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SUMMARY

This paper considers the problem of robust performance of a linear time-invariant system in theH
=

norm.
The concepts of complex and real performance radii are introduced to describe the smallest size of dynamic
or parametric perturbations to a feedback system that either destabilize the system or destroy a performance
bound in a certain closed-loop transfer matrix of the system. An algorithm to compute the complex
performance radius is given. For the real performance radius, a lower bound, which often turns out to be
exact, is obtained.
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1. INTRODUCTION

This paper concerns the robust H
=

performance of a linear time-invariant (LTI) system under
dynamic or parametric perturbation. Consider the uncertain system shown in Figure 1. LetRH

=
denote the ring of real rational functions in H

=
. Assume that G"[G11

G21
G12
G22

]3RH (q`p)C(l`m)
=

is
a transfer matrix representing an LTI system and *3FmCp, where F is either the complex field
C or the real field R. The transfer matrix from w to z is then given by the following linear
fractional transformation:

F(G,*)"G
11
#G

12
(I!*G

22
)~1*G

21

The system is said to be internally stable if (I!*G
22

)~1 exists and belongs to HmCm
=

.
Now assume that EG

11
E
=
(1. Define the performance radius of G to be

prF(G ) :"supMr :F(G,*) is internally stable and

EF(G,*)E
=
(1 for all *3FmCp with E*E(rN (1)

Here the norm of * is the spectral norm, i.e., the largest singular value. prC (G ) will be called the
complex performance radius of G and prR (G ) the real performance radius. The purpose of this
paper is to study the computation of prC (G ) and prR(G ). A complete solution to the problem of
computing prC (G) is given. Roughly speaking, prC(G ) can be computed via the computation of an
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Figure 1. Uncertain control system

H
=

norm and a frequency sweep of a function which can be evaluated by performing a one-
dimensional convex optimization. The problem of computing prR is however not completely
solved in this paper. Instead a lower bound is obtained. This lower bound can be obtained via the
computation of a real stability radius and a frequency sweep of a function which can be evaluated
by performing a two-dimensional nonlinear minimization. It is also shown that the function to be
minimized has only one local minimum. Numerical experience shows that this lower bound is
often tight.

It is clear that prR (G ) gives a measure to the robust performance of the system shown in
Figure 1 under parametric uncertainty. It can be shown using standard techniques1 that

prC(G )"supMr :F(G,*) is internally stable and

EF(G,*)E
=
(1 for all *3HmCp

=
with E*E

=
(rN

Hence prC(G ) gives a measure to the robust performance of the feedback system under LTI
dynamic perturbation. Furthermore, if we define the norm of a stable nonlinear system F, i.e.,
a bounded nonlinear causal operator from L

2
[0,R) to L

2
[0,R), by

EFE" sup
u3L2

[0,R) ,uO0

EFuE
2

EuE
2

Then we can also show by using the small gain theorem that

prC (G)"supMr : F(G, *) is internally stable and

EF(G, *)E(1 for all nonlinear time-varying systems * with E*E(rN

This says that prC(G) also gives a measure to the robust performance of the feedback system under
nonlinear time-varying perturbations.

The robust performance measure prF (G) is also connected to the robust stability of LTI systems
under structured perturbations, which has been studied extensively in the k framework, see e.g.,
References 2—5. Consider the uncertain system shown in Figure 2. The small gain theorem implies
that this uncertain system is internally stable for all *3RHmCp

=
with E*E

=
(r and *3 3RH lCq

=
with E*3 E

=
(1 if and only if prC (G)*r. In the k framework, algorithms are available to

determine if the uncertain system in Figure 2 is internally stable for all *3RHmCp
=

with
E*E

=
(r and *3 3RH lCq

=
with E*3 E

=
(r. Notice the slight difference between the formula-

tion of the complex performance radius and that of k. Of course, a moment’s thought reveals
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Figure 2. Augmented uncertain control system

that the k algorithm can be iteratively used to find prC (G). In this paper, we propose an
algorithm specifically tailored to prC (G ) so that it is computed directly without this additional
iteration.

The complex performance radius, though not called so, is also studied in Reference 6. An
algorithm for its computation, free from the additional iteration, is given in Reference 6. The
algorithm is based on the quasi-convex univariate minimization of the largest generalized
eigenvalue of a semi-definite matrix pair. Our algorithm, however, is different. It is based on the
convex univariate minimization of the largest eigenvalue of a Hermitian matrix. Owing to the
better convexity property of our minimization problem, faster and more reliable line search
methods can be applied. Also notice that generalized eigenvalue problems have higher computa-
tional complexity than Hermitian eigenvalue problems (with roughly the same size).

The emphasis of this paper is the real performance radius. Again the small gain theorem implies
that the uncertain system in Figure 2 is internally stable for all *3RmCp with E*E(r and
*3 3H lCq

=
with E*3 E

=
(1 if and only if prR(G )*r. This type of robust stability problem with one

complex full block and one real full block can also be studied in the k framework. However, no
algorithm is readily available to compute the corresponding k value. The past literature in
k favours to model parametric perturbations in the form of scalar times identity,4 which usually
ends up with exponential time algorithms. Our conviction is that modelling parameter perturba-
tions in the form of full matrices may in some cases yield easier solutions. Although we are not
able to solve completely the computation problem of the real performance radius at this moment,
we believe that it is potentially solvable.

The computation of prF can also be used to find the worst H
=

performance when the
perturbation bound is given. The connection again is made possible by the small gain theorem. In
the dynamic perturbation case, it is actually the same problem as the computation of prC :

sup
*|RHmCp

= , E*E
=:1

EF (G,*)E
=
"prC AC

0

I

I

0DGC
0

I

I

0DB
In the parametric perturbation case, it can be done by iteratively computing prR .

sup
*|RmCp, E*E:1

EF (G,*)E
=
"supGc : prRAC

1/cI
0

0

IDGB'1H
The paper is organized as follows. Section 2 is for the preliminary development. We will convert

the computation of the performance radius to well-defined linear algebra problems. Section 3
gives a formula for the complex performance radius. Section 4 gives a lower bound of the real
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performance radius and Section 5 gives some properties of the lower bound. In Section 6, two
examples are presented. Section 7 is the conclusion.

In the following, we define some notation used in this paper. For X3CmCp, the real and
imaginary parts of X are denoted by ReX and ImX respectively. The singular values of X are
denoted by p

i
(X ), assuming non-increasing order. The largest singular value of X is also denoted

by pN (X). We always set EXE"pN (X ). If X is Hermitian, then the eigenvalues of X are denoted by
j
i
(X ), also assuming non-increasing order.

