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Abstract 

It is known that the controllable region of a general unstable system with bounded control is the Cartesian product of the 
controllable region of its subsystem with antistable modes and that of its subsystem with stable and marginally stable modes. 
While the controllable region of a system with only stable and marginally stable modes is well known to be the whole state 
space, that of an antistable system is studied in this paper. A necessary and sufficient condition for a state of an antistable 
system to be controllable is given. The boundary of the controllable region is characterized. © 1998 Elsevier Science B.V. 
All rights reserved. 

1. Introduction 

There has been a surge o f  activity recently on the 
control of  linear systems whose inputs have a priori 
bounds, see, e.g., [10-12, 2, 6]. This problem is well 
motivated from a practical point of  view since there is 
hardly any actuator which does not saturate when ap- 
plied with excessive command. Notice that such sys- 
tems are not linear systems since the input space is 
not a linear space although their dynamics is linear. 
A fundamental issue for such systems is their control- 
lability, namely,  the characterization of  those states 
which can be controlled to the origin by using con- 
trol signals which are within the prespecified bound. 
Such states are said to be controllable. Clearly, an 
uncontrollable state cannot be made to belong to the 
domain o f  contraction of  the closed loop system no 
matter what feedback controller is used. It is then of  
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interest to investigate the set o f  all controllable states. 
This is the theme of  this paper. 

Consider a discrete-time system 

x(t + 1 ) = Ax( t )  + Bu(t),  (1)  

or a continuous-time system 

2 ( 0  = A x ( t ) + B u ( t ) ,  (2) 

where x(t)  E ~n is the state and u(t)  c ~'~ is the con- 
trol. Here and in the sequel, the time variable t or T 
may take values in Z+ or ~+,  depending on the con- 
text. We assume that (A, B)  is controllable. Let £2 be a 
compact convex set in ~'~ containing 0 in its interior. 
A control signal u is said to be admissible i f  u(t) c £2 
for all t >~ 0. 

Definition 1. (a) A state x0 is said to be controllable 
at a given time (or step) T i f  there exists an admissible 
control u such that the state trajectory x of  the system 
satisfies x(O) = xo and x ( T )  = O. (b)  A state x0 is 
said to be controllable if  it is controllable at some 
T < c ~ .  
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Definition 2. (a) The set of  all controllable states x0 at 
T is called the controllable region at T and is denoted 
by cgr. (b) The set of  all controllable states is called 
the controllable region and is denoted by c~. 

Depending on whether discrete-time systems or 
continuous-time systems are of  concern, a square 
matrix will be said to be semistable if all its eigen- 
values are contained in the closed unit disk or if all 
its eigenvalues have nonpositive real parts; it will be 
said to be antistable if all its eigenvalues have mod- 
ulus greater than one or if all its eigenvalues have 
positive real parts. 

For a general unstable discrete-time system, we can 
assume, without Joss of  generality, that the system is 
of  the following form: 

x l ( t + l )  ] [ x , ( t ) B ,  
x2(t + l ) l  = [A1 0 

u(t) ~ f2, 

where A 1 C ~  ''×'' is antistable and A2EIR "2x": 
is semistable. Similarly, for a general unstable 
continuous-time system, we can assume that the sys- 
tem is o f  the following form: 

u(t) E (2, 

where Al E ~n,x~, is antistable and A2 E I~ ~'x"2 is 
semistable. 

Let ~1 denote the controllable region of  the follow- 
ing subsystem: 

xl(t + l ) = A l x ( t ) +  Bju(t), u( t )~f2 

o r  

~ t ( t ) = A l X ( t ) 4 B l u ( t ) ,  u ( t ) E Q  

depending on the circumstances. 

origin. It is desirable to have an explicit charac- 
terization of  ~,  or of  its cross section. A simpler 
problem is to find a necessary and sufficient condition 
for a given state x0 to belong to ~.  In the next two 
sections, we solve the problem of  characterizing cg. 
Because of  Lemma l, we only deal with antistable 
systems. 

2. Background 

We will need some tools on convex analysis. The 
material in this section is mainly from [7, 4, 5]. Let 
¢/" be a topological vector space over ~ and S be a 
subset o f  ~ .  We use aS to denote the set (~v : v E S}. 
The convex hull of  S, denoted by co(S), is the smallest 
convex set containing S. The closure of  S, denoted 
by cl(S), is the smallest closed set containing S. The 
interior o f  S, denoted by int S, is the largest open set 
it contains. 

