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Abstract—In solving the multirate sampled-data H
2

control
problem using the lifting approach, one needs to solve a con-
straint discrete-time H

2
optimal control problem for a general-

ized plant with infinite dimensional input/output spaces. To
solve this problem, the existing sampled-data H

2
design tech-

nique computes an equivalent finite dimensional discrete-time
system and then designs the optimal H

2
controller for the

equivalent system. In this paper, we will show that this problem
can be solved using state space formulas by dealing with oper-
ators directly. The operator compositions are computed ex-
plicitly using discrete multirate lifting and matrix exponentials.
The advantages of the direct method are: it is straightforward, it
has clear physical meanings, and it is more efficient computa-
tionally. A sufficient condition for the existence and uniqueness
of multirate sampled-data H

2
optimal controller is given in

terms of the continuous-time plant. ( 1998 Elsevier Science Ltd.
All rights reserved.

1. Introduction
For a sampled-data control system, the plant is in general
a continuous-time LTI system, the controller is composed of
A/D converters (samplers), a digital computer, and D/A conver-
ters (holds). Hence, a sampled-data control system is a hybrid
system involving both continuous-time and discrete-time sig-
nals. In many applications, the samplers and the holds do not
necessarily operate in the same rate. In such cases, the system is
called a multirate sampled-data control system. Since the plant
evolves in the continuous-time, performance criteria are most
readily formulated in the continuous-time domain. The studies
of the single-rate sampled-data H

2
design include (Bamieh and

Pearson, 1992; Chen and Francis, 1991, 1995; Khargonekar and
Sivashankar, 1991; Trentelman and Stoorvogel, 1995), where the
sampled-data H

2
design problem is converted to a pure dis-

crete-timeH
2

design for an equivalent discrete-time system. For
the multirate case, after lifting, causality constraint arises (Col-
aneri and Nicolao, 1995; Chen and Qiu, 1994; Qiu and Chen,
1994; Al-Rahmani and Franklin, 1992; Shu and Chen, 1996;
Voulgaris and Bamieh, 1993; Voulgaris et al., 1994). Addressing
H

2
optimal control in particular, references (Colaneri and Nic-

olao, 1995; Voulgaris and Bamieh, 1993) find an equivalent pure
discrete-time system and then design a controller with the
causality constraint for the equivalent discrete-time system, ref-

erences (Chen and Qiu, 1994; Qiu and Chen, 1994) give a direct
method based on the frequency-domain technique and the nest
algebra. Reference (Shu and Chen, 1996) treats a multirate pure
discrete-time system by a state-space method. This paper gives
a direct multirate sampled-data H

2
design: when a system arises

with infinite-dimensional input/output spaces by continuous-
time lifting, we treat it directly instead of converting it to another
equivalent pure discrete-time system with finite dimensional
input/output spaces. It is shown that two Riccati equations are
to be solved which contain matrix-valued operator composi-
tions, and these compositions can be computed explicitly in state
space formulas. We will be interested in the conditions guaran-
teeing the existence and uniqueness of the optimal sampled-data
controller. Results in the single-rate case were given by (Khar-
gonekar and Sivashankar, 1991; Trentelman and Stoorvogel,
1995). We generalize them to get a sufficient condition for the
multirate case. The advantages of the direct state-space solution
are: physical meanings are preserved so it is conceptionally more
clear, and less computation is needed because the conversion to
the pure discrete-time system is no longer necessary.

The results in this paper have been implemented in a MAT-
LAB toolbox for multirate systems and control currently under
development (Qiu et al., 1996).

The organization of this paper is as follows: Section 2 presents
the multirate sampled-data configuration and the continuous-
time lifting. Section 3 derives the direct state space solution of
multirate sampled-data H

2
optimal control. Section 4 addresses

the computational issues of the operator compositions involved
in Section 3. Section 5 gives a sufficient condition in terms of the
continuous-time plant for the existence and uniqueness of the
H

2
optimal sampled-data control.

The notation used in this paper will be standard. For operator

P"C
P

11
P

12
P

21
P

22
D

from space W=U to space Z=Y and operator Q
from Y to U, the linear fractional transformation
P
11
#P

12
Q(I!P

22
Q)~1P

21
is denoted by F(P, Q) . For dis-

crete-time signals and systems, the j-transform, which is ob-
tained from the z-transform by replacing z with 1/j, is used.

2. Setup
The setup of a multirate sampled-data control system is shown

in Fig. 1. Here G
!
is an analog generalized plant with two (vector)

inputs, the exogenous input w and the control input u, and two
(vector) outputs, the signal z to be regulated and the measured
signal y. We assume that G

!
is LTI with a state-space model

G]
!
(s)"

A
!

B
!1

B
!2

C
!1

0 D
!12

C
!2

0 0

. (1)

Three blocks in the direct feedthrough matrix of G
a
are assumed

to be zero with D
a11

"0 for the finiteness of the H
2

norm which
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Fig. 1. The general multirate sampled-data setup. Fig. 2. The lifted system.

will be introduced later, D
a21

"0 for the proper functioning of
the samplers when the exogenous input is an impulsive function,
and D

!22
"0 for simplicity. We furthermore assume that all

matrices in the state space model (1) are real. Symbols S and
H represent multirate sampling (A/D) and hold (D/A) opera-
tions and are defined as follows:

S"

S
m1h

}

S
mph

, H"

H
n1h

}

H
nqh

.