2. DEVELOPMENT

Recall from References 1, 7 and 8, the definition of the stability radius of F3RHpCm
=

:

rF(F )"inf ME*E :*3FmCp and (I!*F )~1NH
=

N

For G3RH (q`p)C(l`m)
=

with EG
11

E
=
(1, define

pF(G )" inf
u|*0,=+

inf GE*E :*3FmCp, detGI!C
0

**

*
0DM ( ju)H"0H

where

M( ju)"C
S ( ju)

N*( ju)

N ( ju)

R( ju)D (2)

and

S ( ju)"G*
12

( ju)[I!G
11

( ju)G*
11

( ju)]~1G
12

( ju) (3)

N( ju)"G*
22

( ju)#G*
12

( ju)G
11

( ju)[I!G*
11

( ju)G
11

( ju)]~1G*
21

( ju) (4)

R( ju)"G
21

( ju)[I!G*
11

( ju)G
11

( ju)]~1G*
21

( ju) (5)

Note that S ( ju)*0 and R( ju)*0 for all u3[!R,R].
In fact, M equals the transfer matrix from [u1

u2
] to [y1

y2
] in Figure 3. By the definition of star

product,9 we also have M"[(JG&J ) |G]J, where, J"[0
I

I
0
].

Proposition 1

prF (G)"min MrF(G22
), pF (G)N.

Figure 3. System theoretic interpretation of M
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Proof. If E*E(rF(G22
), then I!*G

22
( ju) is non-singular for all u3[!R,R]. In this case,

EF(G,*)E
=
"1 if and only if for some u3[!R,R],

det C
I

F*[G ( ju),*)]

F[G( ju), *]

I D
"det GC

I

G*
11

( ju)

G
11

( ju)

I D!C
G

12
( ju)

0

0

!G*
21

( ju)**D

C
0

I!*G
22

( ju)

I!G*
22

( ju)**

0 D
~1

C
G*

12
( ju)

0

0

!*G
21

( ju)DH
"0

By using the formula det [A
C

B
D
]"det (D) det(A!BD~1C), we see that the above equality is true if

and only if

det

I G
11

( ju) G
12

( ju) 0

G*
11

( ju) I 0 !G*
21

( ju)**

G*
12

( ju) 0 0 I!G*
22

( ju)**

0 !*G
21

( ju) I!*G
22

( ju) 0

"det







I G
11

( ju) G
12

( ju) 0

G*
11

( ju) I 0 0

G*
12

( ju) 0 0 I

0 0 I 0

!

0 0

0 G*
21

( ju)

0 G*
22

( ju)

I 0

C
0

**

*
0DC

0

0

0

G
21

( ju)

0

G
22

( ju)

I

0D






"0

Direct computation shows that

M ( ju)"C
0

0

0

G
21

( ju)

0

G
22

( ju)

I

0D
I G

11
( ju) G

12
( ju) 0

G*
11

( ju) I 0 0

G*
12

( ju) 0 0 I

0 0 I 0

~1 0 0

0 G*
21

( ju)

0 G*
22

( ju)

I 0

Hence, if E*E(rF(G22
), then EF(G,*)E

=
"1 is equivalent to

det GI!C
0

**

*
0DM( ju)H"0

for some u3[!R,R].
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Notice that in the definition of pF (G), taking the infimum over [0,R] or over [!R,R] does not
make any difference. Therefore, by the definition of pF(G ), if E*E(minMrF(G22

), pF(G )N, then
EF(G,*)E

=
O1. Since EF(G,*)E

=
is continuous in * when E*E(rF (G

22
), we know that if

E*E(minMrF (G22
), pF (G )N, then F(G,*) is internally stable and EF (G,*)E

=
(1. This shows

that prF (G )*min MrF (G
22

), pF (G )N.
From the definitions and the above proof, it is easy to see that there exists a *3Fm]p, with

E*E"minMrF(G22
), pF (G )N, such that either internal stability is destroyed or EF(G,*)E

=
"1.

This shows prF (G))minMrF (G
22

), pF (G )N. h

The computation of rF (G22
) has been studied for a long time and the following formulas are

now well known:1,7,8,10

rC (G
22

)"EG
22

E~1
=

(6)

rR(G
22

)"G sup
u|*0,=+

inf
c|(0,1+

p
2 AC

ReG
22

( ju)

c~1 ImG
22

( ju)

!c ImG
22

( ju)

ReG
22

( ju) DBH
~1

(7)

Hence, we only need to focus on the computation of pF(G ) in this paper.
For Hermitian matrix M"[ S

N* N
R
]3C (m`p)C(m`p) with S*0 and R*0, define

tF(M)"inf GE*E : *3FmCp, detGI!C
0

**

*
0DMH"0H (8)

then it follows that pF (G )"infu|*0,=+
tF[M( ju)]. Therefore, if tF (M) can be obtained for each

M"[ S
N* N

R
] with S*0 and R*0, then prF (G ) can be computed by a frequency sweep.

The next two sections are dedicated to the computation of tC and tR respectively. Before
going into the comutation of tF , we observe that if G is given in terms of a state space
realization:

G(s)K

A B
1

B
2

C
1

D
11

D
12

C
2

D
21

0

(9)

then a formula for M ( ju) is given by

M( ju)"C
0

C
2

0

D
21

BT
2

0

DT
12
0 D

0 0 !juI!AT !CT
1

0 I !BT
1

!DT
11

juI!A !B
1

0 0

!C
1

!D
11

0 I

~1 0 CT
2

0 DT
21

B
2

0

D
12

0

3. COMPLEX PERFORMANCE RADIUS

It follows from the development in Section 2 that prC(G ) can be obtained via the computation of
tC(M ) for each M"[ S

N* N
R
] with S*0 and R*0. Hence, this section is dedicated to the

computation of tC (M). In the following, we show that tC(M ) is the infimum of a convex
univariate function.
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Note that

detGI!C
0

**

*
0DMH"det GI!C

JcI
0

0

I /JcD C
0

**

*
0DM C

JcI
0

0

I /JcD
~1

H
"detGI!C

0

**

*
0D C

S/c
N*

N

cRDH (10)

Theorem 1

Let M"[ S
N* N

R
] satisfy S*0 and R*0. Then

tC(M )"G inf
c;0

j
1 C

S/c
N*

N

cRDH
~1

Furthermore, j
1
[S@c
N* NcR] is a convex function of c on (0,R).

Several lemmas are needed for the proof of Theorem 1.

Lemma 1 (See Reference 11, p. 149)

Let F (c)3CnCn be a Hermitian matrix function analytic on an open set !LR. Then there exist
a unitary matrix function »I (c)"[vJ

1
(c),2, vJ

n
(c)]3CnCn and a diagonal matrix function

"3 (c)"diag [j3
1
(c),2, j3

n
(c)]3CnCn, both analytic on !, such that

F (c)"»I (c)"3 (c)»I * (c)

Furthermore,

djI
i
(c)

dc
"vJ *

i
(c)

dF(c)
dc

vJ
i
(c) (11)

Lemma 2

Let F (c)3CnCn be a Hermitian matrix function analytic on an open set !LR. Let
j
1
(c)*j

2
(c)*2*j

n
(c) be its ordered eigenvalues. If j

i
(c) has a local extremum at c

0
3!, then

F(c
0
) has an eigenvector v3Cn corresponding to j

i
(c

0
) such that v* (dF(c

0
)/dc)v"0.

