. The purpose of this
paper is to study the computation of pre(G) and prr(G). A complete solution to the problem of
computing pre(G) is given. Roughly speaking, pre(G) can be computed via the computation of an
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Figure 1. Uncertain control system

A, norm and a frequency sweep of a function which can be evaluated by performing a one-
dimensional convex optimization. The problem of computing pry is however not completely
solved in this paper. Instead a lower bound is obtained. This lower bound can be obtained via the
computation of a real stability radius and a frequency sweep of a function which can be evaluated
by performing a two-dimensional nonlinear minimization. It is also shown that the function to be
minimized has only one local minimum. Numerical experience shows that this lower bound is
often tight.

It is clear that prp(G) gives a measure to the robust performance of the system shown in
Figure 1 under parametric uncertainty. It can be shown using standard techniques’ that

pre(G) = sup {r: # (G, A) is internally stable and
|7 (G,A)|l, <1forall Ae # 2P with [|[A],, <r}

Hence pre(G) gives a measure to the robust performance of the feedback system under LTI
dynamic perturbation. Furthermore, if we define the norm of a stable nonlinear system F, i.e.,
a bounded nonlinear causal operator from %, [0,0) to %, [0, 0), by

| Ful,

ue¥5[0,00),u#0 H u HZ

IF| =

Then we can also show by using the small gain theorem that
pre(G) = sup{r: Z (G, A) is internally stable and
| Z (G, A)|| <1 for all nonlinear time-varying systems A with |A[l < r}

This says that pre(G) also gives a measure to the robust performance of the feedback system under
nonlinear time-varying perturbations.

The robust performance measure pr(G) is also connected to the robust stability of LTI systems
under structured perturbations, which has been studied extensively in the u framework, see e.g.,
References 2—5. Consider the uncertain system shown in Figure 2. The small gain theorem implies
that this uncertain system is internally stable for all A € 24" *? with |A||,, < rand A € 2414
with A, <1 if and only if pro(G) = r. In the u framework, algorithms are available to
determine if the uncertain system in Figure 2 is internally stable for all A e 2477 with
IA]l, <r and Ae R4 with |A|,, <r. Notice the slight difference between the formula-
tion of the complex performance radius and that of u. Of course, a moment’s thought reveals
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Figure 2. Augmented uncertain control system

that the u algorithm can be iteratively used to find pro(G). In this paper, we propose an
algorithm specifically tailored to prc(G) so that it is computed directly without this additional
iteration.

The complex performance radius, though not called so, is also studied in Reference 6. An
algorithm for its computation, free from the additional iteration, is given in Reference 6. The
algorithm is based on the quasi-convex univariate minimization of the largest generalized
eigenvalue of a semi-definite matrix pair. Our algorithm, however, is different. It is based on the
convex univariate minimization of the largest eigenvalue of a Hermitian matrix. Owing to the
better convexity property of our minimization problem, faster and more reliable line search
methods can be applied. Also notice that generalized eigenvalue problems have higher computa-
tional complexity than Hermitian eigenvalue problems (with roughly the same size).

The emphasis of this paper is the real performance radius. Again the small gain theorem implies
that the uncertain system in Figure 2 is internally stable for all A e R™*? with |A| <r and
Ae # X with |All,, < 1ifand only if prg(G) > r. This type of robust stability problem with one
complex full block and one real full block can also be studied in the u framework. However, no
algorithm is readily available to compute the corresponding p value. The past literature in
u favours to model parametric perturbations in the form of scalar times identity,* which usually
ends up with exponential time algorithms. Our conviction is that modelling parameter perturba-
tions in the form of full matrices may in some cases yield easier solutions. Although we are not
able to solve completely the computation problem of the real performance radius at this moment,
we believe that it is potentially solvable.

The computation of pry can also be used to find the worst #, performance when the
perturbation bound is given. The connection again is made possible by the small gain theorem. In
the dynamic perturbation case, it is actually the same problem as the computation of pr¢:

0 I 0 1
su F(G,A) |, = pr G
AEJ%‘{#LC"‘X”,IWAH%<1 H ( )H p ‘ <|:I O:| |:I O:|>

In the parametric perturbation case, it can be done by iteratively computing pr.

1/v1 0
sup |%(G,A)|w=sup{y:prw<[ /0’ JG>>1}
Aez™ P, Al <1

The paper is organized as follows. Section 2 is for the preliminary development. We will convert
the computation of the performance radius to well-defined linear algebra problems. Section 3
gives a formula for the complex performance radius. Section 4 gives a lower bound of the real
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performance radius and Section 5 gives some properties of the lower bound. In Section 6, two
examples are presented. Section 7 is the conclusion.

In the following, we define some notation used in this paper. For X € C™*?, the real and
imaginary parts of X are denoted by Re X and Im X respectively. The singular values of X are
denoted by ¢;(X), assuming non-increasing order. The largest singular value of X is also denoted
by ¢(X). We always set || X | = 6(X). If X is Hermitian, then the eigenvalues of X are denoted by
Ai(X), also assuming non-increasing order.