These correspond to performing the A/D conversions for the
p channels of y periodically with periods m

i
h, respectively, and

the D/A conversions for the q channels of t with periods n
j
h,

respectively. Here m
i
and n

j
are integers and h is a real number

referred to as the base period. The linear multirate controller
K

.3
is assumed to satisfy three properties: periodicity, causality,

and finite dimensionality; then they can be implemented in the
form of some difference equations (Chen and Qiu, 1994).

The closed-loop system in Fig. 1 can be converted to an LTI
discrete-time system with infinite dimensional input/output
spaces by the lifting technique. Let p"lh with l the least com-
mon multiple of all m

i
and n

j
. Let ¸p be the continuous lifting

operator mapping a continuous signal to a discrete sequence
taking values in K:"L

2
[0, p) (Bamieh and Pearson, 1992),

and ¸
m

the m-fold discrete lifting operator (Khargonekar et al.,
1985). Define mN

i
"l/m

i
, nN

j
"l/n

j
, and

L
M
"

¸mN
1

}

¸mN
p

, L
N
"

¸nN
1

}

¸nN
q

.

Then the multirate system of Fig. 1 can be converted into
a single-rate discrete system in Fig. 2, where

G"C
G

11
G

12
G

21
G

22
D"C

¸p
L

M
SDG

aC
¸~1p

HL~1
N
D, (2)

K"L
N
K

.3
L~1

M
. (3)

When K is LTI, which is true if and only if HK
.3
S is p-periodic

in continuous-time (Chen and Qiu, 1994), the closed-loop system
of G and K is an LTI discrete-time system. Note that u and f are
K-valued sequences by lifting w and z.

We adopt the generalized H
2

measure proposed for the
periodic systems in (Bamieh and Pearson, 1992; Khargonekar
and Sivashankar, 1991). Let F

a
be a strictly causal p-periodic

system. Then the lifted system F"¸pFa
¸~1p is an LTI discrete-

time system. It can be shown that F has a Hilbert—Schmidt
operator-valued transfer function F] . Then F

!
is said to be in

H
2

if F] is in H
2

in the sense of (Sz.-Nagy and Foias, 1970), and
the H

2
norm of F

a
is defined to be the H

2
norm of F] .

The multirate sampled-data H
2

optimal control problem can
then be stated as follows. Given a finite-dimensional analog
plant G

!
and sampling and hold schemes, design a multirate

controller K
.3

, which is causal, finite-dimensional, and p-peri-
odic in real time, such that the system shown in Fig. 1 is inter-
nally stabilized and the H

2
norm of the closed loop map

F(G
!
, HK

.3
S) is minimized.

This H
2

optimal control problem can be translated to the
lifted domain. Due to causality of G

!
and K

.3
, the lifted systems

G and K must be causal and satisfy some causality constraint
characterized by nest operators (Chen and Qiu, 1994). Let U and
Y be the spaces spanned by the parts of t and t, respectively,
occurring in the time interval [kp, (k#1)p). For 04r4l, let
the subspace U

r
be spanned by the part of t occurring during the

interval [kp#(l!r)h, (k#1)p); similarly for Y
3

and t. Then
the causality of G

!
implies that

G]
22

(0)U
r
-Y

r`1
, r"0, 1,2, l!1,

and the causality of K
.3

requires that

K] (0)Y
r
-U

r
, r"0, 1,2, l,

where K] (0) is the D-matrix in the lifted controller. Using the nest
operator terminology (Chen and Qiu, 1994), these can be rewrit-
ten as G]

22
(0)3N

4
(MU

r
N, MY

r
N) , the set of strict nest operators

from MU
r
N to MY

r
N, and K] (0)3N(MY

r
N, MU

r
N) , the set of nest

operators from MY
r
N to MU

r
N.

The equivalent multirate sampled-data H
2

optimal control
problem in the lifted domain is then as follows: Given the lifted
generalized plant G, design an internally stabilizing K satisfying
K] (0)3N(MY

r
N, MU

r
N) to minimize the H

2
norm of the closed

loop transfer function F(G] , K] ) of the system in Fig. 2.

3. H
2

design for multirate sampled-data system
Let

G] (j)"

A B
1

B
2

C
1

D
11

D
12

C
!

D
21

D
22

(4)

be the state-space model of the lifted plant as in equation (2).
Here B

1
, C

1
, D

11
, D

12
, and D

21
are (Hilbert—Schmidt) operators

between appropriate spaces. The causality of G
!

implies that
D

22
3N

s
(MU

r
N, MY

r
N).

The following assumptions are made.

(A1) (A, B
2
, C

2
) is stabilizable and detectable.

(A2)

kerC
A!jI

C
1

B
2

D
12
D"M0N for all DjD"1.

(A3)

ArangeC
A!jI

C
2

B
1

D
21
DB

o

"M0N for all DjD"1.

The connection of these assumptions with the original analog
plant data will be addressed in Section 5.