Proof. If the multiplicity of j
i
(c

0
) is one, then j

i
(c) is equal to j3

j
(c) given in Lemma 1 in an open

neighbourhood of c
0
. Thus c

0
is also a stationary point of j3

j
(c). Let vJ

j
(c) be an analytic

eigenvector corresponding to jI
j
(c). Then (11) gives

vJ *
j
(c

0
)
dF(c

0
)

dc
vJ
j
(c

0
)"0

If instead the multiplicity of j
i
(c

0
) is greater than one, then we can assume, without loss of

generality, that in an open neighbourhood of c
0
, j

i
(c)"jI

j1
(c) for c)c

0
and j

i
(c)"jI

j2
(c) for

c*c
0
. If j1"j2, then j

i
(c

0
) must be a local extremum of jI

j1
(c), so we get the result by applying
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(11). Otherwise let vJ
k
(c), k"j1, j2, be the analytic eigenvectors of F (c) corresponding to jI

k
(c).

Then (11) gives

djI
j1

(c
0
)

dc
"vJ *

j1
(c

0
)
dF(c

0
)

dc
vJ
j1

(c
0
)

djI
j2

(c
0
)

dc
"vJ *

j2
(c

0
)
dF(c

0
)

dc
vJ
j2

(c
0
)

Put va"avJ
j1
#(1!a2 )1@2vJ

j2
for a3[0, 1]. Then va(c0) is also a unit length eigenvector of F (c

0
)

corresponding to j
i
(c

0
). Define

f (a)"v*a (c
0
)
dF(c

0
)

dc
va (c0)

Since c
0

is a local extremum of j
i
(c), we must have f (0) f (1)"(djI

j1
(c

0
)/dc) (djI

j2
(c

0
)/dc))0. By

continuity, f (a)"0 has a solution in [0, 1]. This proves the lemma. K

Lemma 3

Let F"[ X
Y* Y

Z
]3C(m`p)C(m`p) be a Hermitian matrix. Suppose X*0 and Z*0, then for

i"1, 2,2, min Mm, pN,

j
i
(F)*!j

m`p~i`1
(F )

Proof. Let F
1
"[ 0

Y* Y
0
] and F

2
"[X

0
0
Z
]. Then F"F

1
#F

2
and for i"1, 2,2, minMm, pN,

j
i
(F

1
)"!j

m`p~i`1
(F

1
)"p

i
(½ )

Since F
2
*0, it follows that j

i
(F)*j

i
(F

1
) for i"1, 2,2,m#p. Hence, for

i"1, 2,2, minMm, pN,

j
i
(F)*j

i
(F

1
)"!j

m`p~i`1
(F

1
)*!j

m`p~i`1
(F ) K

Proof of Theorem 1. Denote F (c)"[S@c
N* NcR]. Then from Lemma 3, j

1
[F (c)]*!j

m`p
[F(c)] for

all c'0, hence j
1
[F (c)]"pN [F(c)]. We see from (10) that

tC (M)*G inf
c;0

j
1
[F(j)]H

~1

The fact that pN [F(c)] is convex follows from Reference 12.
Let j

0
"infc;0

j
1
[F(c)]. The rest of the proof is to show that tC (M))j~1

0
.

If j
0
"0, we certainly have tC(M ))j~1

0
. So we assume that j

0
'0. There are two cases.

Case 1: infc;0
j
1
[F(c)] is attained at c

0
3 (0,R).

By Lemma 2, there exist v"[x
y
], x3Cm and y3Cp such that F (c

0
)v"j

0
v, i.e.,

1

c
0

Sx#Ny"j
0
x (12)

N*x#c
0
Ry"j

0
y (13)
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and

v*
dF(c

0
)

dc
v"!

1

c2
0

x*Sx#y*Ry"0

Multiplying (12) and (13) from the left by x* and y* respectively, subtracting the resulting
equations, and noting that x*Ny must be real, we get

j
0
(x*x!y*y)"

1

c
0

x*Sx!c
0
y*Ry"0

Hence, x*x"y*y. Now construct *"(j
0
)~1xy*/x*x, then it is easy to verify that E*E"(j

0
)~1,

and

GI!C
0

**

*
0D C

S/c
0

N*

N

c
0
RDH C

x

yD"0

which means that detMI![ 0** *
0
]MN"0. From the definition of tC (M), we have

tC(M ))(j
0
)~1.

Case 2: j
0
"limc?0

j
1
[F(c)] or j

0
"limc?=

j
1
[F(c)].

This case occurs only when S"0 or R"0. Assume S"0, then

detGI!C
0

**

*
0DMH"det(I!*N*) det (I!**N)

which shows tC (M)"[pN (N )]~1.
On the other hand, since R*0, we have

j
0
" inf

c;0
j
1 C

0

N*

N

cRD"pN (N)

Therefore, tC (M)"j~1
0

in this case. K

4. A LOWER BOUND OF THE REAL PERFORMANCE RADIUS

Recall from Section 2 that prR(G )"min MrR(G
22

), pR (G )N. The computation of rR (G
22

) can
be done using formula (7). The computation of pR(G ) depends on the computation of tR (M)
for a given Hermitian matrix M"[ S

N* N
R
] with S*0 and R*0. Unfortunately, we are not

able to compute tR (M) at this moment. In this section, a lower bound of tR (M) will be
given.

Let

S
r
"ReS, S

i
"ImS, R

r
"ReR, R

i
"Im R, N

r
"ReN, N

i
"ImN

Then

S
r
"ST

r
, R

r
"RT

r
, S

i
"!ST

i
, R

i
"!RT

i
(14)

and S
r
*0, R

r
*0.
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We follow the idea in Reference 10 to convert the problem of computing tR(M), one with
complex data and realness constraint, into a pure real problem. Let

P
0
"C

ReM

Im M

!Im M

Re M D"
S
r

N
r

!S
i

!N
i

NT
r

R
r

NT
i

!R
i

S
i

N
i

S
r

N
r

!NT
i

R
i

NT
r

R
r

, *
a
"

0 * 0 0

*T 0 0 0

0 0 0 *

0 0 *T 0

The following lemma will be frequently used.

Lemma 4

Given Hermitian matrix Z"X#j½ with X, ½3RnCn, let Q"[X
Y

~Y
X

]. Then j
2i~1

(Q),
j
2i

(Q)"j
i
(Z ).

Proof. This follows since Q is similar to [X`jY
0

0
X~jY

], and X#j½, X!j½ share the same
eigenvalues. K

For a,b'0, define scaling matrix

D(a, b )"diagCJabI,
1

Jab
I, S

b
a

I, S
a
b

ID (15)

then D~1(a,b )*
a
D~1(a, b )"*

a
and

P (a, b) :"D(a,b )P
0
D(a, b)"

abS
r

N
r

!bS
i

!aN
i

NT
r

1
abRr

1
aNT

i
!1

bRi
bS

i
1
aNi

baSr
N

r
!aNT

i
1
bRi

NT
r

a
bRr

(16)

Assume P
0
"P(1, 1) has n positive and l negative eigenvalues. Lemma 4 says that n and l are

even. Also observe that n*l which follows from applying Lemma 3 and Lemma 4 to a similarly
permuted version of P

0
:

S
r

!S
i

N
r

!N
i

S
i

S
r

N
i

N
r

NT
r

NT
i

R
r

!R
i

!NT
i

NT
r

R
i

R
r

By the law of inertia, P (a,b ) also has n positive and l negative eigenvalues for all a,b'0 and its
second eigenvalue is always non-negative.

