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Abs t r ac t  

In this paper, we present a formula to  compute the 
vertices of the (null) controllable regions for general 
LTI discrete-time systems with bounded inputs. For 
nth order systems with only real poles (not necessar- 
ily distinct), the formula is simplified to  an elementary 
matrix function, which can be used to show that the 
set of vertices coincides with a class of time responses 
of the time-reversed system to bang-bang controls with 
n - 2 or less switches. For second-order systems with 
a pair of complex conjugate poles, a closed form for- 
mula to compute the vertices is provided; the set of 
vertices can also be obtained from the steady state 
response of the time-reversed system to a periodic or 
near periodic bang-bang control. The influence of the 
sampling period on the controllable regions is clearly 
demonstrated with some examples. A preliminary in- 
vestigation is made on the existence of nonlinear con- 
trollers and the non-existence of linear controllers to 
achieve certain stabilization tasks. 

1 In t roduct ion  

The problem to be studied in this paper was for- 
mulated several decades ago. The definition of (null) 
controllable region in this paper is similar to those in 
[l, 6, 5 ,  171. In the 50’s and earlier ~ O ’ S ,  constrained 
control was a widely studied topic. It is closely related 
to time optimal control, e.g., see [5]. This study was 
continued in the 70’s and SO’S, e.g., see [6, 12,  141. The 
most common type of control constraint is input satu- 
ration, i.e., the input is bounded by the co-norm. The 
well known bang-bang control principle was developed 
for this kind of constrained control. 

Recently there is a renewed interest in studying 
the control of systems with constrained inputs. Great 
progress has been made in the past few years, e.g., see 
[15, 16, 7, 111. 
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There are important differences between the earlier 
control strategies and the recent developments. Ear- 
lier work was mostly aimed at time optimal control 
and there was typically a heavy on-line computational 
burden. Recent studies try to  achieve global or semi- 
global asympototic stability, disturbance attenuation, 
tracking, robustness, etc, with simple feedback control, 
such as the saturated linear feedback, which is very 
easy to  implement. However, it should be noted that 
a common assumption in most recent papers is that 
the open-loop system is semi-stable’. This assumption 
was made to  guarantee the existence of a global or a 
semi-global stabilizer, since a semi-stable LTI system 
controllable in the usual sense is globally controllable 
with bounded inputs, e.g., see [14]. 

For strictly unstable systems that have poles outside 
the unit circle (or in the open right half of the com- 
plex plane for continuous-time systems), however, the 
existing results are quite limited. Just as the controlla- 
bility result of [S, 12, 141 paved the way for the devel- 
opment of stabilization theory for semi-stable systems 
with bounded inputs, to  achieve easily implementable 
and nice control for strictly unstable systems, simple 
and exact descriptions of the controllable regions are 
required. Along this direction, some nice results have 
been recently established for continuous-time systems 
in [3] and [4]. In these papers, we first gave simple 
exact descriptions for the controllable regions of cer- 
tain classes of unstable continuous-time systems, and 
then we showed that for a system with only two anti- 
stable modes, a saturated linear state feedback can be 
designed so that any given region in the interior of the 
controllable region is in the domain of attraction. 

As usual, one might anticipate that the results in 
the continuous-time setting have their counterparts in 
the discrete-time setting. Indeed, we will show in this 
paper that through some interesting links, some of the 
controllability results in [3] have natural discrete-time 
counterparts, though the development is more techni- 
cally involved. 

Our ultimate goal is to use the newly developed con- 
trollable results to  design a practical and simple feed- 
back controller to  achieve a desired stability region and 
performance. In Section 4 of this paper, some prelimi- 

‘Here we say that a discrete-time system is semi-stable if it has 
no poles outside the unit circle and a continuous-time system is 
semi-stable if it has no poles in the open right half of the complex 
plane. 
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nary investigation is made on this subject. 

2 Preliminaries and Notation 

Consider the discrete-time system 

z ( k  + 1) = Az(lc) + B u ( k )  (1) 

where z ( k )  E R" is the state and u ( k )  E Rm is the 
control. A control signal U is said to be admissible if 
llu(k)llxl 5 1 for all integers IC 2 0. In this paper, 
we are interested in the control of system (1) by using 
admissible controls. 

Definition 1 A state 20 is said to  be (null)  control- 
lable at  a given step K if there exists a n  admissible 
control U such  that  the t i m e  response x of the sys tem 
satisfies x (0 )  = zo and x ( K )  = 0; a state zo is  said to  
be (null)  controllable if it is (null)  controllable at  some 
K < CO. 

For simplicity, we will drop the word "null" before 
"controllable" in the rest part of this paper. 