The solution of H
2

optimal control depends, as usual, on the
following Riccati equations:

X"A*XA#C*
1
C

1
!(A*XB

2
#C*

1
D

12
)

](B*
2
XB

2
#D*

12
D

12
)~1(B*

2
XA#D*

12
C

1
), (5)

½"A½A*#B
1
B*
1
!(A½C*

2
#B

1
D*

21
)

](C
2
½C*

2
#D

21
D*

21
)~1(C

2
½A*#D

21
B*

1
). (6)
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The solutions of X and ½ of the two equations (5) and (6) are
said to be stabilizing if

A!B
2
(B*

2
XB

2
#D*

12
D

12
)~1 (B*

2
XA#D*

12
C

1
)

and

A!(A½C*
2
#B

1
D*

21
) (C

2
½C*

2
#D

21
D*

21
)~1C

2

are stable, respectively.

Proposition 1. Suppose the lifted plant G satisfies the assump-
tions (A1)—(A3). Then there exist unique stabilizing solutions to
Riccati equations (5) and (6).

The proof of this proposition is the same as that for the case
when B

1
, C

1
, D

12
, and D

21
are matrices, with the simple modifi-

cation of replacing matrix transposes by operator adjoints
wherever appropriate.

Let X and ½ be the stabilizing solutions of Riccati
equations (5) and (6). Then as usual it can be shown that
B*
2
XB

2
#D*

12
D

12
'0 and C

2
½C*

2
#D

21
D*

21
'0. We define

F"!(B*
2
XB

2
#D*

12
D

12
)~1(B*

2
XA#D*

12
C

1
),

¸"!(A½C*
2
#B

1
D*

21
) (C

2
½C*

2
#D

21
D*

21
)~1,

H"!R~1%N(MY
r
N, MU

r
N) [R*~1(B*

2
XA½C*

2

#D*
12

C
1
½C*

2
#B*

2
XB

1
D*

21
#D*

12
D

11
D*

21
) S*~1]S~1,

where %N (MY
r
N, MU

r
N) is the orthogonal projection from L(Y, U)

onto N(MY
r
N, MU

r
N) and R3N(MU

r
N) and S3N(MY

r
N) satisfies

R*R"B*
2
XB

2
#D*

12
D

12
. (7)

SS*"C
2
½C*

2
#D

21
D*

21
. (8)

The factorizations in equations (7) and (8) are always possible
(Chen and Qiu, 1994). A simple choice might be the Cholesky
factorization.

¹heorem 1. Assume the plant G in the form of equation (4)
satisfies assumptions (A1)—(A3). Then the lifted multirate sam-
pled-data H

2
optimal controller is given by

K]
015

(j)"C
A

K
C

K
K
B
K

D
K
D,

where

A
K
"A#B

2
F#¸C

2
!B

2
HC

2

!(!¸#B
2
H)D

22
(I#HD

22
)~1(F!HC

2
),

B
K
"(!¸#B

2
H) (I#D

22
H)~1,

C
K
"(I#HD

22
)~1(F!HC

2
),

D
K
"(I#HD

22
)~1H.

The optimal H
2

norm is

EF(G] , K]
015

)E2
2
"tr(A*XA½#XB

1
B*

1
#C*

1
C

1
½!X½)

#ED
11

E2
HS
!ERHSE2

2
.

Proof. The proof will be sketchy since it involves many standard
materials as given in Chen and Francis (1995). The emphasis will
be on the handling of the causality constraint. Let X and ½ be
the stabilizing solutions of equations (5) and (6). Then all
stabilizing controllers without causality constraint are charac-
terized by a linear fractional transformation

K] "F(J] , Q] ), Q] 3RH
=

, (9)

where

J] (j)"

A#B
2
F#¸C

2
!¸D

22
F !¸ B

2
#¸D

2

F 0 I

!C
2
!D

22
F I !D

22

.

Note that

K] (0)"F(J] (0), Q] (0))"Q] (0) (I#D
22

Q] (0))~1.

Since D
22

3N
4
(MU

r
N, MY

r
N), it is easy to show (Chen and Qiu,

1994) that K] (0)3N(MY
r
N, MU

r
N) if and only if Q] (0)3N(MY

r
N,

MU
r
N). Now it follows from the standard analysis, see e.g. Chen

and Francis (1995), that under the controllers characterized in
equation (9), the closed-loop transfer function is

F(G] , K] )"F[G] , F(J] , Q] )]"¹]
11
#¹]

12
Q] ¹]

21
,

where

¹K
11

(j)"

A#B
2
F B

2
F B

1
0 A#¸C

2
!B

1
!¸D

21

C
1
#D

12
F D

12
F D

11

,

¹K
12

(j)"C
A#B

2
F

C
1
#D

12
F K

B
2

D
12
D,

¹K
21

(j)"C
A#¸C

2
C

2
K
B

1
#¸D

21
D

21
D.

Let ¹] F(j)"¹] (1/j)@ be the adjoint of ¹] (j). Then for
¹]

11
, ¹]

12
, ¹]

21
defined by above equations, we have (Chen and

Francis, 1995)

¹] F
12
¹]

12
"B*

2
XB

2
#D*

12
D

12
, (10)

¹]
21
¹] F

21
"C

2
½C*

2
#D

21
D*

21
, (11)

and (¹] F
12
¹]

11
¹] F

21
)F3H

2
with

%H
2
(¹] F

12
¹]

11
¹] F

21
)"B*

2
XA½C*

2
#D*

12
C

1
½C*

2

#B*
2
XB

1
D*

21
#D*

12
D

11
D*

21
. (12)

Now carry out matrix factorizations in equations (7) and (8).
Define

º] "C
R*~1¹] F

12
I!¹]

12
R~1R*~1¹] F

12
D,

»] "[¹] F
21

S*~1 I!¹] F
21

S*~1S~1¹]
21

].