Another interesting property of P (a, b) is that

j
i
[P(a, b )]"j

iCP A
1

a
, bBD (17)
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for i"1, 2,2, 2(m#p), a, bO0. This is because P(a,b ) is similar to

abS
r

aN
i

!bS
i

N
r

aNT
i

a
bRr

!NT
r

!1
bRi

bS
i

!N
r

b
aSr

1
aNi

NT
r

1
bRi

1aNT
i

1abRr

(18)

and

C
bS

i
NT

r

!N
r

1
bR

i
D
T
"C

!bS
i

!NT
r

N
r

!1
bR

i
D .

Theorem 2

tR(M )*Minfa| (0,1+,b;0
j
2
[P(a,b )]N~1.

To prove Theorem 2, we need two lemmas.

Lemma 5 (See Reference 13, p. 203)

Let M, *3CnCn be Hermitian matrices. Denote the eigenvalues of M as g
1
*g

2
*2*g

n
and the eignevalues of M#* as m

1
*m

2
*2*m

n
. Then

Dm
i
!g

i
D)pN (*)

Lemma 6

For A3CmCp and B3CpCm,

m!rank(I#AB)"p!rank(I#BA)

Proof. It can be verified that

C
I
m
0

!A

I
p
D C

I
m
#AB

B

0

I
p
D"C

I
m
B

0

I
p
#BADC

I
m
0

!A

I
p
D

Hence,

rank C
I
m
#AB

B

0

I
p
D"rank C

I
m
B

0

I
p
#BAD

which implies that rank (I
m
#AB)#p"rank (I

p
#BA)#m. The lemma then follows. K

Proof of Theorem 2. It follows from (17) that

inf
a|(0,1+,b;0

j
2
[P(a,b )]" inf

a,b;0
j
2
[P(a,b )]

Since rank (P
0
)"n#l, it follows from Lemma 4 that rank (M)"(n#l)/2. Suppose that

M is decomposed as M"º
M

"
M
º*

M
, where º*

M
º

M
"I, º

M
3C (m`p)C((n`l)@2), and "

M
3

R((n`l)@2)C((n`l)@2) is diagonal and non-singular. Then

P
0
"C

Re M

ImM

!ImM

ReM D"º"ºT
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where

º"C
Reº

M
Imº

M

!Imº
M

Reº
M
D, ""C

"
M
0

0

"
M
D

Let X(a, b )"D(a, b )º, then X (a,b ) has full column rank. Carry out the Gram—Schmidt
orthonormalization to the columns of X (a,b ), we get X (a,b )"»(a,b )R(a,b ), where
»T(a,b )»(a,b )"I and R(a, b) is non-singular. It is easy to see from the orthonormalization
process that the maps from X to » and R are analytic when X has full column rank. Hence,
»(a,b ) and R(a,b ) are analytic in (a, b ).

Let E(a, b)"R (a, b )"RT (a,b ), then E(a, b ) is analytic. From P
0
"º"ºT, we get

P (a,b )"D(a,b )P
0
DT (a,b )"» (a,b )E(a, b )»T(a, b ) (19)

From D (1, 1)"I, we get » (1, 1)"º and E (1, 1)"".
Since »(a, b) is orthonormal, the eigenvalues of E (a,b) are equal to the non-zero eigenvalues of

P(a,b ).
Note that

rank (I!*
a
P
0
)"rankMI!*

a
P (a, b)N

"rank MI!*
a
»(a,b )E (a, b)»T (a,b )N

By Lemma 6, we obtain

2(m#p)!rank(I!*
a
P
0
)"n#l!rank MI!»T(a,b )*

a
» (a,b )E(a, b )N

"n#l!rank ME~1(a,b)!»T(a, b )*
a
»(a,b )N (20)

Denote

H (a,b,*)"E~1(a, b )!»T(a,b )*
a
»(a, b) (21)

then by (20), rank[H(a,b,*)] is independent of (a, b ), and

rank[H (a,b,*)]"n#l!M2(m#p)!rank(I!*
a
P
0
)N (22)

In the following, we will show that if pN (*)(Minfa,b;0
j
2
[P (a,b )]N~1, then

rank[H (a,b,*)]"n#l, which leads to tR (M)*Minfa,b;0
j
2
[P(a,b )]N~1 by (22).

Since E (a,b ) is analytic and non-singular and » (a,b ) is analytic, it follows that for a fixed *, the
eigenvalues of H(a, b,*) are continuous in (a, b). Since the rank of H (a,b,*) is independent of
(a,b ), we conclude that for a fixed *, the inertia of H (a,b,*) are independent of (a, b). Conse-
quently, it can be denoted by Mn* , l* , f*N. Furthermore, n* , l* and f* are even numbers, since by
Lemma 4 the eigenvalues of

H (1, 1,*)"C
"~1

M
0

0

"~1
M
D!C

Reº
M

Imº
M

!Imº
M

Reº
M
D
T
*

a C
Reº

M
Imº

M

!Imº
M

Reº
M
D

have even multiplicity.
The eigenvalues of H(a, b, 0)"E~1(a,b ), which are j~1

i
[P(a, b )], i"1,2, n and

i"2(m#p)!l#1,2, 2(m#p), satisfy

2*j~1
2

[P(a, b )]*j~1
1

[P(a,b )]'0'j~1
2(m`p)

[P(a, b )]*j~1
2(m`p)~1

[P(a, b )]*2
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Now consider the inertia of H(a, b,*) under perturbation. If Ep6 (*)E(Minfa,b;0
j
2
[P (a,b )]N~1,

there exists a
0
, b

0
such that pN (*)(j~1

2
[P(a

0
, b

0
)]. Note that the eigenvalues of P (a, b ) are the

same as those of

abS
r

!bS
i

N
r

!aN
i

bS
i

baSr
1aNi

N
r

NT
r

1aNT
i

1abR
r

!1
bRi

!aNT
i

NT
r

1
bRi

abRr

(23)

Hence, if l*2, then Lemma 3 implies that pN (*)(!j~1
2(m`p)~1

[P (a
0
,b

0
)]. Since

pN [»T (a
0
, b

0
)*

a
»(a

0
, b

0
)])pN (*), it follows from Lemma 5 that n*'n!2 and l*'l!2. Since

n* and l* are even numbers, we must have n*"n, l*"l. This is also true if l"0.
Therefore if Ep6 (*)E(Minfa,b;0

j
2
[P(a, b )]N~1, then rank[H(a, b,*)]"n#l, which shows

rank(I!*
a
P
0
)"2(m#p). Then it follows from Lemma 4 and the definition of tR (M) that

tR(M )*Minfa,b;0
j
2
[P(a, b )]N~1. K

Remark 1

More general scaling matrices D than the one used in (15) can be used so that D~1*
a
D~1"*

a
and DP

0
D is symmetric. For example,

D
1
(a, b )"diag CaI ,

1

a
I , bI ,

1

b
ID

and

D
2
(a, b, c)"

aI 0 cI 0

0 a
1
I 0 c

1
I

cI 0 bI 0

0 c
1
I 0 b

1
I

, where C
a
1

c
1

c
1

b
1
D"C

a
c

c
bD

~1

It is easy to see that D(a,b )"D
1
(Jab , Jb/a ) and one can verify that D

2
(a,b, c)P

0
D

2
(a, b, c) is

similar to D
1
(j

1
, j

2
)P

0
D

1
(j

1
, j

2
), where j

1
and j

2
are the eigenvalues of [ac c

b]. So these scaling
matrices are equivalent to (15) as conservatism reduction is concerned.

