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Brief Paper

Connection of Multiplicative/Relative Perturbation in
Coprime Factors and Gap Metric Uncertainty*

GUOXIANG GU- and LI QIU‡
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Abstract—In this paper, it is shown that a linear uncertain
system described by a certain L

=
multiplicative or relative

perturbation in its coprime factors that are not necessarily
normalized, is the same as the one described by a gap or l-gap
metric ball. Hence all the stability robustness results for gap or
l-gap metric uncertainty carry over to this type of coprime
factor perturbation. Uncertain systems described by H

=
multi-

plicative or relative perturbations in coprime factors are also
studied in this paper. Necessary and sufficient conditions for
robust stability of a feedback system with coprime factors of
both the plant and the controller subject to simultaneous
H

=
multiplicative or relative perturbations are obtained.

( 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction
In studying controller reduction with multiplicative or relative
error bound in coprime factors, a robust stability condition was
derived in Gu (1995) for a feedback system whose plant is subject
to H

=
norm bounded multiplicative or relative perturbation in

the coprime factors that are not necessarily normalized. The
condition obtained is exactly the same as that for the gap metric
or l-gap metric unceertainty studied in Georgiou and Smith
(1990) and Vinnicombe (1993). There thus appears to be an
inherent connection between the two different types of uncer-
tainties that is missed in Gu (1995). This paper aims to clarify the
missing connection between the multiplicative or relative per-
turbation in coprime factors and the gap metric or l-gap metric
uncertainty. This is made possible by extending the H

=
per-

turbation studied in (Gu, 1995) to certain L
=

perturbations.
With the connection established, it becomes easy to analyse the
robust stablity of feedback systems with both the plant and the
controller subject to simultaneous but independent multiplica-
tive or relative perturbations in coprime factors.

The gap metric was introduced to control literature in Zames
and El-Sakkary (1980). Its power and elegance have been dem-
onstrated in subsequent studies, see, e.g., Georgiou (1988), Geor-
giou and Smith (1990), Qiu and Davison (1992) and Sefton and
Ober (1993). A new metric, called l-gap metric, was invented in
Vinnicombe (1993) and was shown to be advantageous over the
gap metric. The optimal robust stabilizing controller with re-
spect to gap or l-gap plant uncertainty has been shown to have
some nice properties and has formed the basis of the loop
shaping design method in McFarlane and Golver (1990). In the
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gap or l-gap based robust control theory, normalized coprime
factorizations have been playing a crucial role. In particular,
one main result in this theory states that a set of systems in a
gap metric ball is equal to a set of systems formed by H

=
norm

bounded additive perturbations on normalized coprime factors
(Georgiou and Smith, 1990). In this paper, by connecting the
gap or the l-gap with perturbations on coprime factors that are
not necessarily normalized, we provide more insight into this
theory, make the theory more convenient and versatile, and
pave the way for the extension of the theory to the cases when
normalized coprime factorizations are not desirable, such as
infinite dimensional systems (Georgiou and Smith, 1992; Treil,
1994), or to cases when normalized coprime factorizations are
not possible, such as systems with Banach input output spaces
(Qiu, 1995).

The notation used in this paper is standard. The symbol Lm
2

denotes Cm valued Lebesgue 2-space defined on the imaginary
axis. Hm

2
denotes the Cm valued Hardy 2-space defined on the

right half of the complex plane. Lp]m
=

and Hp]m
=

denote the
Cp]m valued Lebesgue and Hardy R-spaces respectively.
RLp]m

=
and RHp]m

=
consist of real rational members of

Lp]m
=

and Hp]m
=

, respectively. Sometimes we simply write L
2
,

L
=

, RL
=

, etc. if the dimensions are irrelevant or can be
deduced from the context. For G3L

=
, we write G& (s)"

G(!sN )T. For G3RLm]m
=

with G~13RLm]m
=

, the winding
number of G, denoted by wnoG, is defined to be the excess of the
number of zeros over the number of poles of G in the open right
half of the complex plane. For a matrix A3Cp]m, the largest and
the smallest singular values are denoted by p6 (A) and p (A),
respectively. In the following, a diagonal matrix
diag(a

1
, a

2
,2 , a

n
) is not necessarily square and its dimensions

are deducible from the context.

