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Abstract 

This paper studies performance limitation and design 
tradeoff issues in the analysis and design of linear time- 
invariant, singleinput single-output feedback control 
systems. We develop a number of integral constraints, 
which extend the classical Bode/Poisson sensitivity and 
complementary sensitivity integrals. The new integral 
relations lead to new insights into the study of funda- 
mental limitation and design tradeoff issues, and to- 
gether with the classical results, enable a more refined 
and more informative performance analysis. 

1 Introduction 

Rode/Poisson integrals of the sensitivity and comple- 
mentary sensitivity functions are critical in the study of 
fundamental limitation and tradeoff issues in feedback 
control design. Substantial progress has been made 
on this subject after the pioneering work of Bode [l] 
and Horowitz [ll].  especially in 1980s and 1990s. A 
thorough review of the recent key developments can 
be found in [13]. For single-input single-output (SISO) 
systems, Freudenberg and Looze [8, 91 extended the 
classical Rode integral relations t o  open-loop unsta- 
ble continuous-time systems. Extensions t o  discrete- 
time systems were made by Sung and Hara [14], and 
by Middleton [12]. More recently, growing attention 
has been devoted to multi-input multi-output (MIMO) 
systems, which has led to various generalizations of 
Bode/Poisson integral relations, obtained by Hara and 
Sung [lo], Chen [2, 5 ,  61, and Chen and Nett [3]. No- 
tably, these integral results all share the common fea- 
ture that they characterize how the performance of 
feedback control systems may be constrained by unde- 
sirable system properties, such as, nonminimum phase 
zeros, unstable poles, and time delays in the plant, and 
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how such constraints necessitate tradeoffs of feedback 
properties a t  different frequencies. 

In the earlier companion paper 171, the authors 
established a link between Bode/Poisson integrals 
and the well-known argument principle and its ex- 
tended versions, which consequently unify the classical 
Bode/Poisson integrals under a single category. It was 
suggested in [7] that the extended argument principle, 
for its generality, may aid in searching for new integral 
relations of significance to the control context. 

In this paper we continue the investigation in [7]. 
Using the mathematical tools developed in [7], we de- 
rive several additional sensitivity and complementary 
sensitivity integral relations of Rode type. Our motive 
herein lies in the consideration that when certain spe- 
cific properties of a given plant are known, more spe- 
cific integral constraints may be available to capture 
the properties. Such constraints will then allow more 
refined analysis of and shed new lights into performance 
tradeoff and limitation issues. In turn, they comple- 
ment the classical results and add to the repertoire of 
the tools available in control performance analysis. 

The rest of this paper is organized as follows. In Sec- 
tion 2, we provide a brief review of several extended 
versions of the argument principle developed in [7]. 
Section 3 presents our main results, where a number 
of new integral relations are derived for the sensitiv- 
ity and complementary sensitivity functions. Section 4 
concludes our discussion. 

2 Preliminaries 

Consider the single-input single-output linear t i m e  
invariant feedback system depicted in Figure 1.  Let 
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Figure 1: The feedback system 

the plant and compensator transfer functions be de- 
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noted by P ( s )  and K ( s ) ,  respect,ively. We shall as- 
sume that P ( s )  and K ( s )  are both proper rational 
functions. Define the open-loop transfer function by 
L(s)  := P ( s ) K ( s ) ,  and the sensitivity and complemen- 
tary sensitivity function by 

L(s )  T(s )  := __ 
1 + L(s)  

1 
S ( S )  := ___ 

1 + L ( s ) ,  

With no loss of generality, we assume that there ex- 
ists no unstable pole-zero cancellation in L(s ) .  When- 
ever this is the case, the closed-loop stability of the 
system implies that  both S(s) and T(s )  are analytic 
in the closed right half plane. We assume throughout 
that the system is stable. Furthermore, we assume that 
L(s)  satisfies the conjugate symmetry property (cf. As- 
sumption A 2.2). 