Remark 2

Let p
0
"infa,b;0

p
2
[P(a, b )], then it is easy to see from the above proof that another lower

bound for tR (M) is p~1
0

. It is obvious that p
0
*infa,b;0

j
2
[P(a, b)]. If p

0
"infa,b;0

p
2
[P (a,b )]

is obtained at (a
0
,b

0
), and p

0
is a singular value of P (a

0
,b

0
) with multiplicity greater than one,

then p~1
0

may be strictly smaller than Minfa,b;0
j
2
[P(a, b )]N~1, if this multiplicity is caused by the

intersection of j
2
[P(a, b )] and !j

2(m`p)
[P(a, b )], as is illustrated in Section 6.

5. PROPERTIES OF THE LOWER BOUND

A lower bound of tR(M ), given in terms of a two-dimensional nonlinear minimization problem, is
derived in the last section. Two questions remain to be answered:

1. How tight is the lower bound?
2. Is the minimization problem numerically tractable?
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The first question is partially answered in this section; we give sufficient conditions under which
the lower bound is tight (Theorem 3). The second issue is completely answered; we show that the
function j

2
[P (a, b)], which is to be minimized in the lower bound, is unimodal in the area

(0, 1]](0,R). The definition of a multivariate function being unimodal is non-standard. We adopt
the following definition: a real valued function is said to be unimodal if the inverse image of
(!R, y) is connected for all y3R.

Theorem 3

If j
2
[P(a,b )] has a local minimum j

0
at (a

0
,b

0
) with (a

0
,b

0
)3 (0, 1)](0,R) and if j

0
is a simple

eigenvalue of P (a
0
, b

0
), then tR (M)"j~1

0
.

Theorem 4

j
2
[P(a, b )] is unimodal in the area a3 (0, 1], b'0.

Numerical experience shows that the condition in Theorem 3 is often satisfied. Numerical
examples also show that j

2
[P(a,b )] has a rather weak convexity property: it is not quasi-convex.

For fixed a
0
, the univariate function j

2
[P(a

0
, b )] is not unimodal in general. Nevertheless, it is

enough that j
2
[P(a, b)] is unimodal. Many non-smooth local optimization methods can be

applied to find the global infimum of j
2
[P (a,b )]. Numerical experience shows that the simplex

method works quite well.
To prove Theorem 3, we need the following lemma.

Lemma 7

Let º3RpCk and »3RmCk. If ºTº"»T»O0, then

(1) pN [»ºs]"1,
(2) »ºsº"»,
(3) (ºs)T»T»"º.

Proof. (1) and (2) are directly from Lemma 2 of Reference 10. Now, we prove (3). Since
»T»"ºTº, so,

(ºs)T»T»"(ºs)TºTº"º

Here, the last equality is obtained by applying the definition of Moore—Penrose inverse
directly. K

Proof of Theorem 3. Since j
0

is a simple eigenvalue of P (a
0
,b

0
), it follows from Reference 13,

p. 185, Corollary 2.4 that j
2
[P(a, b)] is analytic in a neighbourhood of (a

0
, b

0
). Denote the

eigenvector of P (a
0
,b

0
) corresponding to j

0
as v, then P (a

0
, b

0
)v"j

0
v.

Since j
0
"j

2
[P(a

0
, b

0
)] is a local minimum, we must have

Lj
2
[P (a

0
,b

0
)]

La
"vT

LP(a
0
,b

0
)

La
v"0

Lj
2
[P (a

0
,b

0
)]

Lb
"vT

LP(a
0
,b

0
)

Lb
v"0

200 TING-SHU HU AND LI QIU



Now partition v in accordance with P (a,b ) as v"[vT
1

vT
2

vT
3

vT
4
]T, where v

1
, v

3
3Rm and

v
2
, v

4
3Rp. Then we will first show that

[v
1

v
3
]T[v

1
v
3
]"[v

2
v
4
]T[v

2
v
4
] (24)

When this is satisfied, a special * can be constructed as *"j~1
0

[v
1

v
3
][v

2
v
4
]s, with pN (*)"j~1

0
and det MI![ 0

*T *
0
][ S

N* N
R
]N"0, which leads to tR (M))j~1

0
.

Note that

Lj
2
[P(a

0
, b

0
)]

La
"vT

LP(a
0
,b

0
)

La
v"2vT

LD(a
0
, b

0
)

La
P
0
D (a

0
,b

0
)v

"

1

a
0

vT

I 0 0 0

0 !I 0 0

0 0 !I 0

0 0 0 I

D(a
0
,b

0
)P

0
D(a

0
, b

0
)v

"

j
0

a
0

(vT
1
v
1
!vT

2
v
2
!vT

3
v
3
#vT

4
v
4
)

Similarly,

Lj
2
[P(a

0
, b

0
)]

Lb
"

j
0

b
0

(vT
1
v
1
!vT

2
v
2
#vT

3
v
3
!vT

4
v
4
)

Since Lj
2
[P(a

0
, b

0
)]/La"Lj

2
[P(a

0
, b

0
)]/Lb"0, we have vT

1
v
1
!vT

2
v
2
"vT

3
v
3
!vT

4
v
4

and
vT
1
v
1
!vT

2
v
2
"!(vT

3
v
3
!vT

4
v
4
), which result in

vT
1
v
1
"vT

2
v
2

and vT
3
v
3
"vT

4
v
4

(25)

From P (a
0
,b

0
)v"j

0
v, i.e.,

a
0
b
0
S
r

N
r

!b
0
S
i

!a
0
N

i
NT

r
1

a0b0
R

r
1a0NT

i
!1

b0
R

i
b
0
S
i

1a0Ni
b0
a0 Sr

N
r

!a
0
NT

i
1
b0

R
i

NT
r

a0
b0

R
r

v
1

v
2

v
3

v
4

"j
0

v
1

v
2

v
3

v
4

we obtain

2j
0
(vT

3
v
1
!vT

4
v
2
)"[vT

3
!vT

4
vT
1

!vT
2
]TP (a

0
,b

0
)v

"Aa0#
1

a
0
B Ab0

vT
3
S
r
v
1
!