2. ºncertainty descriptions
The systems considered in this paper are assumed to be linear

time-invariant and finite dimensional. Thus they can be identi-
fied with real rational transfer matrices. The set of such transfer
matrices of size p]m is denoted by Pp]m. A system is said to be
stable if its transfer matrix belongs to H

=
. The feedback system

shown in Fig. 1, or simply a pair (P,C ), is said to be stable if the
transfer matrix from [ u1

u2
] to [e1

e2
], which is given by [I

P
C
I
]~1, is

stable.
Often in practical situations, the exact transfer matrix P of

a physical plant is unknown but belongs to a neighborhood of
a known nominal transfer matrix P

0
. In this case, a feedback

controller C
0

is designed based on the nominal plant P
0
. How-

ever, the implemented controller C may not be exactly C
0

due to
the need for controller reduction, finite wordlength effect, etc.
but belongs to a neighborhood of C

0
. Hence an important

problem is whether or not the feedback system in Fig. 1 remains
stable when only (P

0
, C

0
) is known to be stable. This is referred

to as robust stability. There are many ways to define neighbor-
hoods of systems. In general, different definitions lead to differ-
ent conditions for robust stability. Some of the most elegant
results on robust control were obtained by using the gap metric
and the l-gap metric to describe uncertainty (Georgiou, 1988;
Georgiou and Smith, 1990; Qiu and Davison, 1992; Sefton and
Ober, 1993; Vinnicombe, 1993).
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Fig. 1. Feedback control systems.

The gap metric and the l-gap metric can be defined using
Hilbert space geometric language. The definitions adopted be-
low, which are actually computation formulas derived in Sefton
and Ober (1993) and Vinnicombe (1993), respectively, appear to
be more elementary for control researchers. It is well-known
that each member of Pp]m admits right and left coprime factor-
izations:

P"NM~1"MI ~1NI , MI ,NI ,M,N3RH
=

.

The coprime factorizations can be made normalized, i.e., satisfy-
ing

M&M#N&N"I and MI MI &

#NI NI &"I.

Let P
1
,P

2
3Pp]m and P

1
"N

1
M~1

1
, P

2
"N

1
M~1

1
be nor-

malized coprime factorizations. The gap metric between P
1

and
P
2

is defined as

d(P
1
, P

2
)" inf

Q,Q~1|RH
=
KK C

M
1

N
1
D!C

M
2

N
2
DQ KK

=

. (1)

The l-gap metric between P
1

and P
2

is defined as

dl(P1
, P

2
)" inf

Q,Q~1|RL
=

8/0Q/0
KK C

M
1

N
1
D!C

M
2

N
2
DQ KK

=

. (2)

A gap ball and a l-gap ball are then given by

B (P
0
, r)"MP : d(P,P

0
)(rN, (3)

Bl (P0
, r)"MP : dl (P,P

0
)(rN, (4)

which give open neighborhoods of P
0

and can be used as
uncertain system descriptions.

Assume that P
0
3Pm]p and P

0
"N

0
M~1

0
is a right coprime

factorization that may not be normalized. The following neigh-
borhoods of P

0
are introduced in (Gu, 1995):

C
.6-

(P
0
, r)"

GP"NM~1 :C
M

ND"(I#*)C
M

0
N

0
D, *3RH

=
, DD*DD

=
(rH,

(5)

C
3%-

(P
0
, r)"

GP"NM~1 :C
M

ND"(I#*)~1C
M

0
N

0
D,*3RH

=
, DD*DD

=
(rH.