2. DEVELOPMENT
Recall from References 1, 7 and 8, the definition of the stability radius of F € Z4°2"™:
re(F)=1inf{|A|:AeF"*? and (I — AF) ¢4, }
For G e Z#4*P*0+m with |Gy, |, < 1, define

0 A
= 1 1 N mxp — i =
re(G) wel{gfw] inf { Al:AeF™*?,  det {I |:A* O} M(Jw)} 0}

where
)= (i ] ?
and
S(jo) = G, (jo)[I — G11(jo)GT(jo)]™ ' Gy, (jo) A3)
N(jo) = G32(jo) + G (jo)Gii(jo)lI — GI1(jo)Gi1(jo)]™ ! G5 (jo) (4)
R(jo) = Ga1(jo)lI — G11(jo)Gi1(jo)]™ ' G5 (jo) (%)

Note that S(jw) = 0 and R(jw) = 0 for all w € [ — oo, 00].
In fact, M equals the transfer matrix from [;] to [}:] in Figure 3. By the definition of star
product,’ we also have M = [(JG~J)* G]J, where, J =[9 {

Proposition 1

prs(G) = min {r[F(GZZ)a P[F(G)}-

u y
- o il
ul G yzu2 G~ yl u G yZ
= TEE T UEs
A A* A 0]

Figure 3. System theoretic interpretation of M
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Proof. If |A|| < rp(G,,), then I — AG,,(jo) is non-singular for all w € [ — oo,00]. In this case,
| Z(G,A)| ., =1 if and only if for some w € [ — oo, 0],

t[ I 7 [G(jo) A]}
G0\ N]

_ I Gy (jw) Gya(jo) 0
‘det{[ f(jo) T J_[ 0 —G;n(jw)A*}

0 I — G5, (jo)A* |1 GT1(jow) 0
I — AG,,(jw) 0 0 —AG;,(jw)

By using the formula det [¢ 5] = det(D)det(4 — BD~'C), we see that the above equality is true if
and only if

=0

I Gi1(jow) Gy2(jo) 0
det GT1(jo) I 0 —G31(jo)A*
e
GT2(jo) 0 0 I — G3,(jw)A*
0 —AG,;(jo) 1 —AGy,(jo) 0
I Gi1(jo) Gia(jw) O
GE(j I 0 0
— det 11(jo)
GTz(JCU) 0 0 1
0 0 1 0
0 0
10 G3i(jw) [0 A}[O 0 0 1}
0 Giz(]'w) A* 0|10 Gy(jo) Gia(jw) O
1 0

Direct computation shows that

I Gi1(jo) Giy(jo) 017110 0
M(jw)=[0 0 0 1] G11(jo) I 0 0 0 G3i(jo)
0 Gyi(jo) Gya(jo) 0] | GY,(jw) 0 0 I 0 G3,(jw)

0 0 I 0 I 0

Hence, if |A|| < rg(G,5), then | Z (G, A)

[0 A
det{[— A 0]1\4(@)}:0

|, = 1is equivalent to

for some w € [ — o0,00].
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Notice that in the definition of p;(G), taking the infimum over [0, c0] or over [ — oo, 00] does not
make any difference. Therefore, by the definition of pg(G), if |A| < min{ry(G,,),ps(G)}, then
| #(G,A)| . # 1. Since | Z(G,A)| . is continuous in A when |A| < ry(G,,), we know that if
[A]l < min{r¢(G,),ps(G)}, then F (G, A) is internally stable and || Z (G, A)||,, < 1. This shows
that prg(G) = min {1:(G,,), pe(G) .

From the definitions and the above proof, it is easy to see that there exists a A € F"*?, with
|A|l = min{r¢(G,,), pe(G)}, such that either internal stability is destroyed or | Z (G,A)| ., = 1.
This shows pre(G) < min{rg(G,,), pe(G)}. O

The computation of r;(G,,) has been studied for a long time and the following formulas are
now well known:!-7-8-10

re(Gaz) = [ Gaz |l 2" (6)

. Re G, (jw) —“/ImGzz(jw):D}l
rr(Gy3) =< su inf o : 7
w(G22) {we[opoo] 7€(0,1] 2<|:y_1ImG22(jw) Re G,,(jw) 0

Hence, we only need to focus on the computation of ps(G) in this paper.
For Hermitian matrix M = [« X] € C™*P*m*0) with § > 0 and R > 0, define

. . mxp O A —
x//[F(M)sz{m.AeF , det{[—[A* O]M}—O} (8)

then it follows that p;(G) = inf, <0, o1 [M (jw)]. Therefore, if Y (M) can be obtained for each
M =[5 ¥] with S >0 and R > 0, then pr;(G) can be computed by a frequency sweep.

The next two sections are dedicated to the computation of Y- and y respectively. Before
going into the comutation of Y, we observe that if G is given in terms of a state space
realization:

G(s) ~| Cy )

then a formula for M (jw) is given by

0 0 —jol — A"  —CT|7'[ 0 C}

M(jw):[o 0 B} D{Z] 0 I —B] — D}, 0 DI,
C, Dy O 0 jol —A  —By 0 0 B, 0

—-C, —Dy, 0 1 D,, O

3. COMPLEX PERFORMANCE RADIUS

It follows from the development in Section 2 that pr¢(G) can be obtained via the computation of
Ye(M) for each M =[5« ] with S >0 and R > 0. Hence, this section is dedicated to the
computation of y(M). In the following, we show that (M) is the infimum of a convex
univariate function.
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Note that

[ s [l 020

_ 0 A|[S/y N
=det {I - |:A* 0:| |:N* VRj|} (10
Theorem 1

Let M = [ ¥] satisfy S > 0 and R > 0. Then

. S/y N1
Ye(M) = {}Eg 21 |:N* yR:|}
S/y N

Furthermore, A, ['y/ ;x] is a convex function of y on (0, ).
Several lemmas are needed for the proof of Theorem 1.

Lemma 1 (See Reference 11, p. 149)

Let F(y) e C"*"bea Hermitian matrix function analytic on an open set I' = R. Then there exist
a unitary matrix function V() = [0:(y),....0.(y)] € C" *" and a diagonal matrix function
A(y) = diag[21(D), ..., A.(y)] € C*™", both analytic on I', such that

F() = VAR V()

Furthermore,
Zi ) ~

) =0 (7
dy dy

o

LD 509 (1

Lemma 2

Let F(y)e C"*" be a Hermitian matrix function analytic on an open set I' = R. Let
A(y) = A2(y) = --- = A.(y) be its ordered eigenvalues. If 4;(y) has a local extremum at y, € I, then
F(yo) has an eigenvector v € C" corresponding to 4;(yo) such that v*(dF(ye)/dy)v = 0.