Definition 2 T h e  set  of  all states controllable at  K i s  
called the controllable region of the s y s t e m  at  K .and 
i s  denotec! by C(K) ;  the set  of all controllable states 
i s  called the controllable region of the s y s t e m  and i s  
denoted bjy C .  

In this paper, we say that a matrix A is semi-stable 
if it has no eigenvalues outside of the unit circle and A 
is anti-stable if all of its eigenvalues are outside of the 
unit circle. 

Proposition 1 A s s u m e  that  ( A ,  B )  i s  controllable. 

(a) If A i s  semi-stable, t h e n  C = R". 

(b) I f  A is anti-stable, t h e n  C i s  a bounded convex open 
set  containing the origin. 

(c) If  A == [ 2 :z ] with A1 E R"""' being anti-  

stable and A2 E R"2xn2 being semi-stable, and 

B i s  partitioned as [ ii ] accordingly, t h e n  C = 

C1 >: Rn2 where C1 i s  t he  controllable region of 
the anti-stable subsystem z l ( k  + 1) = Alz~(lc) + 

Statements (a) and (b) are well-known [14, 51. State- 
ment (c) adre proved in [2]. Because of this proposition, 
we can concentrate on the study of controllable regions 
of anti-sta.ble systems. For such systems C can be ap- 
proximated by C ( K )  for sufficiently large K .  

b, ] and the controllable region 
of the syst,em z(lc + 1) = Az(lc) + biui(IC), i = 1,. . . , m, 
is C i ,  then 

B l U ( k ) .  

If B = [ bl . . .  

m m 

Hence we can begin our study of the controllable re- 
gions with single-input systems. 

Therefore, in the rest of the paper we will assume 
that (A ,  B )  is controllable, A is anti-stable, and m = 1. 

In many situations, it may be more convenient to  
study the controllability of a system through the reach- 
ability of its time-reversed system. The time reversed 
system of (1) is 

z(lc + 1) = A - ' z ( k )  - A-lBv(IC). ( 2 )  

Note that we have assumed that A is anti-stable, so A 
is invertible. We see that z ( k )  satisfies (1) with z(0) = 
zo,  z ( k 1 )  = z1, and a given U if and only if z ( k )  := 
z(k1 - I C )  satisfies ( 2 )  with z ( 0 )  = 2 1 ,  z (k1)  = zo, 
and v(k) = u ( k 1  - IC - 1). So the two systems have 
the same set of points as trajectories, but traverse in 
opposite directions. 

Definition 3 For  t he  s y s t e m  (2), a s tate  z f  i s  said t o  
be reachable at  a given s tep K if there exists a n  ad- 
missible control v such  tha t  t he  t i m e  response z of the 
sys tem (2) satisfies z ( 0 )  = 0 and z ( K )  = z f ;  a state z f  
i s  said t o  be reachable if it i s  reachable at  some K < m. 

Definition 4 For the  s y s t e m  (2), the  set  of all states 
reachable at  K i s  called the  reachable region of t he  sys- 
t e m  (2) at  K and is denoted by R ( K ) ;  the  set  of all 
reachable s tates  is called the  reachable region of the sys- 
t e m  (2) and i s  denoted by R. 

It is known that C(K)  and C of (1) are the same as 
R ( K )  and R of ( 2 ) ,  e.g., see [8]. To avoid confusion, 
we will reserve the notation z, U ,  C ( K ) ,  and C for the 
original system (l), and reserve z ,  Y ,  R ( K ) ,  and R for 
the time-reversed system ( 2 ) .  

To proceed we need more notation. With X a poly- 
tope in R", we use Vert(X) to  denote the set of vertices 
of X .  In this paper, the notion of polytope will be ex- 
tended to  include the convex hull of a countable number 
of vertices in a bounded region. With K1 and K2 inte- 
gers, unless otherwise noted we let [KI,  Kz] denote the 
set of integers { K l ,  K1 + 1, ..., K z } .  

3 Controllable Regions 

3.1 Description of the controllable region via 
vertex control 

We have assumed in the last section that A is anti- 
stable, ( A , B )  is controllable, and m = 1. Since B is 
now a column vector, we rename it as b for clarity. For 
technical reasons, we first consider the reachable region 
R ( K ) .  From Definition 4, 
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It can be shown from the above equation that R(K) 
and % depend on A and b continuously in the Hausdorff 
metric, even if (A, b) is not controllable in the usual 
sense. 

Definition 5 An admissible control w is said to  be a 
vertex control on  [0, K] if the response z ( k )  of the sys- 
t e m  (2) is on  Vert[R(k)] f o r  all k E [0, K]. 