(6)

It is shown in Gu (1995) that if these neighborhoods are used to
describe the uncertainty of the plant for a feedback system, the
necessary and sufficient conditions for the robust stability of the
feedback system are exactly the same as in the case when
the uncertainty is described by gap metric or the l-gap metric.
This hints a connection between gap metric ball or l-gap metric
ball and the sets given in equations (5) and (6). In this paper, we
will show that the gap ball is actually more closely related to

the following enlarged sets:

C @
.6-

(P
0
, r)"GP"NM~1 :C

M

ND"(I#*)C
M

0
N

0
D3RH

=
,

M and N are coprime, *3RL
=

, DD*DD
=
(rH, (7)

C @
3%-

(P
0
, r)"GP"NM~1 :C

M

ND"(I#*)~1C
M

0
N

0
D3RH

=
,

M and N are coprime, *3RL
=

, DD*DD
=
(rH. (8)

To connect to the l-gap metric, we need to enlarge the sets
further. First, we need to extend the concept of winding number
to nonsquare transfer matrices. Let G3RLn]m

=
have

Smith—McMillan form

diag (c
1
,c

2
,2 , c

.*/Mn,mN ).

If all c
1
,c

2
,2 , c

.*/Mn,mN are nonzero and L
=

invertible, then the
winding number of G is defined as

wnoG"wno c
1
c
2
2c

.*/Mn,mN .

The sets that are connected to l-gap ball are now defined by

C A
.6-

(P
0
, r)"GP"NM~1 :C

M

ND"(I#*) C
M

0
N

0
D ,

wno C
M

ND"0,*3RL
=

, DD*DD
=
(rH , (9)

C A
3%-

(P
0
, r)"GP"NM~1 :C

M

ND"(I#*)~1 C
M

0
N

0
D ,

wno C
M

ND"0, *3RL
=

, DD*DD
=
(rH . (10)

Notice that the definitions (5)—(10) do not depend on the
particular coprime factorization used in their definitions. To be
absolute rigorous, we need to require in the sets (5)—(10) that
M~1 exists. Also notice that the perturbation matrices * in
equations (7)—(10) are not required to be stable. It is clear that

C
.6-

(P, r)LC @
.6-

(P, r)LCA
.6-

(P, r), (11)

C
3%-

(P, r)LC @
3%-

(P, r)LCA
3%-

(P, r). (12)

This is because matrices M and N in (5)—(6) are always right
coprime, whereas matrices M and N in (9)—(10) are required to
satisfy wno [M

N
]"0.

3. Connections
In this section, two theorems are stated which completely

establish the connections between sets B(P
0
, r), C @

.6-
(P, r),

C @
3%-

(P, r), and between Bl(P0
, r), CA

.6-
(P

0
, r), CA

3%-
(P

0
, r).

¹heorem 1. B(P
0
, r)"C @

.6-
(P, r)"C @

3%-
(P, r).

Proof. The theorem is trivially true when r'1. Thus only the
case r41 will be considered in the following. We first prove
B(P

0
, r)"C @

.6-
(P

0
, r). Since P

0
3Pm]p, normalized coprime

factoriztaion P
0
"N

0
M~1

0
can be assumed in the definition of

C @
.6-

(P, r). Suppose that P3C @
.6-

(P
0
, r). Then there exists

a right coprime factorization P"NM~1 such that

C
M

ND"C
M

0
N

0
D#C

*M

*ND ,

C
*M

*ND"*C
M

0
N

0
D3RH

=
,

KK C
*M

*ND KK
=

4DD*DD
=
(r.
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Since M and N are right coprime, there exists Q3RH
=

with
Q~13RH

=
such that [MQ~1

NQ~1 ] is an isometry. Hence

KK C
M

0
N

0
D!C

MQ~1

NQ~1DQ KK
=

"KK*C
M

0
N

0
D KK

=

(r.