1

b
0

vT
2
R

r
v
4
!vT

4
NT

i
v
3
#vT

1
N

i
v
2B (26)

and

0"[vT
3

vT
4

!vT
1

!vT
2
]TP (a

0
, b

0
)v

"Aa0!
1

a
0
B Ab0

vT
3
S
r
v
1
!

1

b
0

vT
2
R

r
v
4
!vT

4
NT

i
v
3
#vT

1
N

i
v
2B (27)

Here we use the fact that vT
4
R

i
v
4
"vT

2
R

i
v
2
"vT

1
S
i
v
1
"vT

3
S
i
v
3
"0.
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Since j
0
O0 and a

0
O1, from (26) and (27), we get vT

3
v
1
"vT

4
v
2
. Combining with (25), we

get (24).
Now construct * as *"j~1

0
[v

1
v
3
][v

2
v
4
]s, then from Lemma 7, pN (*)"j~1

0
and

j
0
*[v

2
v
4
]"[v

1
v
3
][v

2
v
4
]s[v

2
v
4
]"[v

1
v
3
]

j
0
*T[v

1
v
3
]"([v

2
v
4
]s )T[v

1
v
3
]T[v

1
v
3
]"[v

2
v
4
]

Therefore,

[I!*
a
P (a

0
,b

0
)]v"v!j

0
*

a
v"

v
1

v
2

v
3

v
4

!j
0

0 * 0 0

*T 0 0 0

0 0 0 *

0 0 *T 0

v
1

v
2

v
3

v
4

"0

and

D~1 (a
0
,b

0
) (I!*

a
P
0
)D(a

0
, b

0
)v"0 (28)

Partition D (a
0
, b

0
)v as [xT

1
xT
2

xT
3

xT
4
]T, with appropriate dimensions, then (28) is equivalent to

AI!C
0

*T

*
0D C

S

N*

N

RDBAC
x
1

x
2
D#j C

x
3

x
4
DB"0

which means that det MI![ 0*T *
0
][ S

N* N
R
]N"0. From the definition of tR (M), we have

tR(M ))pN (*)"j~1
0

)Minfa| (0,1+,b;0
j
2
[P(a, b)]N~1, since j

0
*infa|(0,1+,b;0

j
2
[P(a, b )].

Combining with Theorem 2, we get tR (M)"j~1
0

. K

The seemingly innocent Theorem 4 has a long and dry proof, to which the rest of this section
is devoted. We break the proof into several lemmas. In the sequal, we denote the inertia of
[Sr

NT
i

Ni

Rr
] as (n, l, f ).

Lemma 8

For each fixed b
0
'0,

1. j
1
[P (a,b

0
)] is convex on (0,R), its minimum is attained at a"1;

2. j
2
[P (a,b

0
)] is unimodal on (0, 1].

Proof. The convexity of j
1
[P(a, b

0
)] is obvious by noting that j

1
[P (a,b

0
)]"pN [P(a,b

0
)]

from Lemma 3. The minimum is attained at a"1 since j
1
[P(a,b

0
)]"j

1
[P(1a , b0

)].
The rest is for the proof of 2. We can write det[jI!P (a, b

0
)]"a~(n`l) f (j, a), where f (j, a) is

a polynomial in a with degree 2(n#l) and in j with degree 2(m#p), note that P(a, b ) is similar to
the matrix in (18). So for almost all j, there exist at most 2(n#l) non-zero a’s (counting
multiplicity) such that det[jI!P(a,b

0
)]"0. In other words, for almost all c'0, the intersec-

tion of the straight line j"c and the curves j"j
i
[P(!a, b

0
)] and j"j

i
[P(a,b

0
)], 0(a(R,

i"1, 2,2, 2(m#p), consists at most 2(n#l) points.
Denote c

1
"infa| (0,1+ j2[P(a,b

0
)] and c

2
"infa|(0,1+j2[P(!a, b

0
)]. It is easy to see that

j
i
[P(!a,b

0
)]"!j

2(m`p)~i`1
[P(a, b

0
)], so by permutting P(a,b) to (23) and applying Lemma 3,

we have c
1
*c

2
.
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As aP0 (orR), j
i
[P(a, b

0
)], i)n, and j

i
[P (!a,b

0
)], i)l, go to infinity. Hence for any

c*infa|(0,1+ji[P(a,b
0
)], i)n, the intersection of j"c and j"j

i
[P(a, b

0
)] consists at least two

points on (0,R). The same applies to j
i
[P(!a, b

0
)], i)l.

From Lemma 4, j
1
[P(!1,b

0
)]"j

2
[P (!1, b

0
)]. Since j

i
[P(!a, b

0
)] is continuous in a, it

follows that the intersection of j"c, c*c
1
*c

2
, and j"j

i
[P (!a, b

0
)], i)l has at least 2l

points.
Now, suppose on the contrary that j

2
[P (a,b

0
)] is not unimodal in (0, 1], i.e., it has another

local minimum c@
1

in additional to c
1
, on the interval (0, 1]. Then there must exist a local

maximum cA
1
'c@

1
. For all c3 (c@

1
, cA

2
), the straight line j"c must have at least six (if n'1), or

four (if n"1) crossings with j"j
2
[P (a, b

0
)] for a3 (0,R), noting the property (17). Adding to

the number of crossings with other curves, j"j
i
[P(a,b

0
)], 3)i)n and j"j

i
[P(!a, b

0
)],

i)l, we get more than 2(n#l) total crossings. Therefore, we conclude that j
2
[P (a,b

0
)] is

unimodal in (0, 1]. K

For 0(b(R, define

j
1
(b ) :" inf

a| (0,1+
j
2
[P (a,b )]

Lemma 9

j
1
(b)"lima?0

j
2
[P(a, b)] if and only if n)1. In this case, j

1
(b ) is a constant over (0,R).

Proof. If n'1, then lima?0
j
2
[P(a,b

0
)]"R, so it cannot be equal to j

1
(b ). The case when

n"0 is trivial; P (a, b ) is actually a constant matrix in this case. For the case when n"1, denote
c
0
"lima?0

j
2
[P(a,b

0
)] (which is finite) for some fixed b

0
'0. If c

0
'j

1
(b

0
), then for any

c3 (j
1
(b

0
) , c

0
), j"j

i
[P(a, b

0
)], i"1, 2 have at least four crossings with j"c, which is imposs-

ible (cf. the proof of Lemma 8). Therefore, j
1
(b

0
)"c

0
. In this case, owing to S,R*0, we must

have rankS
r
, rank R

r
, rankN

i
)1 and S

i
"0, R

i
"0. Hence, by noting l)n, we see that

[bSr

NT
i

Ni

Rr @b] is similar to

ba c 0

c b/b 0

0 0 0

for some real a, b, c with a, b*0, ab)c2. If ab(c2, then as aP0, the 2(m#p)!2 finite
eigenvalues of P(a,b ) approach some constants independent of b. If ab"c2, then it can be
verified that lima?0

j
2
[P(a, b )]"pN (N

r
). K

In the following, we will assume that n*2. Define

a
6
(b) :"Ma3 (0, 1] : j

2
[P(a,b )]"j

1
(b )N

and

a
M

(b ) :"maxMa
6
(b )N a

m
(b ) :"min Ma

6
(b )N

With the assumption that n*2, the set a
6
(b) is the non-empty and is closed interval for each

b'0. Hence a
m
(b ) and a

M
(b ) are well defined.