Lemma 1 If Z K  E Vert[R(K)] and w is a n  admissible 
control that steers the state f r o m  the origin to  Z K  at 
step K ,  then w is a vertex control o n  [0, K]. 

Denote the set of vertex controls on [0, K] as V ( K ) .  
It follows that 

[ K-1 

Vert[R(K)] = A-(K-e)bw(l) : w E V(K)} \ e=o 

Lemma 2 [lo] An admissible control w* is a vertex 
control o n  [0, K] f o r  the system (2) if and only if there 
is a nonzero vector c E R" such that c'Akb # 0 f o r  all 
k E [O,K-1] a n d v * ( k )  =sgn(c'Akb) f o r k  E [O,K-11. 

Therefore, 

V(K) = {w(k) = sgn(c'Akb), k E [0, K - 11 : 
c'Akb # 0 Vk  E [O,K - l]}. (3) 

So a vertex control is a bang-bang control, i.e., a control 
that only takes value in { 1, -1}. Using some algebraic 
manipulations, we can prove 

Theorem 1 

Vert[R(K)]= A-'b sgn(c'A-'b) : 
K i e=i 

c'A-eb # 0 V l  E [l, K] 

Since sgn(c'A-eb) = sgn(yc'A-eb) for any positive 
number y, this formula shows that Vert[%] can be de- 
termined from the surface of a unit ball. It should be 
noted that each vertex corresponds to a region in the 
surface of this unit ball rather than just one point. This 
formula provides a straightforward method to compute 
the vertices of the controllable region and no optimiza- 
tion is involved. In the following, we will give more 
attractive formulae to compute the vertices of the con- 
trollable regions for some classes of systems. 

3.2 Systems with only real eigenvalues 
For this kind of discrete-time system, more tech- 

nical consideration is necessary as compared with a 
continuous-time system. This difference can be illus- 
trated through a simple example. If A = -2, then 

dAkb changes sign at each k .  Hence, if A has some 
negative real eigenvalues, a vertex control can have in- 
finitely many switches. This complexity can be avoided 
through a technical manipulation. Suppose that A has 
only real eigenvalues, including some negative ones, 
and consider 

y ( k +  1) = A2y(k) + [ Ab b ] w ( k )  (4) 

where y(k)  = x (2k )  and w ( k )  = [ u;r:)l) 1 '  Then 
the controllable region of (1) is the same as that of 
(4), which is the sum of the controllable regions of the 
following two subsystems: 

~ ( k  + 1) = A 2 y ( k )  + Abwi(k) 

and 
y ( k  + 1) = A 2 y ( k )  + bw2(k). 

Therefore, without loss of generality, in this section we 
further assume that A has only positive real eigenval- 
ues. Under this assumption, it is known that any ver- 
tex control can have at most n - 1 switches[lO]. It can 
be shown that the converse is also true. That is, any 
bang-bang control with n - 1 or less switches is a vertex 
control; the proof is based on [3]. 

Lemma 3 : For the sy s t em (2), suppose that A has 
only positive real eigenvalues. T h e n  

(a) a uertex control has at  mos t  n - 1 switches; 

(b) any bang-bung control with n - 1 or less switches 
is a vertex control. 

It follows from the above lemma that the set of ver- 
tex controls on [0, K] can be described as follows: 

1 , 0 5 k < k l  
V(K)= % U  ~ ( k )  (-l)i , ki 5 k < ki+l , 

{ , :  
{ (-l)"-' , kn-l 5 k 5 K - 1 

0 5 kl 5 . . .  5 kn-l 5 K - 1 . i 
Notice that we allow ki = ki+l here, so V(K) includes 
all the bang-bang controls with n - 1 or less switches. 

we have 
From the equality ~~~~~ X k  = (Xkl - X k z  ) ( I -  x r l ,  

Vert [R( K )  J 

I K-1 
- 

- { A-(K-e)bw(l) : U E V(K) 

1 n-1 

+(-l)"I ( I  - A)-'b : 
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By letting K go to infinity, we get the following the- 
orem. 

Theorem 2 : If A has only real positive eigenvalues, 
then  

+(- l )nI  ( I  - A)-'b : 1 
In particular, for second-order systems, we have, 

Vert[R(K)]={f[A-K-2A-'+ I](I - A)-'b : 15 & K } .  

Hence, there are exactly 2K vertices, versus the upper- 
bound of 2'' vertices which emerges from a superficial 
analysis of R ( K ) .  Furthermore, 

Vert(%!) = {&(2A-e - I ) ( I  - A)-lb : 1 5 I <  CO}. 