Let S c ~U be an arbitrary set. 

Definition 3. The gauge (or Minkowski functional) 
of  S is the function/~s : T --+ [0, eo] defined by 

l~s(v) = inf{~/> 0 : v E aS}. 

The gauge can be considered as a generalization of  
the norm. I f S  is bounded, balanced (in the sense that 
aS c S for every ~ E [ -  1, 1 ]), convex, and contains 0 
in its interior, then #s is a norm. 

The dual space of  ~V" is denoted by ~'*. For v E 
and u E ~V'*, we write u(v) as (v, u). Again let S C ~ 
be an arbitrary set. 

Definition 4. The polar o f  S, denoted by S °, is a set 
in "F* defined by 

s ° = { u ~ t ~ * : ( v , u )  <~1, V v E S } .  

Lemma 1 (Hfijek [I]) .  ~ = oK1 x ~,2 and c£1 is a 
bounded, convex, and open set in ~n, which contains 
the origin. 

The author o f  [1] credited Lemma 1 to a thesis o f  
Hsu in 1974. Its specialization to semistabte systems 
was also proved in [8, 9]. 

Lemma 1 says that the controllable region of  a 
general controllable system is a cylinder whose cross 
section is a bounded convex open set containing the 

Proposition 1. The polar S ° of  any set S C ~ is a 
closed convex set and contains the origin, l f  O E int S, 
then S ° is bounded. I f  S is bounded, then 0 E intS °. 
I f  S is balanced, so is S °. 

Definition 5. The gauge ktso o f  S ° is called the dual 
gauge of/Zs. 

The dual gauge its o of  #s can also be related to Ps 
through the following proposition. 
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Proposition 2. Let  #s be the gauge o f  a set S C ~.  
Then its dual gauge #so satisfies 

#so(u) = sup (v,u). 
v E S 

I f  #Q is a norm, then #Qo is its dual norm. 
Since S ° is a set in ~r . ,  it has a polar in "U** which 

is written as S °° instead o f ( S  °)°. The set S °° is called 
the bipolar of  S. 

have gauges 

#R(~,Q,r) (V)= max #~[u(k)],  
O<~k<~T--I 

T--1 

#R~,ao,r)(v) = ~ #ao Iv(k)]. 
k=0 

Proposition 4. R(oo, f2, T)  ° = R (  1, (2 c , T) and R( 1, f2 °, 
r )  ° = R(oc, O, r ) .  

Proposit ion 3. I f~  ~" is reflexive, then S °° = cl[co({O} 
u s)] .  

For the compact convex set f2 E ~m with 0 E int ~2 
which is associated with our bounded control problem, 
it follows from Propositions 1 and 2 that f2 ° C Nm is 
also a compact convex set containing 0 in its interior 
and f2 °° = f2. Hence, gauges go and #ao are dual 
to each other. In our application, we need to evaluate 
#ao(v). In most interesting cases, this is easy. I f  f2 
is the unit ball of  a weighted H61der p-norm, then 
/zoo is the inversely weighted H61der q-norm, where 
l i p  4- 1/q = l. I f  f2 is a polytope given by 

(2 = cO{Ul,U2,... ,Ul}, 

then 

#oo(V) = max{v'ui: i = 1 . . . . .  l}. 

Next let us consider the space of  Era_valued sequences 
f r o m 0 t o  T - l :  

ge T = ( { u ( t ) } T - - I :  u( t )  E ~m}.  