Denote the open right half plane by C+ and its 
closure by F+.  Suppose that the open-loop trans- 
fer function L(s )  has right half plane poles pi E C+, 
i = 1, '.., N,, counting the multiplicities. Sup 
pose also that it has right half plane zeros z; E C+, 
i = 1, . . . , N, ,  counting the multiplicities. Then L(s)  
can be factored as 

U s )  = Lm(s)B;%)B2(S), (1) 

where B p ( s )  and B,(s) are the Blaschke products as- 
sociated with the zeros and poles of L(s) ,  respectively, 
defined by 

Here for a complex number s, we denote its conjugate 
by 8. Hence, the sensitivity and complementary sensi- 
tivity functions admit the factorizations 

We shall assume throughout this paper that L(s)  has 
neither zero nor pole on the imaginary axis. Under this 
assumption, L,(s) is stable and minimum phase, so 
are S,(s) and T,(s).  It is worth noting that imaginary 
zeros or poles of L(s)  have no effect on integral relations 
of all known kinds, whenever the integrals in question 
are appropriately defined, specifically in terms of the 
so-called Cauchy principal values [2, 81. 

Next, we list several extended forms of the argument 
principle developed in Part I [7] of this series. These 
lemmas will be used in the sequel for developing new 
integral formulae for the sensitivity and complementary 
sensitivity functions. First, for f(s) and g(s), which 
will be used explicitly in Lemma 2.1-2, we make the 
following assumptions. 

A 2.1 f(s) i s  meromorphic in Cc, which does not have 
zero or pole on the imaginary ais. 

- A 2.2 f (s) satisfies the conjugate symmetry property, 
f(s) = f ( 3 .  

A 2.3 g(s) as odd on the imaginary axis, g(jw) = 
-g(-jw). 

A 2.4 Fors E C+, lim sg'(s)logf(s) e ~ s t s .  
d + o c  

A 2.5 At any singularity jwo of g(s) on the imaginary 
azis, lim (s - jwo)%g(s) esists. 

*+3WO 

A 2.6 At any singularity jw, of g(s) on the imaginary 
axis, lim g(jw) log I f ( jw) l  = 0. 

W+WO 

Here in making the assumptions A 2.1 and A 2.2, 
we intend to take f (s) to be a certain system transfer 
function. The assumptions can then be imposed with 
no loss of generality. The other assumptions, A 2.3-2.6, 
are also rather general and are widely applicable. In 
particular, the assumption A 2.3 is oriented specifically 
for deriving Bode type integral relations, and it may 
be relaxed when g(s) is certain logarithm function (cf. 
Lemma 2.2). The assumption A 2.4 is standard in the 
control performance studies, which is needed to insure 
that the functions f(s) and g(s) behave appropriately 
at infinity. The assumptions A 2.5-2.6 are necessary for 
relevant integrals to be well-defined when singularities 
of g(s) do occur on the imaginary axis. 

The following preliminary lemmas are adopted from 
171, 

Lemma 2.1 Suppose that f(s) has N ,  zeros z; E Ct, 
i = l ,  ...,IV;, a n d N , p o l e s p , € C + , i = l ,  ..., N,, 
all counting the multiplicities. Suppose also that g(s) 
has N .  singularities a t  j w i ,  i = 1, . . . , N,,  but i s  ana- 
lytic in C+. Then under the assumptions A 2.1-2.6, 

where 

p := lim sg'(s) log f (s) 
8400 

A mathematical resulg of interest in its own right, 
Lemma 2.1 can be further simplified for applications t o  
a control setting. One special case arises when g(s) is 
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a logarithmic function with singularities on the imagi- 
nary axis. In particular, it willibe of interest to examine 

(4) 

for some w, > 0, which extends trivially t o  the function 

Note further that in performance analysis of control 
systems, our main interest is on the magnitude fre- 
quency responseof the system. Thus, when f(s)  is c h o  
sen to be a system’s transfer function, which satisfies 
the conjugate symmetry property, g(s) is to be selected 
such that g’ ( jw)  is even, so that g’(jw)loglf(jw)l is 
even. It is easy to verify that when g(s) is the loga- 
rithm of a rational function with singularities on the 
imaginary axis, g ‘ ( jw)  is even if and only if g(s) pos- 
sesses the form of (5). As a result, we may address this 
case by considering g(s) given by (4), without loss of 
generality. 