Similarly, for third-order systems 

Vert[R(K)] = {*[ApK- 2A-e1+ 2A-ez- I](I- A)-'b : 

1 I e2  I Cl5 K )  

which has K ( K  + 1) vertices, and 

Vert(%) = (f(2A-'l - 2A-ez + I ) ( I  - A)-'b : 

1 I e2 I Cl I CO}. 

We can interpret the expressions for Vert(%!) as fol- 
lows. Let i:,' := ( I  - A)-'b be the equilibrium point 
of the system (2) under the constant control v(k) G 1. 
Then for a second-order system, it can be verified that 

1 k - 1  

A-(k-'-l)(-A-lb)(-l) : 

which is exactly the set of points formed by the time- 
responses of (2) starting from z z  or -z,f under the 
constant control of -1 or +1, respectively. 

Similarly, for higher-order systems with only positive 
real eigenvalues, Vert(?,) and Vert@) are the  set of  
points  formed by the  t i m e  responses of (2) starting f r o m  
z,' o r  -z,' under  any  bang-bang control wi th  n - 2 o r  
less switchtis. 

3.3 Second-order systems with complex eigen- 
values 

has a pair of complex eigen- 
values of tke form .[cos@) f j sin@)], with r > 1 and 
0 < p < 7 r .  Then, similar to [3], it can be shown that 

{sgn(c'Akb) : c # 0} = {sgn[sin(pIC + e)] : 0 E [0,27r)}. 

Assume .that A E R2 

It follows from (3) that the set of vertex controls for 
the time reversed system is 

V ( K )  = {v(lc)= sgn[sin(PIC + e)], IC E [0, K- 11 : 
0 E [0,27r), sin(plc + e) # 0 Vlc E [0, K - l]} 

and 
K-1 

Vert[R(K)] = - A-(K-e)b sgn[sin(p! + e)] : i e=o 

0 E [0,27r), sin(@ + 0) # 0 V l  E [0, K - 11 (5) 1 

{::ol 2q 4 

i E [0,2q - 11) 

First, we consider the case when $ is a rational num- 
ber. 

Theorem 3 Suppose p = :7r, where p and q are co- 
p r i m e  positive integers and p < q. T h e n  

Vert[R(2q)] = 
T i  

xA-(2q- ' )b  sgn[sin(PC+ - + -7r)] : 

(6) 

and 
- r2q 

Vert(R) = ___ Vert [R( 2q)l. 
r2q - 1 

Hence, we can compute the vertices of R(2q) using 
(6), and then scale them by & t o  obtain the vertices 
of %. 

In parallel to the continuous-time case, Vert(%!) also 
coincides with the time responses of the time-reversed 
system (2) to some periodic bang-bang control. Let 
v*(lc) = sgn[sin(Pk+ G)] and z*(lc) be the correspond- 
ing time response: 

Denote r ( K )  as 

r (K) := { + z * ( ~  + I C )  : IC E [0,2q - 11); (7) 

then limK,, r ( K )  exists, and this limit is the union of 
the steady state responses of (2) to v*(lc) and -v*(lc). 
With I? = limK,, I ' (K) ,  we have 

Proposition 2 : Suppose tha t  /3 = E T ,  where p and q 
are coprime positive integers and p < q. T h e n  

Vert(?) = Vert(%!) = r. 
If is irrational, then %! and ? will have infinite 

many vertices. Since and depend continuously 
on the state matrix A ,  specifically on ,B, they can be 
arbitrarily approximated with those having rational 3. 
On the other hand, although w*(lc) and z * ( k )  are not 
exactly periodic, z*(lc) has a set of limit points on the 
state trajectories, which also form the vertex points of 
R and ?. 
- 
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3.4 Examples 
The controllable regions of some second-order sys- 

tems are plotted in the following two examples. By 
comparing the controllable region of a continuous-time 
system with those of the discretized systems with differ- 
ent sampling periods, the influence of the sampling pe- 
riod on the controllable regions is clearly demonstrated. 
Example 1: The original continuous time system is 

Let h be the sampling period, A = eAch and b = 
AF1(eAch - I)bc.  Consider the discrete-time system 

~ ( k  + 1) = A z ( k )  + bu(k) (9) 
under different h. From Theorem 2 we have 

Vert[?] = { z k ( I - 2 A - k ) ( I - A ) - 1 b :  k = 0 , 1 , 2 , . . . }  

The boundaries of ? corresponding to different sam- 
pling periods h = 0.1,0.2,1,2,4,8 are plotted in Fig- 
ure 1. When h = 0.1, C is very close to C, of the 
continuous-time system; when h = 8, C is diminished 
to a narrow strip. 