This space can be identified with ~mr. The dual o f  (~  
is itself with the linear functional defined as 

T--I 

(v,u) = ~ v(t)'u(t) 
t=O 

for v, u E [~.  Let us define 

R(cx~,O,T)= {uE# '~ :  o~t~T-lmax #o[u(t)]-- .<l},  

R(1, f2° ,T)  = v E [ ~ :  #oo[V(t)]-..<l . 
t=0 

Clearly R(oc, f2, T) and R(1 , f2° ,T)  are compact 
convex sets containing 0 in their interior. Hence they 

Proof.  We prove the second equality. The first one, 
which actually will not be used in the sequel, can be 
proved in a similar way. I f u  E R(oc, 12, T), then it fol- 
lows from Proposition 2 that for each v E R(1, f2 °, T), 

T - I  T--1 

(v,u) = Z v(t)'u(t)<.. Z #oo[V(t)]-..< 1. 
t=0 t=0 

This shows u ~ R(1, t? °, T) °. I f  u q~ R(cx~, f2, T), then 
there exists a to satisfying O<~to<~T - 1 such that 
#o[u(t0)] > 1. This means that we can choose v E [~  
such that #~o[V(t0)] ~< 1 but V( to )' U( to ) > 1 and v(t) 
= 0 for all t ~ to. Then 

T - I  

Z # Q o [ V ( t ) ]  = #Qo[v(t0)] < 1, 
t=0 

which says that v E R(1, (2 °, T), but 

T I  

(v,u) = ~ v ( t ) ' u ( t )  > 1. 
t=0 

This shows u ~ R( 1, f2 °, T) ° . [] 

Therefore, #R(~,~. T) and #R(1,~°. r ,  are dual to each 
other. 

Now let us consider the R '~-valued Lebesgue spaces 
&°m[0, T] and &°r[0 , T]. It is well known that the 
dual space of  &°r[0, T] is &am[0, T] with the linear 
functional defined as 

/0 (v, u) = v(t)'u(t) at 

for v E 5a~'[0, T] and u E £a~[0 ,  T]. Define 

S(oc, f2, T) 

= { u E ~ ° m [ 0 ,  T]:ess0<~t<~rsup # o [ u ( t ) ] ~ < l } ,  

{ /0 } S ( 1 , • ° , T ) =  vES°~'[0,  T]:  #eo[V(t)]dt<.l . 
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Clearly S(oo, f2, T) and S(l ,  Qo, T) are bounded 
closed convex sets containing 0 in their interior. 
Hence they have gauges 

#s(o¢,a,r)(u) = e s s  sup #~[u(t)], 
O<~t<~T 

T I "  
#S(1,~2°,T)(v) = ] #ao[V(t)]dt. 

Jo 

Proposition 5. S( 1, K2 °, T) ° : S(oo, K2, T). 

Proof.  I f u  E S(oo, f2, T), then it follows from Propo- 
sition 2 that for each v E S(I ,  f2 °, T), 

]0 /0 Iv, u) = v(t)'u(t)dt<~ #ao[V(t)]dt~l.  

This shows u E S(1, f2 °, T) °. I f  u ¢ S(oc, ~, T), then 
there exists a set W C [0, T] with nonzero mea- 
sure v(W) such that # a [ u ( t ) ] >  1 for all t E W. This 
means that we can choose v0 E 50~[0, 7"] such that 
#~o[V0(t)]~< 1 but Vo(t)'u(t)> 1 for all t E W and 
Vo(t) = 0 for all t E [0, T]\W. Let v : Vo/v(W). Then 

#ao [v(t)] dt ~< vTff-~ #~o [v0(t)] dt < l, 

which says that v E S( 1, (2 °, T), but 

L' Iv, u} = v~-~vo(t)  u ( t )d t>  1. 

This shows u ¢ S(1,~° , r )  °. [] 

Therefore, #s{oo.o,r) is the dual of ps(I,OO,T). No- 
tice that S(oo, O, T) ° # S(1, f2 °, T) for the same rea- 
son why 50~[0, T)* # 5°110, T). 

Finally, we state the Hahn-Banach theorem here for 
easy reference. 

Proposition 6. Suppose that ~l/ is a subspace of  a 
vector space ~,  p : ~ ~ ~ is a function satisfying 
p(v + w)<~ p(v) + p(w)  and p(otv) = ~p(v) j'or all 
v, w E Y/ and ~ >~ O, and f is a linear functional on 
~t "+ and f(v)<~ p(v) for all v E ~W. Then there exists 
a linear functional F on ~ such that F(v) = f ( v )  
Jbr all v E ~t ]~ and F(v)  <. p(v) for all v E ~q 