Then equations (10) and (11) imply º] Fº] "I and »] »] F"I.
Hence

EF(G] , K] )E2
2
"E¹]

11
#¹]

12
Q] ¹]

21
E2
2

"Eº (¹]
11
#¹]

12
Q] ¹]

21
)»E2

2

"ER*~1¹] F
12
¹]

11
¹] F

21
S*~1#RQ] SE2

2

#E¼]
12

E2
2
#E¼]

21
E2
2
#E¼]

22
E2
2
,

where

C
R*~1¹] F

12
¹]

11
¹] F

21
S*~1

¼]
21

¼]
12

¼]
22
D"º] ¹]

11
»] .

Note that ¼]
12

, ¼]
21

, ¼]
22

are independent of Q] . So minimizing
EF(G] , K] )E2

2
is equivalent to minimizing ER*~1¹] F

12
¹]

11
¹] F

21
S*~1

#RQ] SE2
2

for Q] 3H
=

satisfying Q] (0)3N(MY
r
N, MU

r
N). From

equation (12), we know that

R*~1¹] F
12
¹]

11
¹] F

21
S*~13R*~1(B*

2
XA½C*

2
#D*

12
C

1
½C*

2

#B*
2
XB

1
D*

21
#D*

12
D

11
D*

21
)S*~1

#Ho

2
.

Since RQ] S3H
=

, it follows that RQ] S can only be used to cancel
part of the constant term of R*~1¹] F

12
¹]

11
¹] F

21
S*~1. Consider the

causality constraint Q] (0)3N(MY
r
N, MU

r
N) and that R3N(MU

r
N)

and S3N(MY
r
N) are invertible. The optimal Q] is given by

RQ]
015

S"!%N (MY
r
N, MU

r
[R*~1(B*

2
XA½C*

2
#D*

12
C

1
½C*

2

#B*
2
XB

1
D*

21
#D*

12
D

11
D*

21
) S*~1].
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Hence Q]
015

"H. The optimal H
2

norm is given by

EF(G] , K] )E2
2
"E¹]

11
E2
2
!ERQ]

015
SE2

2
"E¹]

11
E2
2
!ERHSE2

2
.

It remains to show that

E¹]
11

E2
2
"tr(A*XA½#XB

1
B*

1
#C*

1
C

1
½!X½)#ED

11
E2
HS

.

It is easy to verify that

¹]
11

(j)"¹]
F
(j)#¹]

12
(j)¹]

L
(j),

where

¹]
F
(j)"C

A#B
2
F

C
1
#D

12
F K

B
1

D
11
D,

¹]
L
(j)"C

A#¸C
2

F K
!B

1
!¸D

21
0 D.

Straightforward computation shows that ¹]
F

and ¹]
12
¹]

L
are

orthogonal to each other and equation (10) implies
E¹]

12
¹]

L
E
2
"ER¹]

L
E
2
. Hence,

E¹]
11

E2
2
"E¹]

F
E2
2
#ER¹]

L
E2
2

"ED
11

E2
HS
#trB*

1
XB

1
#tr RF½F*R*

"ED
11

E2
HS
#trXB

1
B*
1

#tr(A*XB
2
#C*

1
D

12
) (B*

2
XB

2
#D*

12
D

12
)~1

](B*
2
XA#D*

12
C

1
) ½

"ED
11

E2
HS
#trXB

1
B*
1
#tr (A*XA#C*

1
C

1
!X)½. K

The optimal control formula in Theorem 1 first appeared in Qiu
et al. (1996). A (slightly less general) complete version of this
theorem is also independently obtained in Mirkin and Palmor
(1997). The proof here is different from that in Mirkin and
Palmor (1997).

4. Computation of the operator compositions
From the development in the last section, it is seen that to

compute the multirate sampled-data H
2

optimal controller and
the optimal H

2
norm using the direct state space solution we

need from the lifted system G matrices A, B
2
, C

2
, D

22
, operator

compositions:

C
B
1

D
21
D [B*

1
D*

21
], C

C*
1

D*
12
D [C

1
D

12
],

D*
12

D
11

D*
21

, and norm ED
11

E
HS

as the input data. The matrices
A, B

2
, C

2
, D

22
are easy to obtain. A way to compute ED

11
E
HS

using matrix exponentials is given in Bamieh and Pearson
(1992). The computation of the required operator compositions,
however, is rather nontrivial. For a special case when all m

i
,

i"1,2, p, are the same and all n
j
, j"1,2, q, are the same (the

dual rate case), integral formulas for these operator composi-
tions are obtained in Qiu and Chen (1994). There are character-
istic functions involved in integral formulas, which make the
computation quite complicated. The characteristic functions
arise due to the multirate nature of the controller. To avoid this
complication, we will show that these operator compositions
can be obtained through a two-step lifting: first lift the plant
G

!
in the base period h and then lift l-fold in discrete-time. The

resulted system can be related to G easily and because of this the
data on the lifted system G can be obtained from some data
associated with the intermediate system obtained after lifting
G

!
in the base period. In the end it is shown that the required

data of G can also be obtained using matrix exponentials.
Recall equation (2) in Section 2:

G"C
G

11
G

21

G
12

G
22
D"C

¸p
L

M
SDC

G
a11

G
a12

G
a21

G
a22
DC

¸~1p
HL~1

N
D .