Proof. If the multiplicity of ;(y,) is one, then 4;(y) is equal to 4 j(7) given in Lemma 1 in an open
neighbourhood of y,. Thus 7, is also a stationary point of 4;(y). Let 7;(y) be an analytic
eigenvector corresponding to 4;(y). Then (11) gives

dF(yo)
dy

5;‘()’0) 5,'(“/0) =0

If instead the multiplicity of 4i(yo) is greater than one, then we can assume, without loss of
generality, that in an open neighbourhood of yo, 4;(y) = 4;1(y) for y <y and 4i(y) = 4;2(y) for
y = vo. If j1 = j2, then (o) must be a local extremum of 4;,(y), so we get the result by applying
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(11). Otherwise let ;(y), k = j1, j2, be the analytic eigenvectors of F(y) corresponding to Tu().
Then (11) gives

dZji(0) i dF (o) .
71(;/ 0 =U;k1(’/o)—dy0 Ujl(Vo)
dZ2(00) i dF (o) .

J;y = U}kz( 0) dyo sz(Vo)

Put v, = adj; + (1 — )25}, for o € [0, 1]. Then v,(y,) is also a unit length eigenvector of F(y,)
corresponding to 4;(yo). Define

dF(yo)

J @) = v7(70) — = talo)
Y
Since y, is a local extremum of 4;(y), we must have f(0)f(1) = (dzjl(yo)/dy)(dzjz(yo)/dy) < 0. By
continuity, f(x) = 0 has a solution in [0, 1]. This proves the lemma. O
Lemma 3

Let F = [ }]e Cm*P*m*pP be 3 Hermitian matrix. Suppose X >0 and Z > 0, then for
i=1,2,...,min {m,p},

2i(F) 2 — Ay p-iv1(F)

Proof. Let Fy =[x §]and F, = [§ 2]. Then F = F; + F, and for i = 1,2,..., min{m, p},
Ai(Fy) = —)tm+p—i+1(F1) =0y(Y)

Since F, >0, it follows that A(F)>4(F;) for i=12,...,m+p. Hence, for
i=1,2,...,min{m,p},

;LI(F)>/L(F1)= _/.Lm+p—i+1(F1)> _}“m+p—i+1(F) |:|

Proof of Theorem 1. Denote F(y) = [§! ,;k]. Then from Lemma 3, 2, [F(y)] = — An+ ,[F(y)] for
all y > 0, hence A;[F(y)] = ¢[F(y)]. We see from (10) that

beM) > {;gg mmn}l

The fact that 6[F(y)] is convex follows from Reference 12.
Let Zo = inf,> ¢ 4, [F(y)]. The rest of the proof is to show that yc(M) < 4 .
If 1o = 0, we certainly have yo(M) < 4o '. So we assume that 1, > 0. There are two cases.

Case 1: inf,. o 4, [F(y)] is attained at y, € (0, 00).
By Lemma 2, there exist v =[], x € C™ and y € C? such that F(yo)v = Aov, ie,,

1
—Sx + Ny = px (12)
Yo

N*x + yoRy = Aoy (13)
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and

dF( 1
v*ﬂvz — = Xx*Sx + y*Ry =0
dy 70

Multiplying (12) and (13) from the left by x* and y* respectively, subtracting the resulting
equations, and noting that x*Ny must be real, we get
1
Lo(x*x — y*y) = 2 X*Sx — poy*Ry =0
0

Hence, x*x = y*y. Now construct A = (1y)~ xy*/x*x, then it is easy to verify that |A|| = (1o) 1,

and
0 A||S/yo N x|
=L ol Rl

which means that det{l — [ 1M} =0. From the definition of (M), we have
Ye(M) < (Z0) "

Case 2: Ao = lim, oA [F(p)] or Ao = lim,_ ,, 41 [F(y)].
This case occurs only when S =0 or R = 0. Assume S = 0, then

0 A
det {1 - [A* 0} M} = det(I — AN*)det(I — A*N)

which shows (M) = [¢(N)] 1.
On the other hand, since R > 0, we have

Jo = inf 1, L\?* N} = G(N)

7>0

Therefore, (M) = Ao ! in this case. O

4. A LOWER BOUND OF THE REAL PERFORMANCE RADIUS

Recall from Section 2 that prg(G) = min {rg(G,,), pr(G)}. The computation of ry(G,,) can
be done using formula (7). The computation of pr(G) depends on the computation of (M)
for a given Hermitian matrix M = [ X] with S >0 and R > 0. Unfortunately, we are not
able to compute Y(M) at this moment. In this section, a lower bound of yyp(M) will be
given.

Let

S, =ReS, S;=ImS, R,=ReR, R;,=ImR, N,=ReN, N;=ImN
Then
Sr = S:'ra Rr = R;‘ra Si = - S;ra Ri = - R;r (14)

and S, >0, R, > 0.
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We follow the idea in Reference 10 to convert the problem of computing (M), one with
complex data and realness constraint, into a pure real problem. Let

S, N, -5, —N, 0 A 0
ReM —ImM N' R, NI —R AT 0 0 0
O:[ImM ReM}: s N s N0 0 0 a
~NT R, N' R 0 0 AT 0

The following lemma will be frequently used.

Lemma 4

Given Hermitian matrix Z = X +jY with X, Y eR"*", let Q =[¥ ¥ 1. Then i,;_{(Q),
22i(Q) = 4(Z).