Lemma 2.2 Let f ( s )  be analytic in 6,. Suppose that 
f(s) hasNZ zerosr; E 6+, i = 1, ... , N,,  all counting 
the multiplicities. Then under the assumptions A 2.1- 
2.2, 

This lemma can be seen as an easy consequence of 
Lemma 2.1, with g(s) given by (4). The following 
lemma is also quoted from 17) under a related, albeit 
different, assumption. 

Lemma 2.3 Let f(s) be a meromorphic function in 
C+. Suppose that f(s) has .hi, zeros z; E E+,  - i = 
1, ..., f i - lz ,  . - ’  N,, and Np poles p;  E C+, i = 
1, . ’ .  ,  XI^, . . . , Np,  all counting the multiplicities, 
in which z i ,  i = 1,  “., N I ~ ,  and p i ,  i = 1,  . . ’ ,  IV-~~, 
are on the imaginary axis. Then under the assumption 
A 2.7, and whenever g ( s )  is analytic in E+,  

3 New Integral Constraints 

Based on the preliminary results in Section 2, we now 
derive a number of new integral relations for the sen- 
sitivity and complementary sensitivity functions. The 
general spirit in our development is that with extra in- 
formation available on the system, additional integral 
relations may be obtained. 

Theorem 3.1 Suppose that L(0) # W. Then 

Note that L(0) # CO whenever the system has no inte- 
grator. Furthermore, if L ( s )  contain a double (or more) 
zero at  s = 0, then S’(O)/S(O) = 0. 

Proof. Since L(0) # w, S(0) # 0. Let 

We have 
D = - I ’  S(S) im -log - = 0, 

8-02 s S(0)  
and thus the assumption A 2.4 is satisfied. Note that 
g(s) has a singularity a t  s = 0, where 

Hence the assumption A 2.5 is satisfied. It is easy to 
verify that loglf(jw)l converges t o  0 at  a rate of (or 
higher than) wz when w --t 0. Therefore the assump- 
tion A 2.6 is satisfied. Invoking Lemma 2.1 yields the 
desired result (8). 

Theorem 3.2 Suppose that L(co) # 0.Then 

In this case, L ( s )  cannot be strictly proper 

Proof. Under the condition L(m)  # 0, lim T ( s )  # 0, 
and we may construct, 

s 4 m  
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It is straightforward t o  check that the assumptions A 
2.1-3 are satisfied. Since, 

T(s)  
s-+= T(m)  

p = lim slog- 

the result follows by directly applying Lemma 2.1. 

Theorem 3.3 Assume that 

for some integer n 2 0. Then, 

Assumption (10) imposes a constraint on the relative 
degree of L(s) .  

Proof. Define 

f ( 4  = S(S),  g(s) = S4"+1. 

Under (lo), logS(s) can he expanded at 03 as 

logS(s) = - log(1 + L ( s ) )  
1 
2 

= - L ( s ) + - L 2 ( s ) - . . . .  

As a result, 

p = lim (4n + 1)s4n+1 logs(s)  = 0. 
S t C C  

The proof is then completed by using Lemma 2.1. 

Theorem 3.4 Assume that for i = 1, . . . , 4 n  + 1, 

for some integral n > 0. Then, 

The conditions (12) and (13) together imply that L(s)  
has an integrator up t o  the order of 4n + 1. 