Lemma 10

When n*2, j
1
(b ) is continuous and piecewise analytic, and a

M
(b ), a

m
(b ) are piecewise analytic.
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Proof. The continuity of j
1
(b) can be proved similarly to the proof of the Proposition in

Reference 10. By applying Lemma 8 and the continuity of j
1
(b ) and j

2
[P(a,b )], it can be shown

that a
M

(b ) and a
m
( b ) are piecewise continuous. Let

det [jI!P (a, b )]"a~k1b~k2
N1
<
i/1

enei
i

(j)
N2
<
i/1

f nfi
i

(j, b )
N3
<
i/1

gngi
i

(j, a)
N4
<
i/1

hnhi
i

(j, a, b )

where e
i
(j), i"1,2, N

1
, are different prime polynomials in j with positive degrees, f

i
(j, b),

i"1,2, N
2
, are different prime polynomials in j and b, with positive degrees, etc. It should be

noted that det [jI!P(a,b )] cannot have a divisor in the form of f (a,b ), f (a) or f (b ).
Denote

x (j, a, b )"
N1
<
i/1

e
i
(j)

N2
<
i/1

f
i
(j,b )

N3
<
i/1

g
i
(j, a)

N4
<
i/1

h
i
(j, a,b )

y(j, a,b)"
N3
<
i/1

g
i
(j, a)

N4
<
i/1

h
i
(j, a, b )

Then for each a, bO0, the roots of x (j, a, b ) are the same as j
i
[P(a, b )], but with decreased

multiplicities. And the roots of y (j, a,b ) are the eigenvalues of P (a, b ) after excluding those that
are independent of a.

It is easy to see that x (j, a, b ) and Lx(j, a,b )/Lj have no common divisor with positive degree,
so from Theorem 5.5 and Theorem 5.6 of Reference 14, there exist polynomials u

1
(j, a, b),

v
1
(j, a, b) and t

1
(a, b)O0 such that

x (j, a, b )u
1
(j, a,b )#

Lx(j, a, b )

Lj
v
1
(j, a,b )"t

1
(a, b) (29)

Similarly, there exist u
2
(j, a,b ), v

2
(j, a, b ) and t

2
(a,b )O0 such that

y (j, a, b )u
2
(j, a,b )#

Ly(j, a, b )

La
v
2
(j, a, b )"t

2
(a,b ) (30)

Case 1: a
6
(b

0
) is a single point. Then j

2
[P(a,b

0
)] must be a root of y(j, a,b

0
) in a neighbour-

hood of a
6
(b

0
). If j

1
(b

0
) is a simple root of y (j, a

6
(b

0
), b

0
), we have

Ly(j
1
(b

0
), a

6
(b

0
),b

0
)

La
"!

Ly(j
1
(b

0
), a

6
(b

0
),b

0
)

Lj
dj

2
[P(a

6
(b

0
),b

0
)]

da
"0

If j
1
(b

0
) is not a simple root, then Ly(j

1
(b

0
), a

6
(b

0
),b

0
)/Lj"0, which results in

Lx(j
1
(b

0
), a

6
(b

0
), b

0
)/Lj"0, since y divides x.

Case 2: a
6
(b

0
) is an interval. It is easy to see that the multiplicity of j

1
(b

0
) at a

M
(b

0
) is greater

than one, among the roots of x (j, a
M

(b
0
),b

0
). So we also get Lx(j

1
(b

0
), a

6
(b

0
),b

0
)/Lj"0. The

same applies to a
m
(b

0
).

Combining the above two cases, we have

M[(j
1
(b), a

M
(b ), b] : b'0N

LG(j, a,b ) :
Lx(j, a, b )

Lj
"x (j, a,b )"0 or

Ly(j, a,b )

La
"y (j, a,b )"0H
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Noticing (29) and (30), we obtain

M[a
M

(b ),b] : b'0NLM (a,b ) : t
1
(a, b)"0 or t

2
(a,b )"0N

Denote the roots of t
1
(a,b ) and t

2
(a, b ) for fixed b as a

i
(b ). Then a

i
(b ) is piecewise analytic on

the intervals where it takes values in the real field. Since a
M

(b ) is piecewise continuous when
n*2, we conclude that it is piecewise analytic. The same applies to a

m
(b ). Hence P(a

M
(b ),b ) is

piecewise analytic. It follows that j
1
(b ) is also piecewise analytic. K

Lemma 11

Let F(c)3CnCn be a Hermitian matrix function analytic on an open set !LR. Suppose j
i
(c

0
)

is an eigenvalue of F (c
0
) with multiplicity k, with corresponding eigenvector matrix ¼3CnCk,

then the inertia of ¼*(dF(c
0
)/dc)¼ represents the numbers of eigenvalues (among the k ones

clustered at c
0
) that increase, decrease and stationary, respectively.

Proof. By Lemma 1, there exists º(c)3CnCk, º* (c)º(c)"I
k
, and diagonal "

k
(c)3CkCk, both

analytic on !LR, such that

F (c)º(c)"º(c)"
k
(c)

where "
k
(c

0
)"j

i
(c

0
)I

k
. Differentiating both sides and multiplying from the left with º*(c), we

get

º*(c
0
)
dF(c

0
)

dc
º (c

0
)"

d"
k
(c

0
)

dc

This is for the special analytic eigenvector matrix. For arbitrarily selected eigenvector matrix ¼,
¼"º(j

0
)Q for some non-singular Q. So,

¼*
dF(c

0
)

dc
¼"Q*

d"
k
(c

0
)

dc
Q K

and the inertia is invariant.

Lemma 12

When n*2, j
1
(b ) is unimodal.

Proof. We prove this by contradiction. Suppose that j
1
(b ) has two local minima at b

1
and b

2
.

Then by Theorem 2, tR(M )*maxMj
1
~1(b

1
), j

1
~1 (b

2
)N. Between b

1
and b

2
, j

1
(b) must have a local

maximum, say at b
0
, with j

1
(b

0
)'maxMj

1
(b

1
), j

1
(b

2
)N. If this is true, then we can show that

tR(M ))j
1
~1(b

0
), which is a contradiction.

By Lemma 10, a
M

(b ) is piecewise analytic, we can denote

lim
b?b~

0

da
M

(b )

db
"t~ and lim

b?b`0

da
M

(b)

db
"t`

If b
0
is a strict local maximizer of j

1
(b ), then neither t` nor t~ can be infinity, since j

1
(b

0
) is a local

minimum of j
2
[P(a, b

0
)], it cannot be a strict local maximum of j

2
[P(a,b )] along a

M
(b ). If b

0
is
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not a strict local maximizer of j
1
(b ), then b

0
can always be chosen such that neither t` nor t~ is

infinity.