Proof. This follows since Q is similar to [* 4" y%;y], and X + Y, X —jY share the same
eigenvalues. ]

For a, f > 0, define scaling matrix

D(oc,ﬁ)zdiag[\/ﬁl,\/lﬁl,\/fl,\/il} (15)

then D~ (o, )A, D~ *(o, f) = A, and

apfSs, N, —pS; —aN;
1 1 1
Ny 4R, NI —3R;
:[))Si éNi gsr Nr
—aN? 4R, N/ iR,

P(a, ) = D(a, f) Po D(a, f) = (16)

Assume P, = P(1,1) has = positive and v negative eigenvalues. Lemma 4 says that = and v are
even. Also observe that = > v which follows from applying Lemma 3 and Lemma 4 to a similarly
permuted version of Py:

S, -5, N, —N,
S; S, N N
NI NI R, —R;

~NT N R, R

By the law of inertia, P(x, ) also has = positive and v negative eigenvalues for all «, f > 0 and its
second eigenvalue is always non-negative.
Another interesting property of P(«, ff) is that

2P B)] = s [P (1, ﬁﬂ (17
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fori=1,2,...,2(m + p), o, f # 0. This is because P(o, f§) is similar to
afS, oN; —pS; N,
aN{ SR, —NI —R;
BSi =N, LS, LN
NGROINT R,

|:ﬁsl _Nr:|T _ |: _ﬂSl Nr :|

1 = 1 .
N! 3R —N!'  —3R;
Theorem 2

Yr(M) = {infaze(o,l],ﬁ>0)"2 [P(O‘:ﬁ)]}71~

and

To prove Theorem 2, we need two lemmas.

Lemma 5 (See Reference 13, p. 203)

Let M, A e C"*" be Hermitian matrices. Denote the eigenvalues of M as 5y =1, > -

and the eignevalues of M + Aas &, =&, = -+ = ¢,. Then

[& —mil < 6(A)

Lemma 6
For AeC"*? and Be C**™,
m — rank(l + AB) = p — rank(I + BA)

Proof. It can be verified that
I, —Al|[l,+AB 0] | 1w 0 I,
0 I, || B I,| |B I,+BA|[0

[1,,+ AB 0] I, 0
rank = rank
| B I, | B I,+BA

Hence,

which implies that rank (I,, + AB) + p = rank (I, + BA) 4+ m. The lemma then follows.

Proof of Theorem 2. 1t follows from (17) that
inf — 2,[P(e, f)] = iﬁnfo A2 [P(o, )]

2e(0,1],4>0

197

(18)

Z

O

Since rank (Py) =7 + v, it follows from Lemma 4 that rank (M) = (n + v)/2. Suppose that
M is decomposed as M = UyAy,Ujf, where UfUy =1, Uy CM* P02 and Ay e

R4/ 2)x(@+v/2) jg djagonal and non-singular. Then

|:ReM —ImM
> =

— UAUT
Im M ReM} UAU
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U ReUy —ImUy A Ay O
_[ImUM Re Uy } _[ 0 AM]

Let X(o, ) = D(x, f)U, then X (o, f) has full column rank. Carry out the Gram—Schmidt
orthonormalization to the columns of X(o f), we get X(xf) = V(x,f)R(a, ), where
Vo, B)V (o, B) = I and R(x, ) is non-singular. It is easy to see from the orthonormalization
process that the maps from X to V and R are analytic when X has full column rank. Hence,
V (o, ) and R(x, f) are analytic in (o, ).

Let E(a, f) = R(a, B)AR™(a, B), then E(a, B) is analytic. From P, = UAUT, we get

P(o, ) = D(o, B)PoD" (o1, B) = V (o, B)E (o1, )V (21, B) (19)

From D(1,1) =1, we get V(1,1) = U and E(1,1) = A.

Since V (o, f) is orthonormal, the eigenvalues of E(x, §) are equal to the non-zero eigenvalues of
P(a, B).

Note that

where

rank (I — A,P,) = rank {I — A,P(a, §)}
= rank {I — A,V (o, ))E(, ) V" (2. )}
By Lemma 6, we obtain
2(m + p) — rank(I — A Py) = m + v — rank {I — V(o B)AV (o, B) E(s, B)}
=+ v —rank (E7 o) — V@AV @) (20)
Denote
H(o, B,A) = E" (o, f) = V(o BYAV (2, B) (21)
then by (20), rank[H (o, B, A)] is independent of (o, §), and
rank[H(a, f,A)] = 7 + v — {2(m + p) — rank(I — A,P,)} (22)

In the following, we will show that if &(A)< {inf, s>042[P(2,f)]}" ", then
rank[H(x, ,A)] = = + v, which leads to yg(M) = {inf, 5042 [P(e, )1} ! by (22).

Since E(a, f#) is analytic and non-singular and V (o, f8) is analytic, it follows that for a fixed A, the
eigenvalues of H(«, 8, A) are continuous in («, f). Since the rank of H(«, 8, A) is independent of
(o, p), we conclude that for a fixed A, the inertia of H(«, 8, A) are independent of (o, ). Conse-
quently, it can be denoted by {ma, va,{a}. Furthermore, 74, v5 and {, are even numbers, since by
Lemma 4 the eigenvalues of

H(1,1,A) =
(1,1,4) [O Ayt ImU,, ReUy ImU, ReUy

have even multiplicity.
The eigenvalues of H(x,f,0) = E~ (o, ), which are A '[P(e,f)], i=1,...,m and
i=2m+p) —v+1,...,2(m + p), satisfy

22 '[P, B)] = 20 '[P )1 > 0> Aogus [P0 )] = 2o py- 1 [P f)] = -
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Now consider the inertia of H(, 8, A) under perturbation. If | 6(A)| < {inf, g>o A2 [P(x )]} %,
there exists oy, fo such that G(A) < A5 '[P(%, fo)]. Note that the eigenvalues of P(a, f§) are the
same as those of

aﬁsr —ﬁS, Nr —O(N,'
ﬁSi gSr éNl Nr
1 1 1
N; iNT 4R, —R;
—aN!  NY R R,

(23)

Hence, if v>2, then Lemma 3 implies that &(A)< — /12’(,1,,+p)_1[P(oc0,ﬁ0)]. Since
[V (g, Bo) ALV (a0, Bo)] < G(A), it follows from Lemma 5 that 7y > 7= — 2 and v, > v — 2. Since
n, and v, are even numbers, we must have my =7, v, =v. This is also true if v =0.
Therefore if [|G(A)| < {inf, s>0A2[P(2, )]}~ ", then rank[H(x, f,A)] == + v, which shows
rank(I — A,Py) = 2(m + p). Then it follows from Lemma 4 and the definition of (M) that
Ye(M) > {inf, 5o o 42 [P(o )1} . 0