It follows from the definition (1) that P3B (P
0
, r) that concludes

C @
.6-

(P
0
, r)LB (P

0
, r). Now assume P3B (P

0
, r). Then there

exist normalized coprime factorization P"NM~1 and some
Q such that

KK C
M

0
N

0
D!C

M

NDQ KK
=

(r, Q, Q~13RH
=

.

Define

*"!AC
M

0
N

0
D!C

M

NDQB [M&

0
N&

0
].

Then

C
MQ

NQD"(I#*) C
M

0
N

0
D , DD*DD

=
"KK C

M
0

N
0
D!C

M

NDQ KK
=

(r.

It follows from the definition (7) that P3C @
.6-

(P
0
, r). This

proves B (P
0
, r)LP3C @

.6-
(P

0
, r).

By the definitions (7) and (8), it is obvious that

P3C @
3%-

(P
0
, r)QP

0
3C @

.6-
(P, r).

Since
P3B (P

0
, r) Q P

0
3B (P, r) QP

0
3C @

.6-
(P, r),

it follows that B(P
0
, r)"C @

3%-
(P

0
, r). K

¹heorem 2. Bl (P0
, r)"C A

.6-
(P

0
, r)"C A

3%-
(P

0
, r).

Proof. Again the case r'1 is trivial. Thus r41 is assumed. We
first prove Bl (P0

, r)"C A
.6-

(P
0
, r). Suppose that P3CA

.6-
(P

0
, r).

Using a normalized coprime factorization P
0
"N

0
M~1

0
in the

definition of C A
.6-

(P, r) yields

C
M

ND"C
M

0
N

0
D#* C

M
0

N
0
D3RH

=
,

wno C
M

ND"0, KK *C
M

0
N

0
D KK

=

4DD*DD
=
(r,

for some factorization P"NM~1 that may not be coprime.
Hence there exists some Q with Q, Q~13RL

=
and wnoQ"0

such that MQ~1 and NQ~1 belong to RH
=

and are right
coprime. Hence

KK C
M

0
N

0
D!C

MQ~1

NQ~1D Q KK
=

"KK* C
M

0
N

0
D KK

=

(r.

It follows from equation (2) that P3Bl(P0
, r) that concludes

C A
.6-

(P
0
, r)LBl (P0

, r). Now assume that P3Bl(P0
, r). Then

there exist normalized coprime factorization P"NM~1 and
some Q such that

KK C
M

0
N

0
D!C

M

ND Q KK
=

(r, Q, Q~13RL
=

, wnoQ"0.

Define

*"!AC
M

0
N

0
D!C

M

NDQB [M&

0
N &

0
].

Then

C
MQ

NQD"(I#*)C
M

0
N

0
D ,

wnoC
MQ

NQD"0,

DD*DD
=
"KK C

M
0

N
0
D!C

M

NDQ KK
=

(r.

It follows from definition (9) that P3C @
.6-

(P
0
, r) . This proves

B (P
0
, r)LC @

.6-
(P

0
, r).

Note that if

C
M

ND"(I#*)~1 C
M

0
N

0
D , wnoC

M

ND"0,

then there exists some Q3RL
=

with Q~13RL
=

and
wnoQ"0 such that MQ and NQ are right coprime. Hence

C
M

0
Q

N
0
QD"(I#*) C

MQ

NQD , wnoC
M

0
Q

N
0
QD"0.

This shows that

P3C A
3%-

(P
0
, r) Q P

0
3C A

.6-
(P, r) .

Since
P3Bl (P0

, r) Q P
0
3Bl (P, r) Q P

0
3C A

.6-
(P, r) ,

it follows that Bl (P0
, r)"C A

3%-
(P

0
, r) . K

In Georgiou and Smith (1990), ¹-gap and ¹-gap ball were
introduced that can be defined as

d
T
(P

1
, P

2
)"d(PT

1
, PT

2
), B

T
(P

0
, r)"BT(PT

0
, r).