It is possible to find matrices ¸
H

and ¸
S

such that

L
M
S"¸

S
¸
l
S
h

and HL~1
N

"H
h
¸~1
l

¸
H
.

Actually, in the first system period [0, p], ¸
H

and ¸
S
are required

to satisfy

¸
S

y
1
(0)

F
y
p
(0)

y
1
(h)

F
y
p
(h)

F
y
1
[(l!1)h]

F
y
p
[(l!1)h]

"

t
1
(0)

F
t

1
(mN !1)

F
t

p
(0)

F
t
p
(mN

p
!1)

,

¸
H

v
1
(0)

F
v
1
(nN !1)

F
v
q
(0)

F
v
q
(nN

q
!1)

"

u
1
(0)

F
u
q
(0)

u
1
(h)

F
u
q
(h)

F
u
1
[(l!1)h]

F
u
q
[(l!1)h]

.

In the subsequent system periods, things are the same except
possible time shifts. Therefore, ¸

S
is a +p

i/1
mN

i
]lp block matrix

with all blocks equal to zero matrices except the
(+ i~1

k/1
mN

k
#k

i
#1, k

i
m

i
p#i)th blocks which are equal to ident-

ity matrices and ¸
H

is an lq]+q
j/1

nN
j
matrix with all blocks equal

to zero matrices except the (rq#j, +j~1
k/1

nN
k
#xr/n

j
y ))th blocks

which are equal to identity matrices. Here k
i
"0,2, m

i
!1,

r"0,2, (l!1), i"1,2, p, j"1,2, q and x)y means the inte-
ger part.

Now it is clear that

G"C
¸p¸~1

h
¸~1
l

¸
l
¸
h

¸
S
¸
l
S
h
DC

G
a11

G
a12

G
a21

G
a22
D

]C
¸~1

h
¸~1

l
¸
l
¸

h
¸p

H
h
¸~1
l

¸
H
D.

Let

G
h
"C

G
h11

G
h12

G
h21

G
h22
D"C

¸
h

S
h
DC

G
a11

G
a12

G
a21

G
a22
DC

¸~1
h

H
h
D.

Then G
h
is the equivalent discrete time system of G

a
lifted in base

period h and it is well known (Chen and Francis, 1995) that
G

h
has state-space model

G]
h
(j)"

A
h

B
h1

B
h2

C
h1

D
h11

D
h12

C
h2

0 0

which is formed by matrices

A
h
"exp(A

!
h), B

h2
"P

h

0

exp(A
a
t) dt B

a2
, C

h2
"C

a2
,

and operators

B
h1

: B
h1

u"P
h

0

exp(A
a
(h!t))B

a1
u(t) dt,

C
h1

: (C
h1

m) (t)"C
a1

exp(A
a
t)m, t3[0, h),

D
h11

: (D
h11

u) (t)"C
a1P

t

0

exp(A
a
(t!q))B

a1
u(q) dq, t3[0, h)

D
h12

: (D
h12

t) (t)"D
a12

t#C
a1P

t

0

exp(A
a
q) dqB

a2
t, t3[0, h).
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Therefore,

GI "C
¸

l
¸

l
DC

G
h11

G
h12

G
h21

G
h22
DC

¸~1
l

¸~1
l
D

has state-space model

GI] (j)"

AI BI
1

BI
2

CI
1

DI
11

DI
12

CI
2

DI
21

DI
22

,

where

AI "Al
h
,

BI
i
"[Al~1

h
B
hi

Al~2
h

B
hi
2B

hi
],

CI
i
"

C
hi

C
hi
A

h
F

C
hi
Al~1

h

,

DI
ij
"

D
hij

0 2 0

C
hi
B

hj
D

hij
2 0

F F F
C

hi
Al~2

h
B
hj

C
hi
Al~3

h
B

hj
2 D

hij

, i, j"1, 2.

Since

G"C
¸p¸~1

h
¸~1

l
¸
S
D C

GI
11

GI
12

GI
21

GI
22
DC

¸
l
¸
h
¸p

¸
H
D

and ¸p, ¸h
, ¸

l
are unitary operators, its state-space model

G] (j)"

A B
1

B
2

C
1

D
11

D
12

C
2

D
21

D
22

satisfies

C
A

C
2

B
2

D
22
D"C

I

¸
S
D C

AI
CI

2

BI
2

DI
22
D C

I

¸
H
D,

C
B

1
D

21
D [B*

1
D*

21
]"C

BI
1
BI *

1
BI
1
DI *

21
¸*

S

¸
S
DI

21
BI *
1

¸
S
DI

21
DI *

21
¸*
S
D,

C
C*

1
D*

12
D [C

1
D

12
]"C

CI *
1
CI

1
CI *

1
DI

12
¸

H

¸*
H
DI *

12
CI

1
¸*

H
DI *

12
DI

12
¸

H
D,

D*
12

D
11

D*
21
"¸*

H
DI *

12
DI

11
DI *

21
¸*
S
.

The detailed structures of BI
1
, CI

1
, DI

11
DI

12
, and DI

21
reveal that

the required operator compositions can be computed if operator
compositions B

h1
B*
h1

,

C
C*

h1
D*

h12
D [C

h1
D

h12
], C

C*
h1

D*
h12
DD

h11
B*

h1

can be computed.