Remark 1

More general scaling matrices D than the one used in (15) can be used so that D" 1A,D~! = A,
and DP,D is symmetric. For example,

Dl(oc,ﬁ)zdiag[od, 1I, pl, 11}
o B

and

0 I 0 I 1 N
Do fur) = o i here [al /1] _ [zx /}

I 0 BI 0 71 B 7 B

0 yd 0 pyI

It is easy to see that D(a, f) = Dy(s/af, /B/o) and one can verify that D, (a, f5,7) PoD (o, 5,7) is
similar to Dy(4y,4,)PoD{(41,2,), where Z; and 4, are the eigenvalues of [ ;]. So these scaling

matrices are equivalent to (15) as conservatism reduction is concerned.

Remark 2

Let 6o = inf, > 002[P(, )], then it is easy to see from the above proof that another lower
bound for yi(M) is o *. It is obvious that g¢ > inf, s> ¢ A2 [P(e, f)]. If 6o = inf, 4002 [P(e, )]
is obtained at (a, i), and g is a singular value of P (o, ) with multiplicity greater than one,
then o ' may be strictly smaller than {inf, s> ¢ A2[P(a, $)]} ', if this multiplicity is caused by the
intersection of Z,[P(x, f)] and — A+, [P(a, f)], as is illustrated in Section 6.

5. PROPERTIES OF THE LOWER BOUND

A lower bound of Yz (M), given in terms of a two-dimensional nonlinear minimization problem, is
derived in the last section. Two questions remain to be answered:

1. How tight is the lower bound?
2. Is the minimization problem numerically tractable?
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The first question is partially answered in this section; we give sufficient conditions under which
the lower bound is tight (Theorem 3). The second issue is completely answered; we show that the
function A,[P(a, f)], which is to be minimized in the lower bound, is unimodal in the area
(0,17 x (0, 00). The definition of a multivariate function being unimodal is non-standard. We adopt
the following definition: a real valued function is said to be unimodal if the inverse image of
(— oo, y) is connected for all y € R.

Theorem 3

If A,[ P(, )] has a local minimum Z at (., o) With («g, ) € (0, 1) x (0, 00) and if 2 is a simple
eigenvalue of P (0, fo), then WYr(M) = iy *.

Theorem 4

A>2[P(o, f)] is unimodal in the area o€ (0,1], f > 0.

Numerical experience shows that the condition in Theorem 3 is often satisfied. Numerical
examples also show that 4, [P(x, )] has a rather weak convexity property: it is not quasi-convex.
For fixed o, the univariate function /4, [P(xg, )] is not unimodal in general. Nevertheless, it is
enough that A,[P(« f)] is unimodal. Many non-smooth local optimization methods can be
applied to find the global infimum of A,[ P(, f)]. Numerical experience shows that the simplex
method works quite well.

To prove Theorem 3, we need the following lemma.

Lemma 7

Let UeRP** and Ve R" k. If UTU = VTV # 0, then

1) 6[VU'] =1,
2) VU'U =V,
3) (UHTVTV = U.

Proof. (1) and (2) are directly from Lemma 2 of Reference 10. Now, we prove (3). Since
VTV = U, so,

UHVTV = (U)TUTU = U

Here, the last equality is obtained by applying the definition of Moore—Penrose inverse
directly. O

Proof of Theorem 3. Since /, is a simple eigenvalue of P(xg, fiy), it follows from Reference 13,
p. 185, Corollary 2.4 that A,[P(x, )] is analytic in a neighbourhood of (x, fo). Denote the
eigenvector of P(a, fy) corresponding to Ay as v, then P(ag, fo)v = Agv.

Since Ao = 4,[P(20, fo)] is a local minimum, we must have

072 [P(%9, Bo)] — T 0P (2o, Bo)
O - Oa

aiz[P(%;ﬁo)] _ UT a1:)(&07[30)
op B op

v=20

v=0
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Now partition v in accordance with P(x, ) as v = [v] v3 v3 v4]", where vy, v; € R and
v,, 04 € RP. Then we will first show that

[v, Us]T[Ul v3] = [vs U4]T[Uz 4] (24)

When this is satisfied, a special A can be constructed as A = g ' [v; v3][v, v4]T, with G(A) = 1o !
and det {I — [ §1[~+ 1} = 0, which leads to yr(M) < 4o .

Note that
0/,[P oP oD
2l E“o,ﬁo)] =T (%o, fo) v =20 4(060’[30)P0D(O€Oa[30)0
oo oo oo
0 0 O
Lo O o O e Bo) PoD (o i)
=0 0o, oo, v
% 0 I 0 0sPo) LoD o, Po
0 O 0 I
}‘0 T T T T
= — (01Vy — V3V — V3V3 + VaV4)
%o
Similarly,

02, [P(og, )
042[P (0, o) éﬁo Poll _ ,B—O(v{v1 — ViU, + V3V — V4D,)
0
Since 04, [P(%g, Bo)]/00 = ds[P(0tg,Bo)]/0B =0, we have viv, — v3v, = vivy — v4v, and
vivy — 03w, = — (V303 — v4v,), Which result in

vTvy =vlv, and viv; = viv, (25)
From P(o, fio)v = o0, 1.€.,
%opoS, N, —BoSi  —aN; || vy U1
NrT zglﬁuRr al_loN;r _%Ri U2 | 1 Uy
BoSi %ON;' %Sr N, U3 o U3
—aoNT 4R, N} R, Vs Vg,
we obtain
2050y — vivy) =[5 —vi o1 —v3]"P (%, fo)v
:< i>< L TR — INT )
oo + Bov3S,vq V3R, 04 — V4N;jv3 + V1NV, (26)
%o Bo
and