3. Main results 

Let us first characterize those x0 E ~n that are con- 
tained in cg. As we have seen in Section 2, we can 
assume, without loss of  generality, that the system is 

antistable. Define functions for nonzero xo 

?(x0) = min ~-~#~o -B 'A  '-t-1 xo + x  

for discrete-time systems and 

/o+[ 7(x0) rain #ao _B,e-A' t Xo = + x  dt 
x E x{~ 

for continuous-time systems. Here we have used x6 L 
to denote the set o f  annihilators (or the orthogonal 
complement if the usual inner product is defined on 
~n) of  x0. Note that the series and the integral above 
converge because A is assumed to be antistable. Since 
#Qo is a continuous convex function, the minimization 
problems on the right-hand sides are well defined and 
can be computed easily i f # ~  can be evaluated easily. 

Theorem 1. Assume 
xo E ~n and xo ¢ O. 
7(x0) > 1. 

the system is antistable. Let 
Then Xo E ~ if  and only i f  

Proof. Let us first prove for the discrete-time case. 
Define 

T--I  

7T(XO)= min ~-~#Qo [ - B ' A ' - t - '  ( xx~xo+X) ] .  
x G x ~  t=O 

We now show that x0 E C~r if and only if 7r(X0)~> 1. 
We know that x E C~r if and only if  there exists 
control sequence Ur = f~ with plC(~,~,T)(UT)~I 
such that 

T--I 

- Z A - t - t B u ( t  ) = xo. 
t=0  

This equality is true if and only if 

T 1 ! 

- Z ~ A- t - lBu( t )  = 1, (3) 
t=0 XoXO 

and 

T--I 

- ~--~x'A-t-lBu(t) = 0 (4) 
t=0  

for all x E x~. 
The control sequence ur can be identified with 

a linear functional on {~. Eqs. (3) and (4) define 
this linear functional on the n-dimensional subspace 

t t--t--1 t T--1 +//~r o f  d~ spanned by { - B A  xo/xoXo}o and 

{ - B ' X - t - 1 x } ~ - i  for x E x0 ~. By Propositions 2 and 
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4, the existence of ur with/~a<~,o,v)(Ur) ~< l satisfy- 
ing Eqs. (3) and (4) implies that 

(vr, ur) <~ ~<~,~o.r~(vr) (5) 

for all v~ ~ ~/~. 
On the other hand, a ur specified by Eqs. (3) and 

(4) can be initially considered as a linear functional 
on ~f~. Suppose Eq. (5) holds for all vr ~ ~'v. The 
function/~< ~.~o r> " {~ -+ ~ satisfies the requirement 
for the function p in Proposition 6. By Proposition 6, 
uv can be extended to a linear functional on {~, i.e., ur 
can be made to become an element of (~, satisfying 
Eq. (5) for all vr ~ ~ .  By Propositions 2 and 4 again, 
we have I~<~,~zr)(ur ) <~ 1. 

So far we have proved that x0 ~ Yr if and only ifEq. 
(5) is satisfied for all vv ~ ~'~r, which is equivalent to 

r i ( ~B,A,-,-1 Xo BtAt:,-~x 
" \-  / 
t =0  

for all ~ ~ ~ and x ~ x~. This last condition is equiv- 
alent to 

7~(xo) 
T-- I  

= nfin Z / t o o  ( - B IA  1-t I _  

~>1. 

xo B t A t - t - l x l  
XtoXO 

Now the theorem follows from the fact that 7(x0) > 
7r(x0) for all x0 E R" and T > 0 .  

The proof for the continuous-time case goes simi- 
larly. Define 

// I )] 7v(xo) min /~Qo _ B , e - g t  x0 = + x  dt. 
v E x~; 

We now show that x0 E c6r if and only if 7r(x0) ~> 1. 
We know that X E ~ r  if and only if there exists 

m 0 control signal ur E Lf~ [  , T] with ps~,~.r)(ur)<~ 1 
such that 

.7" l 

- / e-~tBu(t) dt = Xo. 
I0 

This is true if and only if 

fO r X + - ~_ e-AtBu( t )d t= 1, 
XoXO 

and 
t" 

- fo x 'e-mBu(t)dt  = 0 

for a l l  x C x0 ~. 

