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Abstract." The stability robustness of a feedback system is studied in this paper by assuming that the plant and the controller are 
subject to independent uncertainties and that the uncertainties are measured by the gap metric. A fairly complete solutiOn is 
obtained by exploring the trigonometric structure of the graphs of the plant and the controller. 
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I. Introduction 

This paper  studies the stability robustness of the feedback system shown in Figure 1, where the plant 
and the controller are assumed to be linear time-invariant finite dimensional systems. Describing the 
uncertainties in a linear system in terms of the gap metric [16,6,17,7], we give a complete characterization 
of the stability of the closed loop system with simultaneous uncertainties in both the plant and the 
controller. Such a stability robustness problem has, in fact, been studied since the gap metric was 
introduced to the control literature [16]. A recent thorough study can be found in [7], where a necessary 
and sufficient condition for the closed loop stability is obtained for the case when only the plant or the 
controller is subject to uncertainty; the simultaneous plant and controller uncertainty case is also 
considered in [7], where a necessary and sufficient condition for the closed loop stability robustness is 
obtained with respect to the sum of the plant uncertainty and the controller uncertainty. Our  results 
assume that the plant space and controller space are independent;  in this case, the necessary and 
sufficient condition obtained is in terms of the plant uncertainty and the controller uncertainty, looked 
upon as independent  entities. A by-product of  this paper  is a necessary and sufficient condition for the 
closed loop stability robustness when the plant and the controller are subject to simultaneous normalized 
coprime factor uncertainties. This is made possible by the connection between gap metric uncertainties 
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Fig. 1. The standard feedback system. 
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and the normalized coprime factor uncertainties which has been recognized in [7]. For previous studies 
on coprime factor uncertainties, see [15,14,8]. 

We start with some standard definitions, Let ~'~2 and X¢¢ be the usual Hardy spaces with respect to 
•(s) > 0. We assume that the functions in ~ 2  and in X= are respectively vector and matrix valued, but 
we suppress their dimensions from the notation with the assumption that all the operations are 
compatible. Let ~ X =  be the set of the real rational members of ~t'~=. We will not make formal 
distinctions between a system, its transfer matrix (a real rational matrix) and the (possibly unbounded) 
multiplication operator from ~ 2  to Y2 due to its transfer matrix. The feedback system shown in Figure 
1 is said to be stable if the transfer matrix from [~'_~] to [~2 ], which is given by 

I ( I - C P ) - '  C ( I - P C )  -~ 
I t ( P ,  C) = = , (1) 

- p  [ p ( I - C P )  -1 ( l - P C )  1 

is in ~ , , ~ .  For simplicity, we also say (P, C) is stable if H(P,  C) is stable. 
Let 2 ~ and y be two subspaces of a Hilbert space ~ and let Fl~. and F/~ be the orthogonal 

projections on X and y respectively. The gap between ~ and ~,/is defined as 

"/ (2  ~, Y )  = I I / / ~ - / / ~  II. 

This gap defines a metric on the set of all subspaces of ~ .  
Let NM- ~ be any right coprime factorization of a real rational matrix P. By the graph of P, we mean 

M 
~p = [ N]'J~2 - 

The gap between two real rational matrices P1 and 1)2 is defined as the gap between their graphs, 
i.e., 

6( P,, P2) = Y( ~'P,, ~'e:). 

The T-gap [7] between P1 and P2 is defined by 

6T( P1, P2) = 6( P;, P'2)" 

The gap and T-gap define two distinct metrics in the space of all real rational matrices of a fixed size. 
The gap metric ball and the T-gap metric ball centered at P0 with radius r are then given by 

~ , ( P , r ) = { P : 6 ( P ,  Po)<r}, ~ 2 ( P , r ) = { P : 6 T ( P ,  Po)<r}. 

Our first main result shows that the stability robustness of a closed loop system with plant P and 
controller C can be measured by 

Precisely, we show that for each predetermined i, j ~ {1, 2}, all pairs in ~/(Po,  r l )×~ ' ; (C0,  r2) are 
stable if and only if (r  1, r 2) is inside or on the boundary of the shaded area shown in Figure 2. The 
upper-right boundary of the shaded area is given by 

arcsin r 1 + arcsin r 2 + arccos v ( P  0, Co) = ~-'W. 

Our second main result shows that 

inf{v(P,  C) :  P ~ 4 ( P 0 ,  r , ) ,  C ~..~j(C 0, r2) } = cos[arcsin r, + arcsin r 2 + arccos u(eo, C0) ] 

(3) 



L. Qiu, E.J. Davison / Stability under simultaneous uncertainty in plant and controller 

r2 

1 

l l  

0 [ .(P0, c0) 
1 

1 

Fig. 2. The largest area containing only stable pairs: 

for each (r~, r 2) inside the shaded area of Figure 2. From our first main result, we see that u(P, C) 
measures the stability robustness of the pair (P,  C). Furthermore,  each block of the the matrix 

P ( I - C P ) - '  P ( I - C P ) - ' C  

has its own physical significance: ( I  - CP) -1 is the sensitivity function, P(I  - CP)-~C is the complemen- 
tary sensitivity function, ( I  - Cp ) - I C  is the ratio of the control to the output noise, and P ( I -  CP) -~ is 
the ratio of the output to the input noise. Therefore,  v(P,  C) can be considered as a performance index 
of the feedback system formed by (P,  C). (See [3] for more discussions.) The infimum (3) then 
corresponds to the worst case performance when P and C are in gap metric balls. An important feature 
of the right hand side of (3) is that it is monotonic in v(P, C). Consequently, the worst case performance 
optimization problem is equivalent to the nominal performance optimization problem. 