0=[v3 vz —vi —v3]"P(xo,fo)v
1 1
= (9‘0 - _> <[301)§Srvl — — 3Ry — vgN{vs + U¥Nivz> (27)
%o Bo

Here we use the fact that vIRv, = vIR;v, = v1Sv; = viS;v; = 0.
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Since Ao # 0 and oy # 1, from (26) and (27), we get viv; = viv,. Combining with (25), we
get (24).
Now construct A as A = Ay '[v; v3][v, v4]', then from Lemma 7, 6(A) = A, * and

AoA[vy v4] = [v1 v3][02 U4]T[Uz vs] = [vy v3]

/loAT[lM v3] = ([v2 U4]T)T[U1 U3]T[Ul v3] = [vy v4]

Therefore,
Uy 0 A 0 Uy
[1 — AP0, fo)] PRV LN T EN 0112 g
— A P(ay, V=1 — ES -2 =

0> 7o 0 U3 °lo o A U3

V4 0 0 AT 0 vy

and
D™ (o, Bo)(I — AyPo) D (%, fo)v = 0 (28)

Partition D (a0, fo)v as [x] x5 x5 x4]%, with appropriate dimensions, then (28) is equivalent to

(L8 DD

which means that det{I —[4r 5][ 4 X1} =0. From the definition of yr(M), we have
Yp(M) < G(A) = 4o ' < {infoce(o,l],ﬁ>0AZ[P(aaﬁ)]}_1> since Ao = inf,c(0, 135>0 42[P(, B)].
Combining with Theorem 2, we get Yx(M) = Ao ' OJ

The seemingly innocent Theorem 4 has a long and dry proof, to which the rest of this section
is devoted. We break the proof into several lemmas. In the sequal, we denote the inertia of

S, Ni
|:Nvir R,] as (T[, vaC)'

Lemma 8

For each fixed f, > 0,

1. 21[P(2, fo)] is convex on (0, 00), its minimum is attained at o = 1;
2. 4,[P(a, Bo)] is unimodal on (0, 1].

Proof. The convexity of A;[P(x, fo)] is obvious by noting that A;[P(«, fo)] = ¢[P(a, fo)]
from Lemma 3. The minimum is attained at « = 1 since A, [P(, fo)] = 41 [P(Z, o) ]-

The rest is for the proof of 2. We can write det[A] — P(x, )] = o~ " "V f (4, %), where f(4, o) is
a polynomial in o with degree 2(m + v) and in 4 with degree 2(m + p), note that P(«, ) is similar to
the matrix in (18). So for almost all A, there exist at most 2(n + v) non-zero o’s (counting
multiplicity) such that det[AI — P(a, 5)] = 0. In other words, for almost all ¢ > 0, the intersec-
tion of the straight line A = ¢ and the curves 4 = A;[P(—a, fo)] and A = 4;[P(x, f0)], 0 < o0 < o0,
i=1,2,...,2(m + p), consists at most 2(x + v) points.

Denote ¢y = inf, 0, 1742[P (2, fo)] and c, = inf, o, 1742[P(—2, fo)]. It is easy to see that
AilP(—0,B0)] = — Aagm+p—i+1[P(, Bo)], so by permutting P(, §) to (23) and applying Lemma 3,
we have ¢; = c,.
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As o0 - 0 (or o0), 4;[P(x, fo)], i <7, and 4,[P(—a,fy)], i < v, go to infinity. Hence for any
¢ =z inf, o, 11Ai[P (2, Bo)], i < m, the intersection of 1 = cand 4 = A;[ P(«, )] consists at least two
points on (0,c0). The same applies to A;[P(—a, fo)], i < v.

From Lemma 4, 1,[P(—1, )] = 2,[P(—1, o)]. Since 4;,[P(—a, fy)] is continuous in a, it
follows that the intersection of 1 =c¢,c > ¢y = ¢, and 4 = 4;[ P(—a, )], i < v has at least 2v
points.

Now, suppose on the contrary that A,[P(a, y)] is not unimodal in (0, 1], i.e., it has another
local minimum ¢] in additional to ¢;, on the interval (0,1]. Then there must exist a local
maximum cj > ¢j. For all ¢ € (¢}, ¢), the straight line 4 = ¢ must have at least six (if # > 1), or
four (if = = 1) crossings with 1 = 7,[P(a, )] for a € (0, 0), noting the property (17). Adding to
the number of crossings with other curves, 4 = 4;[P(a, fo)], 3<i<mand 1 = 4[P(—a,fo)],
i <v, we get more than 2(x + v) total crossings. Therefore, we conclude that A,[P(a, ffy)] is
unimodal in (0, 1]. ]

For 0 < f§ < oo, define
A(p)=inf 2,[P(x f)]
ae(0,1]

Lemma 9

A(P) =lim,_ ¢ A,[P(a, f)] if and only if = < 1. In this case, A(f) is a constant over (0, c0).

Proof. If = > 1, then lim,_ ¢ A,[P(x, )] = oo, so it cannot be equal to A(f). The case when
7 = 0is trivial; P(a, ) is actually a constant matrix in this case. For the case when = = 1, denote
co =lim,, 025 [P(x,f0)] (which is finite) for some fixed f, > 0. If c¢o > A(fy), then for any
c€(MPo), co), 4 = A4[P(a, Bo)], i = 1,2 have at least four crossings with A = ¢, which is imposs-
ible (cf. the proof of Lemma 8). Therefore, A(fy) = co. In this case, owing to S,R > 0, we must
have rank S,, rank R,, rank N; <1 and S; =0, R; = 0. Hence, by noting v < n, we see that
[N' ] is similar to

pa ¢ 0
¢ b/f 0O
0O 0 0

for some real a,b,c with a,b >0, ab < c% If ab < c?, then as o — 0, the 2(m + p) — 2 finite
eigenvalues of P(x, ) approach some constants independent of . If ab = ¢, then it can be
verified that lim,_ o A,[P(a, )] = &(N,). O