Case 1: limb?b~0 a
M

(b )"limb?b`
0

a
M

(b )"a
0
.

By applying Lemma 11 and observing that j
1
[P(a,b

0
)] is convex and takes its minimum at

a"1, we can show that j
1
(b ) cannot take its local maximum at b

0
with a

M
(b

0
)"1, or with

j
1
[P(a

0
,b

0
)]"j

2
[P (a

0
,b

0
)].

Let the multiplicity of j
2
[P (a

0
,b

0
)] be k, then j

2
and all of the k clustered eigenvalues increase

along a
M

(b) for b(b
0

and decrease for b'b
0
. Let the corresponding eigenvector matrix be ¼,

then by Lemma 11,

¼T C
LP(a

0
, b

0
)

La
t~#

LP(a
0
, b

0
)

Lb D¼*0, ¼T C
LP(a

0
,b

0
)

La
t`#

LP(a
0
, b

0
)

Lb D¼)0 (31)

Since a
0

is a local minimizer of j
2
[P(a,b

0
)], so from Lemma 2, there exists a unit vector z3Rk

such that zT¼T(LP (a
0
, b

0
)/La)¼z"0. From (31), we must have zT¼T(LP(a

0
, b

0
)/Lb )¼z"0.

Denote

¼z"

v
1

v
2

v
3

v
4

,

then like the proof of Theorem 3, we have

[v
1

v
3
]T[v

1
v
3
]"[v

2
v
4
]T[v

2
v
4
]

So there exists a *3RmCp with pN (*)"j
1
~1(b

0
) and det MI![ 0*T *

0
][ S

N* N
R
]N"0. Thus

tR (M))j
1
~1 (b

0
)(max Mj

1
~1(b

1
), j

1
~1(b

2
)N)tR(M )

which is a contradiction.

Case 2: limb?b~0 a
M

(b )Olimb?b`
0

a
M

(b ).
Let a

1
"limb?b~0 a

M
(b) and a

2
"limb?b`

0
a
M

(b). Then for a3[a
1
, a

2
], j

2
[P(a,b

0
)] is a constant,

since j
2
[P(a , b

0
)] is unimodal and j

1
(b) is continuous. As in case 1, we can show that a

1
, a

2
(1

and j
1
[P(a

i
, b

0
)]Oj

2
[P (a

i
,b

0
)], i"1, 2. Let the multiplicity of the constant eigenvalues be

m
1

and the multiplicity of the eigenvalues clustered at a
1

be m
1
#m

2
. Denote the analytic

eigenvectors corresponding to these m
1
#m

2
eigenvalues as [¼

1
(a)¼

2
(a)]3R2(m`p)C(m1`m2),

then ¼T
1
(a)(LP(a,b

0
)/La)¼

1
(a)"0. Since b

0
is a local maximizer of j

1
(b ), by Lemma 11, we have

C
¼T

1
(a

1
)

¼T
2
(a

1
)D C

LP(a
1
,b

0
)

La
t~#

LP(a
1
,b

0
)

Lb D [¼
1
(a

1
) ¼

2
(a

1
)]*0

Hence ¼T
1
(a

1
) (LP(a

1
,b

0
)/Lb )¼

1
(a

1
)*0 and similarly ¼T

1
(a

2
) (LP(a

2
, b

0
)/Lb)¼

1
(a

2
))0.

By continuity, there exists a
0
3[a

1
, a

2
] such that ¼T

1
(a

0
) (LP(a

0
, b

0
)/Lb)¼

1
(a

0
) has a zero

eigenvalue. Therefore, there exists a unit vector z3Rm1 such that

zT¼T
1
(a

0
)
LP(a

0
, b

0
)

Lb
¼

1
(a

0
)z"0

What is left is similar to case 1. K
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Proof of ¹heorem 4. Combining Lemma 8, Lemma 9, Lemma 10 and Lemma 12, we get the
result. K

6. EXAMPLES

Example 1

Assume that a state space description of G of the form (9) is given by

A B
1

B
2

C
1

D
11

D
12

C
2

D
21

0

"

79 20 !30 !20

!41 !12 17 13

167 40 !60 !38

33·5 9 !14·5 !11

0·25 0 0 0

0 0·1 0 0·1

0·4 0 0·5 0

0 !0·5 0 0

0 0 0 ! 0·2

!0·5 !0·35 0 0 0·3 0

0 0·15 0·2 0·4 0 0·2

0·3 0 0 0 0 0

0 0·3 0 0 0 0·2

0·1 0 0 0 0 0

0 0·1 0 0·2 0 0

0·2 0 0·1 0 0 0

!0·2 0·1 0 0 0 0

0 0 0 0 0 0

The perturbation matrix * is 3]3. The computation result is:

rC(G
22

)"0·5006; pC(G )"0·1700

rR(G
22

)"1·0432; pR(G )*0·3998

Hence prC (G)"0·1700; prR(G)*0·3998.

In Figure 4, the dashed line is tC[M( ju)] and the solid line is the lower bound for tR[M ( ju)].
For this example, the condition in Theorem 3 is satisfied at all u. Therefore, the solid line in
Figure 4 is actually the plot of tR[M( ju)] and the real performance radius is exactly computed
as prR(G)"0·3998.

It is remarked in Section 4 that another lower bound of tR(M ) is Minfa,b;0
p
2
[P(a,b )]N~1. As

a comparison, Minfa,b;0
p
2
[P (a, b )]N~1, where P(a,b ) is formed from M( j10·11), is computed and

the value is 0·2491, whereas the lower bound given by Theorem 2 is 0·3998. This shows that the
lower bound of tR(M ) given by Minfa,b;0

p
2
[P (a,b )]N~1 is more conservative.

Example 2

It is of interest to know how tight the lower bound in Theorem 2 is. A sufficient condition is
given in Theorem 3 for this lower bound to be the exact value of tR (M). Hence the probability
that the condition in Theorem 3 is satisfied gives an indication of how often the lower bound is
tight. 4 000 complex matrices G"[G11

G21
G12
G22

] are randomly generated with pN (G
11

)(1 and
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Figure 4. The solid line is a lower bound for tR[M( ju)] and the dashed line is tC[M( ju)]

M is computed from G by using (2)—(5). The number of G matrices for which the condition of
Theorem 3 is satisfied is 3 661. This shows that the probability of the lower bound being tight is
over 90%.

7. CONCLUSION

In this paper, the concepts of complex and real performance radii are introduced to measure the
performance robustness of an LTI system with respect to dynamic and parametric perturbations
respectively. An algorithm for the computation of the complex performance radius is given, which
complements the algorithms in the k framework (which treats more general set-ups) for robust
performance analysis. A computationally tractable lower bound for the real stability radius is
given, which often turns out to be tight. Further study is needed for the exact computation of the
real performance radius.

The analysis in this paper is for continuous time systems. The results can be easily adapted for
discrete time systems.
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