Let P
0
"MI ~1

0
NI

0
be a left coprime factorization P

0
that may

not be normalized. Define

C3 @
.6-

(P
0
, r) "MP"MI ~1NI : [MI NI ]

"[MI
0

NI
0
] (I#*3 )3RH

=
,

MI and NI are coprime, *3RL
=

, DD*3 DD
=
(rN,

C3 @
3%-

(P
0
, r) "MP"MI ~1NI : [MI NI ]

"[MI
0

NI
0
] (I#*3 )~13RH

=
,

MI and NI are coprime, *3RL
=

, DD*3 DD
=
(rN.

Then the following result is true.

Corollary 3. B
T
(P

0
, r)"CI @

.6-
(P

0
, r)"C3 @

3%-
(P

0
, r) .

Proof. The results follow from those of Theorem 1 by noting
that CI @

.6-
(P

0
, r)"C @T

.6-
(PT

0
, r) and CI @

3%-
(P

0
, r)"C @T

3%-
(PT

0
, r) . K

It is shown in Georgiou and Smith (1990) that
d
T
(P

0
, r)Od (PT

0
, r) in general. Thus in general,

C @
.6-

(P, r)OCI @
3%-

(P, r), C @
3%-

(P, r)OCI @
.6-

(P, r).

However if the perturbation is restricted to be stable as those for
C

.6-
(P

0
, r) and C

3%-
(P

0
, r), then the equality holds. In the re-

maining part of this section, we take a close look at C
.6-

(P
0
, r)

and C
3%-

(P
0
, r).

For P
0
3Pp]m, let P

0
"MI ~1

0
NI

0
be a left coprime factoriz-

ation. Define

C3
.6-

(P
0
, r)"MP"MI ~1NI : [MI NI ]

"[MI
0

NI
0
] (I#*), *3RH

=
, DD*DD

=
(rN,

C3
3%-

(P
0
, r)"MP"MI ~1NI : [MI NI ]

"[MI
0

NI
0
] (I#*)~1, *3RH

=
, DD*DD

=
(rN.

Proposition 4. C
.6-

(P
0
, r)"CI

3%-
(P

0
, r), and C

3%-
(P

0
, r)"

CI
.6-

(P
0
, r).

Proof. Again, we only need consider the case for r41. Let
P3C

.6-
(P

0
, r). Then there exists a right coprime factorization

P"NM~1 such that

C
M

ND"(I#*) C
M

0
N

0
D, *3RH

=
, DD*DD

=
(r,

where P
0
"N

0
M~1

0
is a right coprime factorization. Let

P
0
"MI ~1

0
NI

0
be a left coprime factorization.
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Define

[MI NI ]"[MI
0

NI
0
] (I#*3 )~1,

*3 "¹*¹~1, ¹"C
0

!I

I

0D . (13)

Then MI and NI are left coprime, since (I#*3 )~1 is a unit RH
=

due to DD*3 DD
=
"DD*DD

=
(r41. Furthermore,

[!NI MI ] C
M

ND"[MI NI ] ¹ C
M

ND
"[MI

0
NI

0
] (I#*3 )~1¹ C

M

ND
"[MI

0
NI

0
] ¹ (I#*)~1 C

M

ND
"[!NI

0
MI

0
] C

M
0

N
0
D"0.

Consequently, MI ~1NI "NM~1"P, which implies that
P3CI

3%-
(P

0
, r) by (13). Therefore, C

.6-
(P

0
, r) LCI

3%-
(P

0
, r). Re-

versing the procedure above shows CI
3%-

(P
0
, r)LC

.6-
(P

0
, r),

leading to the conclusion that C
.6-

(P
0
, r)"CI

3%-
(P

0
, r). The

equality C
3%-

(P
0
, r)"CI

.6-
(P

0
, r) can be similarly shown. K

It is not clear if C
.6-

(P
0
, r)"C

3%-
(P

0
, r) holds in general.