In the following, we will assume that = > 2. Define

2(f)={xe(0,1]: 2,[P(a, B)] = A(B)}

and
() = max{x(f)} o,(f):=min{x(f)}
With the assumption that 7 > 2, the set «(f) is the non-empty and is closed interval for each
p > 0. Hence a,,(f) and a,,(f) are well defined.
Lemma 10

When 7 > 2, A(f) is continuous and piecewise analytic, and oy, (), o.,(ff) are piecewise analytic.
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Proof. The continuity of A(f)) can be proved similarly to the proof of the Proposition in
Reference 10. By applying Lemma 8 and the continuity of A(f) and 4,[P(, )], it can be shown
that o,,(f) and «,,( ) are piecewise continuous. Let

Ny N>
det [ — P(o. )] =28~ [ () T] S B n gy (4,2) n K (2, B)
i=1 i=1
where e;(4), i =1,...,N;, are different prime polynomials in A with positive degrees, f:(4,f),
i=1,...,N,, are different prime polynomials in 4 and f, with positive degrees, etc. It should be
noted that det [AI — P(«, )] cannot have a divisor in the form of f(«, §), f (o) or f(f).
Denote

Ny

x(aoB) = [1 ) T1 i B) ﬁ ) [ Wi

i=1 i=1 i= =

(4o p) = ]_[gAcx)nh}aﬁ)

Then for each a, f # 0, the roots of x(4,u, f) are the same as 4;[ P(a, )], but with decreased
multiplicities. And the roots of y(4,a, §) are the eigenvalues of P(x, f§) after excluding those that
are independent of a.

It is easy to see that x(4,a, ) and 0x(4,«, f)/04 have no common divisor with positive degree,
so from Theorem 5.5 and Theorem 5.6 of Reference 14, there exist polynomials uy(4,, f8),
v1(4, 0, f) and t; (e, ) # O such that

ox(2,0, B)

x(4, o, B)us (4,0, ) + 7 vi(4 o B) = ti(o, ) (29)
Similarly, there exist u,(4,a, ), v2(4,a, ) and t,(o, f) # 0 such that
0y (A
10 st )+ PP Gy < 1) 30

Case 1: a(fo) is a single point. Then A,[ P(«, fo)] must be a root of y(4,a, fy) in a neighbour-
hood of a(fy). If A(Bo) is a simple root of y(4,(fo), fo), Wwe have
0y(2(Bo)sa(Bo) Bo) _ dV(A(Po), 2(Po), Po) 2> [P(2(Bo), Bo)]

oo - ox do =0

If A(Bo) is not a simple root, then Jy(A(Bo),%(Bo),Bo)/0L =0, which results in
0x(4(Po),2(Po), fo)/ 04 = 0, since y divides x.

Case 2: a(fo) is an interval. It is easy to see that the multiplicity of A(fo) at o (fo) is greater
than one, among the roots of x(4, (o), fo)- So we also get dx(A(fo), %(Bo), fo)/04 = 0. The
same applies to o,,(fo).

Combining the above two cases, we have

{LA(B) an(B). B1: B > O}

0x(4 )
{(‘a 7ﬂ) M (’L 75 Oy(a,;c,'[))):y()aa:ﬁ)zo}
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Noticing (29) and (30), we obtain
{Llen(B), B1: B > 0} = {(&, B): 11 (o, f) = O or 15 (er, B) = 0}

Denote the roots of ¢, (x, ) and t,(c, f) for fixed f as o;(f). Then o;(f) is piecewise analytic on
the intervals where it takes values in the real field. Since o,,(f) is piecewise continuous when
7 = 2, we conclude that it is piecewise analytic. The same applies to «,, (). Hence P(oy (), f) is
piecewise analytic. It follows that A(f) is also piecewise analytic. O

Lemma 11

Let F(y) e C"*" be a Hermitian matrix function analytic on an open set I' = R. Suppose 4;(y)
is an eigenvalue of F(y,) with multiplicity k, with corresponding eigenvector matrix W e C"*¥,
then the inertia of W*(dF(y,)/dy)W represents the numbers of eigenvalues (among the k ones

clustered at y,) that increase, decrease and stationary, respectively.

Proof. By Lemma 1, there exists U(y) € C"**, U*(y)U(p) = I, and diagonal A,(y) € C*** both
analytic on I' = R, such that

FUQG) = U AG)

where Ax(yo) = 4i(y0)I;. Differentiating both sides and multiplying from the left with U*(y), we
get

dF(yo) _ dAw(yo)
g Ul ===

U* (7o)

This is for the special analytic eigenvector matrix. For arbitrarily selected eigenvector matrix W,
W = U(Ay)Q for some non-singular Q. So,

W dF(y0) W = Q* dAx(yo) 0 ]
dy dy

and the inertia is invariant.

Lemma 12

When 7 = 2, A(f§) is unimodal.

Proof. We prove this by contradiction. Suppose that A(f) has two local minima at f; and f3,.
Then by Theorem 2, Yyx(M) > max {1~ *(f,), A~ (B,)}. Between f; and B,, A() must have a local
maximum, say at o, with A(fo) > max {4(f,),A(f,)}. If this is true, then we can show that
Ur(M) < A7 (Bo), which is a contradiction.

By Lemma 10, o,,(f) is piecewise analytic, we can denote

lim dene(B) =t~ and lim doe(B) =t*

p-p, dp s-p;  dB

If B, is a strict local maximizer of 1(f8), then neither t* nor ¢t~ can be infinity, since A(f,) is a local
minimum of 2, [ P(a, fy)], it cannot be a strict local maximum of A,[ P(a, §)] along o (). If By is
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not a strict local maximizer of (), then 8, can always be chosen such that neither t* nor ¢t~ is
infinity.

Case 1: limy gy ap(f) = limp- 5z 0 (f) = 0to.