Proposition 2. Let

P"expAC
!A*

a
0 C*

a1
C

a1
0

!B*
a2

0 D*
a12

C
a1

0

0 0 A
a

B
a1

B*
a1

0 0 0 !A*
a
D hB, (13)

P"expAC
!A*

a
0 C*

a1
C

a1
C*

a1
D

a12
!B*

a2
0 D*

a12
C

a1
D*

a12
D

a12
0 0 A

a
B

a2
0 0 0 0 D hB, (14)

and let P and Q be partitioned into 4]4 block matrices compat-
ibly with the right-hand side matrices in equations (13) and (14),
respectively. Then

A
h
"P

33
,

B
h2
"Q

34
,

C
h2
"C

a2
,

B
h1

B*
h1
"P

34
P*

33
,

C
C*

h1
D*

h12
D [C

h1
D

h12
]"C

Q
33

Q
34

Q
43

Q
44
D
*

C
Q

13
Q

14
Q

23
Q

24
D,

C
C*

h1
D*

h12
D D

h11
B*

h1
"C

Q
33

Q
34

Q
43

Q
44
D
*

C
P
14

P
24
DP*

33
.

The following lemma is needed in proving Proposition 2.

¸emma 1 (Van Loan, 1978). Let A
11

and A
22

both be square
and define

C
F
11

(t) F
12

(t)

0 F
22

(t)D :"expAC
A

11
A

12
0 A

22
D tB, t'0.

Then F
11

(t)"exp(A
11

t), F
22

(t)"exp(A
22

t), and

F
12

(t)"P
t

0

exp(A
11

(t!q))A
12

exp(A
22

q) dq

"P
t

0

exp(A
11

q)A
12

exp(A
22

(t!q)) dq.

Proof (Proposition 2). The first five equalities are actually pro-
ved in Chen and Francis (1995). We only need to prove the last
equality. It can be shown that

C
C*

h1
D*

h12
D D

h11
B*
h1
"P

h

0
C

(C
a1

exp (A
a
t))*

(D
a12

#: t
0
C

a1
exp(A

a
(t!q))B

a2
dq)*D

]C
a1P

t

0

exp(A
a
(t!q))B

a1
B*

a1
exp(A*

a
(h!q)) dqdt.

From Lemma 1 and equation (14), we have

expAC
A*

a
0

B*
a2

0D hBC
P
13

P
14

P
23

P
24
DC

0

ID
"P

h

0

expAC
A*

a
0

B*
a2

0D tBC
C*

a1
C

a1
0

D*
a12

C
a1

0D
]expAC

A
a

B
a1

B*
a1

0 !A*
a
D tBdtC

0

ID
"P

h

0
C

exp(A*
a
t) 0

B*
a2

:t
0
exp (A*

a
(t!q)) dq IDC

C*
a1

C
a1

0

D*
a12

C
a1

0D

C
:t
0
exp (A

a
(t!q))B

a1
B*
a1

exp(!A*
a
q) dq

exp (!A*
a
t) D dt

"P
h

0
C

exp(A*
a
t)C*

a1
C

a1
0

D*
a12

C
a1
#B*

a2
:t
0
exp(A*

a
(t!q)) dqC*

a1
C

a1
0D

C
:t
0
exp(A

a
(t!q))B

a1
B*

a1
exp(!A*

a
q) dq

exp(!A*
a
t) Ddt

"P
h

0
C

exp(A*
a
t)C*

a1
C

a1
D*

a12
C

a1
#B*

a2
:t
0
exp(A*

a
(t!q))dqC*

a1
C

a1
D

P
t

0

exp(A*
a
(t!q))B

a1
B*
a1

exp(!A*
a
q) dqdt.
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Therefore

C
C*

h1
D*

h12
DD

h11
B*
h1
"expAC

A
a

B
a2

0 0 D
*
hBC

P
13

P
14

P
23

P
24
DC

0

ID exp(A*
a
h)

"C
Q

33
Q

34
Q

43
Q

44
D
*

C
P

14
P

24
DP*

33
. K

5. On the existence and uniqueness of the H
2

optimal
controller

In this section, we address the condition in terms of the
continuous-time plant G

a
which ensures assumptions (A1)—(A3)

in terms of lifted system G. Since the existence and uniqueness of
multirate sampled-data H

2
optimal controller are guaranteed

by assumptions (A1)—(A3), we wish to have a sufficient condition
for assumptions (A1)—(A3) to hold. Our results generalize
those in Trentelman and Stoorvogel (1995) (with some errors
fixed), where single-rate sampled-data H

2
optimal control is

investigated.

Proposition 3. Assumptions (A1)—(A3) hold if the plant G
!

in
equation (1) and p satisfy the following conditions:

(C1) (A
a
, B

a2
, C

a2
) is stabilizable and detectable and p is non-

pathological with respect to A
a
.

(C2) (C
a1

, A
a
) has no unobservable modes on the imaginary

axis,
(A

a
, B

a2
, C

a1
, D

a12
) is right-invertible and has no zero at 0.

(C3) (A
a
, B

a1
) has no uncontrollable modes on the imaginary

axis and (A
a
, B

a1
, C

a2
, 0) is left-invertible.