However, it holds trivially when P
0

is a scalar (SISO) system.
It has been shown in Vinnicombe (1993) that the containment

B(P
0
,r)LBl (P0

,r) is in general strict. This, together with the
following example, shows that the containments in equations
(11) and (12) are all strict in general.

Example: Let P
0
(s)"(s!1)/(s#1) and P(s)"(2s!1)/

(s#1). Then a right coprime factorization of P
0
is P

0
"N

0
M~1

0
where

C
M

0
N

0
D"C

1

(s!1)/(s#1)D
and all right coprime factorizations of P is given by P"NM~1
where

C
M

ND"C
1

(2s!1)/(s#1)DQ

and Q is a unit in RH
=

. Let *3RH
=

satisfies

C
M

ND"(I#*) C
M

0
N

0
D .

Evaluating this equation at s"1, we get

*(1) C
1

0D"C
1

1/2DQ (1)!C
1

0D .

Hence,

DD*(1) DD5min
Q (1) KK C

1

1/2DQ(1)!C
1

0D KK"
1

J5
.

This shows that P3C
.6-

(P
0
, r) "C

3%-
(P

0
, r) only if r'1/J5.

However, it is computed in Georgiou and Smith (1990) and
Vinnicombe (1993) that d (P,P

0
)"1

3
and dl (P, P

0
)"1/J10.

4. Robust stability
We are interested in the robust stability conditions for the

feedback system shown in Fig. 1 when the plant and the control-
ler are subject to simultaneous perturbations of the form de-
scribed in equations (5)— (10). Let

b
P,C

"KK C
I

PD (I!CP)~1[I C] KK
~1

=

.

The following theorems are due to Qiu and Davison (1992) and
Vinnicombe (1993).

¹heorem 5. Let P
0
3Pp]m, C

0
3Pm]p, and (P

0
,C

0
) be stable.

Then (P,C) is stable for all P3B (P
0
, r

1
)"C @

.6-
(P

0
, r

1
)"

C @
3%-

(P
0
, r

1
) and C3B(C

0
, r

2
)"C @

.6-
(C

0
, r

2
)"C @

3%-
(C

0
, r

2
) if

and only if

arcsin r
1
#arcsin r

2
4arcsin b

P0,C0
.

¹heorem 6. Let P
0
3Pp]m, C

0
3Pm]p, and (P

0
,C

0
) be stable.

Then (P,C) is stable for all P3Bl (P0
, r

1
)"C A

.6-
(P

0
, r

1
)"

C A
3%-

(P
0
, r

1
) and C3Bl(C0

, r
2
)"C A

.6-
(C

0
, r

2
)"CA

3%-
(C

0
, r

2
) if

and only if

arcsin r
1
#arcsin r

2
4arcsin b

P0,C0
.

Since C
.6-

(P
0
, r)LB(P

0
, r) and C

3%-
(P

0
, r)LB(P

0
, r) and

the containment is strict in general, one wonders if the condition
in Theorem 5 or 6 can be relaxed if P belongs to C

.6-
(P

0
, r

1
) or

C
3%-

(P
0
, r

1
), and C belongs to C

.6-
(C

0
, r

2
) or C

3%-
(C

0
, r

2
). The

answer is negative.

¹heorem 7. Let P
0
3Pp]m, C

0
3Pm]p, and (P

0
,C

0
) be stable.

Then (P,C) is stable for all P3C
.6-

(P
0
, r

1
) and C3C

3%-
(C

0
, r

2
)

if and only if

arcsin r
1
#arcsin r

2
4arcsin b

P0,C0
.

Proof. The sufficiency follows from Theorem 5 or 6. It remains
to show the necessity. Assume that

arcsin r
1
#arcsin r

2
'arcsin b

P0,C0
.

We need to construct P3C
.6-

(P
0
, r

1
), C3C

3%-
(P

0
, r

2
) such that

(P, C) is unstable. Let h"arcsin(b
P0,C0

). Then there exist
h
1
(arcsin(r

1
) and h

2
(arcsin(r

2
) such that h

1
#h

2
"h.