By applying Lemma 11 and observing that 4, [P(x, fo)] is convex and takes its minimum at
o =1, we can show that A(f) cannot take its local maximum at 8, with o, (fy) = 1, or with
21[P(20,B0)] = 22 [P (20, Bo)]-

Let the multiplicity of 4,[ P(x, fo)] be k, then 4, and all of the k clustered eigenvalues increase
along oy () for f < fy and decrease for § > f,. Let the corresponding eigenvector matrix be W,
then by Lemma 11,

OP(ao,fo) _  OP(xo, Po) 0P (ag, o) + 0P (o, o)
WT[ w Lt }WZO’ WT[ w T

}W<O (31)

Since o, is a local minimizer of A, [ P(a, B)], so from Lemma 2, there exists a unit vector z € R
such that z"WT(0P (09, Bo)/00) Wz = 0. From (31), we must have z"WT (6P (o, Bo)/0f) Wz = 0.
Denote

Uy
U3

Wz R
U3

U4
then like the proof of Theorem 3, we have

[vy 03]T[U1 v3] = [v> U4]T[Uz 4]

So there exists a A € R™*? with 6(A) = 2~ *(fo) and det {I — [ §]1[ 5+ k]} = 0. Thus
Ya(M) <27 H(Bo) <max {2 '(B1), 2" ' (B2)} < Yu(M)

which is a contradiction.

Case 2: limy_ g5 ap(B) # limpo g oipg(B).

Let oy = limy_, g5 oy (B) and o, = limy_, g 0ty (B). Then for o € [aty, 2], A2[P(e, Bo)] is a constant,
since 4, [ P(a, Bo)] is unimodal and A(f3) is continuous. As in case 1, we can show that ay,0, < 1
and A;[P(x;, fo)] # 22[ P, fo)], i = 1,2. Let the multiplicity of the constant eigenvalues be
m; and the multiplicity of the eigenvalues clustered at o; be m; + m,. Denote the analytic
eigenvectors corresponding to these m; + m, eigenvalues as [W;(a) Wy (a)] € R20Fp)> (mitma)
then W1 (a)(0P (e, Bo)/0o) W1 () = 0. Since f3, is a local maximizer of (), by Lemma 11, we have

W—{(al) 0P(aq, Bo) —_ 0P(aq, Bo)
W3 (o) dot op

Hence W {(xy)(0P (21, Bo)/0B)Wi(oy) = 0 and similarly W1 (ay) (0P (s, Bo)/0B) Wi(ep) < O.
By continuity, there exists o € [ay, 0] such that W1(xo)(@P (2, Bo)/0B) Wi (o) has a zero
eigenvalue. Therefore, there exists a unit vector z € R™ such that
aP(ao, ﬁo)
ap

What is left is similar to case 1. O

:| [Wi(ey) Wi(x)] =0

ZTWI(OCO) Wi(o)z =0
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Proof of Theorem 4. Combining Lemma 8, Lemma 9, Lemma 10 and Lemma 12, we get the

result.

Example 1

6. EXAMPLES

Assume that a state space description of G of the form (9) is given by

O

79 20 —-30 —-20 -05 —-035 0 0 03 0 |
—41 —12 17 13 0 015 02 04 0 02
167 40 —60 —38 0-3 0 0o o0 0 0

335 9 —145 —-11 0 03 0 0 0 02
= 0-25 0 0 0 01 0 0o 0 0 0
0 01 0 01 0 61 0 02 0 O
0-4 0 0-5 0 02 0 01t 0 0 O
0 —05 0 0 —02 61t 0 0 0 O
L 0 0 0 — 02 0 0 o o0 o0 o0

The perturbation matrix A is 3 x 3. The computation result is:
re(G,z) = 0-5006; pe(G) = 0-1700
re(G,s) = 1:0432;  pR(G) = 0-3998

Hence pre(G) = 0:1700; prg(G) = 0-3998.

In Figure 4, the dashed line is Y/« [ M (jw)] and the solid line is the lower bound for i [ M (jw)].
For this example, the condition in Theorem 3 is satisfied at all w. Therefore, the solid line in
Figure 4 is actually the plot of Yz M (jw)] and the real performance radius is exactly computed
as prr(G) = 0-3998.

It is remarked in Section 4 that another lower bound of yi(M) is {inf, 4> 00, [P(x )]} ™" As
a comparison, {inf, ;- 0,[P(x )]} ", where P(x, ) is formed from M (j10-11), is computed and
the value is 0-2491, whereas the lower bound given by Theorem 2 is 0-3998. This shows that the
lower bound of yx(M) given by {inf, s> ¢0,[P(e, f)]} ! is more conservative.

Example 2

It is of interest to know how tight the lower bound in Theorem 2 is. A sufficient condition is
given in Theorem 3 for this lower bound to be the exact value of z(M). Hence the probability
that the condition in Theorem 3 is satisfied gives an indication of how often the lower bound is

tight. 4000 complex matrices G = [§!! &2] are randomly generated with ¢(G;;) <1 and
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35 T T T T T T

0 2 4 6 8 10 12 14 186

Figure 4. The solid line is a lower bound for yz[M(jw)] and the dashed line is [ M (jw)]

M is computed from G by using (2)—(5). The number of G matrices for which the condition of
Theorem 3 is satisfied is 3 661. This shows that the probability of the lower bound being tight is
over 90%.

7. CONCLUSION

In this paper, the concepts of complex and real performance radii are introduced to measure the
performance robustness of an LTI system with respect to dynamic and parametric perturbations
respectively. An algorithm for the computation of the complex performance radius is given, which
complements the algorithms in the u framework (which treats more general set-ups) for robust
performance analysis. A computationally tractable lower bound for the real stability radius is
given, which often turns out to be tight. Further study is needed for the exact computation of the
real performance radius.

The analysis in this paper is for continuous time systems. The results can be easily adapted for
discrete time systems.
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