Proof. (C1) implies that

(C
a2

, AI , :p
0
exp(A

a
t) dtB

a2
)

"(C
h2

, AI , (Al~1
h

#Al~2
h

#2#I)B
h2

)

is stabilizable and detectable.
Define the function

g (s)"exp(s (l!1)h)#exp(s (l!2)h)#2#1

"

exp(slh)!1

exp(sh)!1
.

It is analytic everywhere (the ‘‘poles’’ are all canceled by ‘‘zeros’’
there ) and

Mzeros of gN"Ms: exp(shl )"1, exp(sh)O1N

"M jk2n/p, kO0, $l, $2l,2N

The spectral mapping theorem says that the eigenvalues of the
matrix g (A

a
) are precisely the values of g at eigenvalues of A

a
.

Hence, g (A
a
) is singular if and only if A

a
has an eigenvalue at

jk2n/p for some kO0,$l,$2l,2. This is impossible since p
is non-pathological and A

a
is real. This shows that

g(A
a
)"Al~1

h
#Al~2

h
#2#I is nonsingular. Noting the fact

that AI commutes with Al~1
h

#Al~2
h

#2#I, we conclude that
(C1) implies that (C

h2
, AI , B

h2
) is stabilizable and detectable.

Since (C
h2

, AI , B
h2

) is obtained from (C, A, B) by deleting some
inputs and outputs, the stabilizability and detectability of
(C

h2
, AI , B

h2
) implies those of (C, A, B) .

Next, we show that (C1) and (C2) imply (A2). Actually, we will
show a stronger statement: (C1) and (C2) imply

kerC
AI !jI BI

2
CI

1
DI

12
D"M0N

for all DjD"1. Assume that (C1) and (C2) are true but

kerC
AI !j IBI

2
CI

1
DI

12
DOM0N

for some DjD"1. Then at this j, there exists

[x* u*
1

u*
2

2 u*
l
]*O0

such that

Al
h
!jI Al~1

h
B

h2
Al~2

h
B
h2

2 B
h2

C
h1

D
h12

0 2 0

C
h1

A
h

C
h1

B
h2

D
h12

2 0

F F F F
C

h1
Al~1

h
C

h1
Al~2

h
B
h2

C
h1

Al~3
h

B
h2

2 D
h12

x

u
1

u
2
F
u
l

"0.

(15)

Consider the second row of equation (15):

C
a1

exp(A
a
t)x#D

a12
u
1
#C

a1P
t

0

exp(A
a
q) dqB

a2
u
1
"0.

(16)

Evaluating equation (16) at t"0, we obtain C
a1

x#D
a12

u
1
"0.

Differentiating equation (16) and then evaluating at t"0, we
obtain A

a
x#B

a2
u
1
3SkerC

a1
DA

a
T. where SkerC

a1
DA

a
T is the

unobservable subspace of (C
a1

, A
a
) which is A

a
-invariant. Now

suppose

C
a1

x#D
a12

u
1
"0,2,C

a1
x#D

a12
u
r~1

"0

and A
a
x#B

a2
u
1
3SkerC

a1
DA

a
T,2,A

a
x#B

a2
u
r~1

3SkerC
a1

DA
a
T.

Consider the (r#1)th row of equation (15):

C
a1

exp(A
a
t) [Ar~1

h
x#Ar~2

h
B
h2

u
1
#2#B

h2
u
r~1

]

#D
a12

u
r
#C

a1P
t

0

exp(A
a
q)dqB

a2
u
r
"0. (17)

Evaluating at t"0, we get

C
a1

[Ar~1
h

x#Ar~2
h

B
h2

u
1
#2#B

h2
u
r~1

]#D
a12

u
r
"0.

(18)

Note that

Ar~1
h

"(Ar~1
h

!Ar~2
h

)#(Ar~2
h

!Ar~3
h

)#2#(A
h
!I)#I,

(19)
and

(Ar~k
h

!Ar~k~1
h

)x#Ar~k~1
h

B
h2

u
k

"Ar~k~1
h P

h

0

exp(A
a
t) dt(A

a
x#B

a2
u
k
), (20)

for k"1, 2,2, r!1. Hence equation (18) leads to
C

a1
x#D

a12
u
r
"0. Differentiating equation (17) and evaluating

at t"0, we obtain A
a
[Ar~1

h
x#Ar~2

h
B
h2

u
1
#2#

B
h2

u
r~1

]#B
a2

u
r
3SkerC

a1
DA

a
T. Noting equations (19) and

(20), we have A
a
x#B

a2
u
r
3SkerC

a1
DA

a
T. By deduction, we have

shown that for r"1, 2,2, l,

A
a
x#B

a2
u
r
3SkerC

a1
DA

a
T, C

a1
x#D

a12
u
r
"0. (21)

If there are r
1
Or

2
such that u

rÇ
Ou

rÈ
, then

B
a2

(u
rÇ
!u

rÈ
)3SkerC

a1
DA

a
T, D

a12
(u

rÇ
!u

rÈ
)"0.

Let x
0
"( juI!A

a
)~1B

a2
(u

rÇ
!u

rÈ
) for any ju not being an

eigenvalue of A
a
. Then x

0
3SkerC

a1
DA

a
T. Hence

C
A

a
!juI B

a2
C

a1
D

a12
D C

x
0

u
rÇ
!u

rÈ
D"0,

which contradicts (C2). This shows that u
1
"u

2
"2"u

l
": u.