Let P
0
"N

0
M~1

0
be a normalized right coprime factorization

and C
0
"»I ~1

0
ºI

0
be a normalized left coprime factorization.

Then

b
P0,C0

" inf
u|*0,=)

p [»I
0
( ju)M

0
( ju)!ºI

0
( ju)N

0
( ju)].

There must exist u6 3[0,R] such that

p[»I
0
( juN )M

0
( juN )!ºI

0
( ju6 )N

0
( ju6 )]"b

P0,C0
.

By Stewart and Sun (1990) (Theorem 1.5.2.), there exist uni-
tary matrices X, ½, and Z such that

C
M

0
( juN )

N
0
( juN )D"XC

I

0D ½*,

[»I
0
( juN )!ºI

0
( juN )]"Z[C S]X*,

where
C"diag (c

1
, c

2
,2 , c

m
)3Rm]m,

S"diag(J1!c2
1
, J1!c2

2
,2 ,J1!c2

.*/Mp,mN )3Rm]p,

and 04c
1
4c

2
424c

m
. This implies c

1
"b

P0,C0
"sin h.

Define

*1
1
"X*C

diag(!sin h
1
, sinh

1
0,2 , 0) 0

diag(!cos h
1
, sinh

1
0,2 , 0) 0DX

and

*1
2
"X*C

0 diag(!sin h sinh
2
, 0,2 , 0)

0 diag(!cos h sinh
2
, 0 ,2 , 0)D

]C
diag(sin h

1
, 0,2 , 0)

diag(cos h
1
, 0,2 , 0)

diag (cos h
1
, 0 ,2 , 0)

diag(!sin h
1
, 0,2 , 0)DX.

Then it is straightforward to verify that p6 (*1
1
)"sinh

1
,

pN (*1
2
)"sin h

2
, and

[»I ( juN )!ºI ( ju
0
)] (I#*1

2
) (I#*1

1
) C

M
0
( ju )

N
0
( ju)D

in singular. Notice that *1
1

and *1
2

are of rank one. Standard
techniques exist to construct *

1
, *

2
3RH

=
such that

*
1
( juN )"*1

1
,*1

2
( juN )"*1

2
, DD*

1
DD
=
"p6 (*1

1
), and DD*

2
DD
=
"p6 (*1

2
)
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(Vidyasagar, 1985). Now let

C
M

ND"(I#*
1
) C

M
0

N
0
D ,

[»I ºI ]"[»I
0

ºI
0
] AI#C

I

0

0

!ID *
2 C

I

0

0

!IDB .

Then it follows that P"NM~13C
.6-

(P
0
, r

1
), C"»I ~1ºI 3

CI
.6-

(C
0
, r

2
)"C

3%-
(C

0
, r

2
), and (P,C ) is unstable. K

5. Conclusion
The main contribution of this paper is the establishment of the

connection between the gap or l-gap metric uncertainty and the
multiplicative/relative perturbation in coprime factors that are
not necessarily normalized. Consequently, the robust stability
probem raised in Gu (1995) is completely solved for the plants
and controllers whose coprime factors involve simultaneous and
independent perturbations. Although only finite dimensional
systems are studied, the results can be generalized to infinite
dimensional systems. In particular, Theorems 5 and 6 are applic-
able to plants and controllers of infinite dimension that admit
coprime factor perturbations of multiplicative type, where the
only requirement for the nominal plant or/and ocntroller is the
existence of some coprime factorization having continuous fre-
quency response. This is contrast to the gap metric case as
studied in Georgiou and Smith (1992) that requires the existence
of normalized coprime factorizations that admit continuous
frequency response. As indicated in Treil (1994), an infinite-
dimensional system having coprime factorization with continu-
ous frequency response may not have normalized coprime
factorization with continuous frequency response. Thus the
robust stability results in this paper complement those in
Georgiou and Smith (1992).
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