-0.2 

-0.4 

-0.6 

-0.8 

Figure 1: Controllable regions under different sampling 
periods 

Example 2: The original continuous-time system is 

0.6 -0.8 
i ( t )  = A,x(t)+b,u(t) = [ 0.8 0.6 ] x ( t ) +  [ ] U ( t ) '  

With sampling period h,  the discrete-time system is 

~ ( k  + 1) = A x ( k )  + bu(k) (10) 

and b = 1 [ cos(0.8h) - sin(0.8h) 
sin(0.8h) cos(0.8h) where A = eo.6h 

(eAch - I)A;lbc. -With q chosen as in Proposition 2 ,  
the controllable regions of (10) under different Sam- 
pling periods are obtained from the steady state re- 
sponses of its time-reversed system under a control of 
sgn[sin(O.Shk + $)I. 

For h = &(;, g ,  5 ,  i), the controllable regions are 
plotted in Figure 2 from the outermost to the inner- 
most. 

I 
4 2 0 2 4 6 

Figure 2: Controllable regions under different sampling 
periods 

4 Controller Synthesis 

In this section we briefly discuss some preliminary 
results on the existence of nonlinear controllers and 
the non-existence of linear controllers to achieve cer- 
tain tasks. We will consider two control objectives: (i) 
keeping x bounded and (ii) forcing x to zero, in each 
case while using an admissible control. Clearly the for- 
mer can be achieved only if the initial condition xo E c, 
while the latter can be achieved only if xo E C. In this 
section, we use [-1,1] to denote the closed real interval. 

4.1 Nonlinear Controllers 
Using a standard approach from recent work on non- 

linear Zl-optimal control of LTI systems, e.g., see [9, 131, 
we can prove 

Theorem 4 There exists a nonlinear state feedback 
controller 

u ( k )  = F[z(k)l  (11) 

which has the property that for every initial condition 
xo E c, the closed loop system consisting of (1) and 
(11) has the property that U is admissible and x ( k )  E c 
for all k 2 0 .  

It would typically be desirable that the state go to 
zero. To this end, with X E ( O , l ) ,  let us define the 
following subset of C(K):  

K 
Cx(K) := {CXzA-Zbv(i)  : Iu(i)l _< l}; 

i=l 
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it is easy to see that Cx(K) is the controllable region of 

x(k + 1) = X-’Ax(IC) + bu(lc) 

at step K ,and clearly limx+lCx(K) = C(K). 
brings us to 

Theorem t i  Fix X E ( 0 , l )  and K E N.  Then there 
exists a continuous nonlinear state feedback controller 

This 

u ( k )  = F [ X ( k ) l  (12) 

which has the property that for every initial condition 
xo E Cx(K:), the closed loop system consisting of (1) 
and (12) has the property that U is admissible and 

The above controllers tend to be quite complex, so 
it would be convenient if the same type of results could 
be obtained using linear control laws. 

4.2 Linear Controllers 
Our results to date are restricted to the problem of 

keeping x hounded. Suppose that we have a linear 
controller of the form 

x(IC) + 0 as IC + 0 .  

~ ( k  + 1) = Jw(IC) + H x ( k ) ,  ~ ( 0 )  = 0 
~ ( k )  = G w ( k )  + F z ( k ) ,  

and the goal is to ensure that if zo lies in some subset 
S C E ,  thec. U is admissible and s(k) E S for all IC 2 0. 
Notice that in closed loop 

~ ( 1 )  = ( A  + bF)zo, 

so clearly we need 

( A  + b F ) S  C S ,  FS C [-1,1]. 

Hence, we may as well restrict ourselves to linear state 
feedback, in which case our goal is to find an F so that 

( A  + bF)S  C S ,  FS C [-1,1]. (13) 

Theorem 6 Suppose that n _> 2 and that A has only 
positive real eigenvalues greater than one. With S = E ,  
there does ,not exist an F E R’ x n  so that (13) hold. 

5 Concluding Remarks 

In this paper, we presented some simple formulae to 
compute the controllable regions for LTI discrete-time 
systems. .4 preliminary investigation into controller 
design was carried out. We showed that there exists 
a nonlinear controller to keep the state within E ,  the 
closure of the controllable region, although this con- 
troller is quite complicated. We also showed that for a 
certain cla:;s of systems there exists no linear feedback 
controller to keep the state within E .  Our next objec- 
tive is to seek a controller with a simple nonlinearity, 
such as saturated linear feedback in the continuous- 
time case[4.], to make the stability region of the closed- 
loop system close to  i?. 
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