Now the first row of equation (15) becomes
(Al

h
!jI)x#(Al~1

h
#Al~2

h
#2#I)B

h2
u"0 which can be

rewritten as

(Al~1
h

#Al~2
h

#2#I)[(A
h
!I)x#B

h2
u]"(j!1)x.

(22)

Since (A
h
!I)x#B

h2
u":h

0
exp(A

a
t) dt(A

a
x#B

a2
u) and

A
a
x#B

a2
u3SkerC

a1
DA

a
T, we get (j!1) x3SkerC

a1
DA

a
T.

There are possibly two cases: jO1 and j"1.
For the case when jO1, we have x3SkerC

a1
DA

a
T. If uO0,

equation (21) implies D
a12

u"0 and B
a2

u3SkerC
a1

DA
a
T. Let
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x
0
"(juI!A

a
)~1B

a2
u3SkerC

a1
DA

a
T for any ju not being an

eigenvalue of A
a
. Then

C
A

a
!juI B

a2
C

a1
D

a12
DC

x
0
u D"0,

which contradicts (C2). On the other hand if u"0, then xO0
and

C
Al

h
!jI

C
h1
D x"0.

The second row immediately gives C
a1

x"0. The first row
implies that j and x form an eigenvalue and eigenvector pair of
exp(A

a
hl)"exp(A

a
p). Since p is non-pathological, there is

a unique w3Im such that juh is an eigenvalue of A
a

and
exp(A

a
p) has the same Jordan chains as A

a
. Hence, we have

(A
a
!juI) x"0. Therefore,

C
A

a
!juI

C
a1

D x"0,

which also contradicts (C2).
For the case when j"1, equation (22) becomes

(Al~1
h

#Al~2
h

#2#I) [(A
h
!I)x#B

h2
u]"0. (23)

We have shown that Al~1
h

#Al~2
h

#2#I is nonsingular.
Hence equation (23) implies (A

h
!I) x#B

h2
u"0, which is

:h
0

exp(A
a
t) dt(A

a
x#B

a2
u)"0. Since p is non-pathological, so

is h. Hence j(2kn/h), k"$1,$2,2, are not eigenvalues of A
a
.

This implies that :h
0
exp(A

a
t) is nonsingular. Hence

A
a
x#B

a2
u"0. Therefore,

C
A

a
B
a2

C
a1

D
a12
DC

x

uD"0,

which contradicts (C2).
It remains to show that (A3) is implied by (C1) and (C3).

Again, we are going to show a stronger statement: (C1) and (C3)
imply

ArangeC
A!jI B

1
C

2
D

21
DB

o

"M0N for all DjD"1.

Assume now that (C1) and (C3) hold but

ArangeC
A!jI B

1
C

2
D

21
DB

o

OM0N

for some DjD"1. Then at this j, there exists
[x* u*

1
u*
2
2 u*

l
]O0 such that

[x* u*
1

u*
2
2 u*

l
]

Al
h
!jI Al~1

h
B

h1
Al~2

h
B

h1
2 B

h1
C

h2
0 0 2 0

C
h2

A
h

C
h2

B
h1

0 2 0

F F F F
C

h2
Al~1

h
C

h2
Al~2

h
B
h1

C
h2

Al~3
h

B
h1

2 0

"0. (24)

The last column gives x*:h
0
exp(A

a
(h!t))B

a1
u(t) dt"0 for all

u3K, which means that x3SA
a
DrangeB

a1
To, where

SA
a
DrangeB

a1
T is the reachable subspace of (A

a
, B

a1
), which is

A
a
-invariant. The lth column of equation (24) gives

x*A
h
B

h1
#u*

l
C

h2
B

h1
"0. Since rangeA

h
B
h1

3SA
a
DrangeB

a1
T, it

follows u*
l
C

h2
B

h1
"0, so C*

h2
u
l
3SA

a
DrangeB

a1
To. By induction,

we can show that C*
h2

u
k
3SA

a
DrangeB

a1
To for k"1, 2,2, l.

If u
k

is nonzero for one of k"1, 2,2, l, let
x*"u*

k
C

h2
( juI!A

a
)~1 for any ju not being an eigenvalue

of A
a
. Since SA

a
DrangeB

a1
T is A

a
-invariant, it follows that

x3SA
a
DrangeB

a1
To and

[x* u*
k
]C

A
a
!juI B

a1
C

a2
0 D"0,

which contradicts (C3). If u
k
"0 for all k"1, 2,2, l, then xO0

and x*Al
h
!jIB

h1
"0. The first column of the above equation

implies that j and x form an eigenvalue and left eigenvector pair
of exp(A

a
p). Since p is non-pathological, there is a unique u3R

such that jup is an eigenvalue of A
a
and exp(A

a
p) has the same

left Jordan chains as A
a
. Hence x* (A

a
!juI)"0. Therefore

x*[A
a
!juI B

a1
]"0, which also contradicts (C3). K

6. Conclusions
The main contribution of this paper is the direct state-space

solution of the multirate sampled-dataH
2
optimal control. This

new method avoids converting the sampled-data problem to an
equivalent discrete-time problem and it also reduces the effort in
dealing with the causality issue due to the multirate sampling. It
enjoys more theoretic elegance and at the same time leads to less
computational effort. The same idea can be applied to multirate
sampled-dataH

=
control, which is currently under study by the

authors.
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