(6) 

(7) 

The control signal ur can be identified with a linear 
functional on 5°~'[0, T]. Eqs. (6) and (7) define this 
linear functional on the n-dimensional subspace ~T of 
S~[0 ,  T] spanned by Bte-A'()xo/xtoxo and Bte -A'~')x 
for x E x~-. By Propositions 2 and 5, the existence of 
ur with ps~.~,?.)(ur)<~ 1 satisfying Eqs. (6) and (7) 
implies that 

(vr, url <<. #s<u~o,r>(Vr) (8) 

for all vr E ¢Jr. 
On the other hand, a ur specified by Eqs. (6) and 

(7) can be initially considered as a linear functional 
on CJ'r. Suppose Eq. (8) holds for all Vr E ~ ~r. The 
function t~s<t,oor>'Lf'~[O,T] -+ ~ satisfies the re- 
quirement for the function p in Proposition 6. By 
Proposition 6, ur can be extended to a linear func- 
tional on vr E 50~"[0, T], i.e., ur can be made to be- 
come an element of 5°~[0, T], satisfying Eq. (8) for 
all vr E L,~n[0, T]. By Propositions 2 and 5 again, we 
have ps~,o,r>(ur ) <~ 1. 

So far we have proved that xo ~ %T if and only 
if Eq. (8) is satisfied for all Vr ~/~!, which is equi- 
valent to 

~ <~ ~ o  \ X'oXo 

for all ~ E N and x E x0 ~ .  This last condition is equiv- 
alent to 

7r(xo) 

= min IJ~o ( - B %  -A't xo B% m't x dt 
,- \  ;x0 

~>1. 

Now the theorem follows from the fact that 
7(xo)>Tr(xo) for all x0 E ~" and T > 0 .  

For the continuous-time case, a condition with the 
same spirit was obtained in [8]. However, our deriva- 
tion is completely different and provides extra insight. 
Our condition also takes a simpler form. Also for the 
continuous time case, a related problem was studied 
in [3] in the content of time optimal control. The tech- 
nique used was similar to ours but the result took dif- 
ferent form. 

Denote the boundary of c6 by 3~. The following 
theorem gives an explicit description of c7~' and fol- 
lows from Theorem 1 immediately. 

Theorem 2. #~ = {7(w)w: wE ~" and ]lwll: = 1}. 
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Fig. I. Controllable region of Example I. 

4. Examples 

Example I. A second-order antistable continuous- 
time system is described by Eq. (2) with 

[o ,] [o,o] 
0.5 1.5 " B =  1 " 

(2 is the unit ball of  the H61der l -norm in R 2. Its 
controllable region is computed using Theorem 4 and 
is the enclosed region shown in Fig. 1. 

Example 2. In this example, we investigate the ef- 
fect of  sampling-period on the controllable region 
of  discretized systems. The original antistable 
continuous-time system is described by (2) with 

[0 ,j 
A = - 0 . 5  1.5 " B =  , f 2 = [ - 1 , 1 ] .  

This system is discretized using four different sam- 
pling period to get four different antistable discrete- 
time systems. In Fig. 2, the boundaries of  the control- 
lable regions of  these discrete-time systems are drawn. 
The innermost dashed one corresponds to the sam- 
pling period h = 1. The other three from the inner to 
the outermost correspond to h = 0.6, 0.2, and 0.1, re- 
spectively. Actually, it can be proved that as h tends 
to zero, the limit o f  Cg is the controllable region of  the 
continuous-time system. 

5. Conclusions 

This paper gives the characterization of  the control- 
lable region of  a general unstable system with bounded 
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Fig. 2. Controllable regions of different discretized systems in 
Example 2. 

control. The next stage of  investigation is to study 
the relationship between controllability and stabiliz- 
ability. In particular, we wish to design feedback con- 
trollers to stabilize such systems so that the domain 
of  attraction is close to the controllable region. For a 
semistable system with bounded inputs, recent results 
in the literature shows that a nonlinear state feedback 
controller can be designed to achieve global stabiliza- 
tion [1 1, 12] and a linear saturated state feedback can 
be designed to accomplish semiglobal stabilization, 
i.e., to make the domain of  attraction arbitrarily large 
[2, 6]. In our continuing study, we investigate the pos- 
sibility of  designing feedback control laws for a gen- 
eral unstable system so that the domain of  attraction 
of  the closed loop system is the same as or arbitrarily 
close to the controllable region. 
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