Proof. Let 

We have 

4 n +  1 T ( s )  lim -Q4n+l log - = 0 
B i C C  T(O) 

Thus the assumption A 2.4 is satisfied. Since under the 
conditions (12) and (13), 

f'(s) 1 T'(s) lim s-g(s) = lim -- 
*+o f(s) s+o s4n T ( s )  

= 0, 

the assumption A 2.5 is satisfied. Similarly as in the 
proof of Theorem 3.1, the assumption A 2.6 is also 
satisfied. The result is then immediate by invoking 
Lemma 2.1. 

R e m a r k s  3.1 Theorem 3.3-4 constitute some general- 
ized forms of the Bode sensitivity and complementary 
sensitivity integrals. For n = 0, both (11) and (14) 
reduce to the classical Bode sensitivity and comple- 
mentary sensitivity integrals, respectively. It is clear 
that ,  for n # 0, the imaginary parts of the nonmin- 
imum phase zeros and unstable poles will affect the 
corresponding integrals, unlike in the classical results. 

m 

R e m a r k s  3.2 In [4], it was shown that logS,(s) may 
be represented as the one-sided Laplace transform of 
some function f ( t ) ,  and the initial value, f (O+), is equal 
to the Bode sensitivity integral. It is straightforward 
t o  show that the integral in (11) is equal to the 4nth- 
order derivative of f ( t )  at t = Of. Thus, Theorem 
3.3 provides a more detailed description of the initial 
behavior of f ( t ) ,  in a way resembling to tha t  provided 
by moments. The same interpretation can be made for 
Theorem 3.4. 

Remarks 3.3 As in [S, 131, assume that the open-loop 
gain satisfies the bandwidth restriction 

where 6 < 1/2. Note that k,w,  and 6 can be adjusted 
t o  vary magnitude roll-off behavior. Select k = 4n + 1. 
Then, a straightforward calculation gives rise t o  

Suppose now that there is a disturbance attenuation 
requirement such that 

IS(jW)l 5 a < 1, w 5 wi < wC. (16) 
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In light of Theorem 3.3 and the inequalities (15) and 
(16), we immediately obtain the lower hound 

The interpretation of (17) is similar t o  those given in 
[X, 131. a 

Theorem 3.5 Suppose that S(jw,) # 0 for any w, > 0. 
Then, 

Similarly, suppose that T(jw,)  # 0 for any wc > 0. 
Then, 

Proof. We shall only prove (18), and the proof for (19) 
is similar. Toward this end, it suffices to choose 

The proof is then completed by applying Lemma 2.2.. 

Remarks 3.4 An alternative proof for Theorem 3.5 
can be pursued by invoking Lemma 2.3. For (18), we 
may select f (s) and g(s) as 

As such, f(s) is analytic in C+ and has imaginary 
zero -jw, and imaginary pole jw,. An application of 
Lemma 2.3 gives rise to 

The desired result then follows by a straightforward 
calculation, which results in (18). 

Remarks 3.5 Here a close observation reveals that 
the Bode integrals for S(s) and T ( s )  can be considered 

as limiting cases of (18) and (19), when in the latter 
results we goes to ca and 0, respectively. For exam- 
ple, when wc --t 0, & converges uniformly to 1/w2. 
Thus, (19) holds in the limit as 

It is then trivial to verify that 

dargT(jw) 

Note that similar derivation also applies to the limiting 
case of (18). a 

4 Conclusion 

In this paper we have derived several new integral re- 
lations using the extended argument principles devel- 
oped in the first part 171 of this two-part series. While 
these integral relations share much in common with 
the classical results by nature, the novelty lies both 
in the technical derivation and in the fact that they 
help exhibit new features of fundamental design limi- 
tations, which complement those already known. The 
fac t  that  these results are obtained in a simple manner 
and under strong conditions points to the possibility 
that more alternative meaningful integral results may 
still be available. Indeed, as our development hinges 
entirely on the selection of two functions, which can be 
rather general and may be selected from a wide variety, 
there seems t o  be many possibilities that remain to be 
explored, toward which a deeper investigation appears 
t o  be warranted. Table 1 summarizes the new integrals 
and indicate how they may he derived, based on the 
extended argument principle developed in [7]. 
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