Finally in this section, we remark that both of these results have parallel versions if the uncertainties 
are measured by the pointwise gap metric [12], and they can be properly extended to more general 
situations which involve infinite dimensional systems or time-varying systems [4]. 

We will use, whenever possible, the conventional notation as used in the literature. For a subspace 
of a Hilbert space • ,  ~ ± is the orthogonal complement of ~ and H ~  is the orthogonal projection 
onto ~o~. If A is a bounded operator from X to another Hilbert space ~/, then A* is the adjoint of A, 
il A i[ is the induced norm of A, and r (A)  is the so-called lower bound of A which is defined by 

~'(A) = infx ~ X.tl~l I =l II Ax II. 

2. Preliminary results 

In this section, we will first present some background knowledge on gaps between subspaces. We will 
see how gaps are connected with the angles (readers are referred to [2] for details). We will then 
generalize some of the elementary trigonometric relations. Finally we will show that the stability of 
(P,  C) can be reflected by the relation between the graph of P and the graph of C. 

Let ~ and y be subspaces of a Hilbert space ~F. From the definition of gap, we know that 

= m a x { l l f t . ~ r ~  II, I IH .~Hyl I}  

= max{ JJ m .  tl, if n.in  ii} 

[o;+ -o 
(since H ~  and H g i  are self-adjoint). 
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It will be convenient  in the following development  to have the concept  of directed gaps. The  directed gap 
from #2 ~ to y is def ined as 

y )  = IL rt ln  II. 

Clearly, 

~ / ( ~ ,  y )  = m a x { ~ ' ( ~ ,  y ) ,  ~ ' ( y ,  Y ) } .  

Let  X, )(,  Y and Y be isometries with ranges ~-~¢, ~ - ~ ,  ~ and y ± respectively. Then  

n =YY*, 
It follows that 

~ ( s ,  y )  = II 1,:q?*xx* II = II ? * x  II = II x * ?  I[. (4) 

Note  that  the opera tor  

L ) ( * Y  X ' Y ]  

is unitary. Therefore ,  we also have 

~( ~ ,  y )  = ¢1 - ,~2(~: .~ , )  = ¢1 - ~ - 2 ( y * X ) .  ( s )  

Some of the e lementary  propert ies  of the gap can be easily seen from formulae (4) and (5). For  
example,  the gap is unitarily invariant, i.e., if A is a unitary opera tor  on ~ ,  then 3,(A~- ~ ,  A ~ ) =  
y ( ~ ,  y ) .  If 3 ' ( ~ ,  Y ) <  1, then r ( X * Y ) >  0 and ~ ' (Y*X)> 0. This implies that X * Y  is invertible [10, 
Problems 51 and 52]. It then  follows that 

. c ( X * Y )  = ] [ ( X * Y )  -1 l[ - ' =  ] [ ( Y * X ) - '  [I - I = - c ( Y * X ) ,  

and consequently ~'(,,,~, ~ / )  = ~(~/,  ~ ' ) .  
It is well-known [1,2] that  the concept  of the gap between two subspaces has a close connect ion with 

the angles be tween vectors in these two subspaces. In fact, if we define 0 ( ~ ,  ~?,/) = arcsin y(,,9~ j / )  ~ [0, 
½"rr], then 0(~W, ~?,/) can be considered as a general izat ion of  the angle z be tween two one-dimensional  
subspaces (lines). Consider  three  one-dimensional  subspaces, say in ~3, with angle be tween them a, [3, y 
respectively. Clearly, we have y < a + [3 and a > ]y - [3 1. The  former  inequality is meaningful  only when 

1 1 + [3 _< u r  or, equivalently, sinZa + sin2[3 < 1. If a + [3 < u r ,  we obtain by applying the 'sin' addition 
formula 

sin y < s in (a  + [3) = sin a cos [3 + sin [3 cos t~. 

Similarly, we can obtain 

sin a > sin I ~ / -  [3 1 = I sin 3, cos [3 - sin [3 cos r l- 

The  generalizations of these relations appear  very interesting; indeed, they are the foundat ion  upon 
which our  main results are obtained.  

Proposi t ion 1. Let ~ ,  ~/, 2" be subspaces of a Hilbert space 2F. Then 

~/(~/, 2")  _> [ y ( Y ,  .2")¢1 - - r 2 ( , ~ ,  , ~ )  - - ~ ( , ~ ,  ~ / )¢1  - - r2 ( , a~ ,  ..~) 1, (6) 

There are two angles between two crossing lines; one is acute and the other is obtuse. Here we always refer to the acute one. 
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Proof. Let X, )(, Y, I 2, Z, Z be isometries whose ranges are subspaces ~,~, ~ ±, ~,~, ~ / ± ,  
respectively. If we partition ,,~ into ~o:,  ~ ±, then we can assume that 

If y(~q~', ~ )  = 1, then either Y(YI) = 0 or r(l? I) = O. In the first case, 

r( Z * Y )  = r( Z~'Y, + Z~Y2)  <_ IIZ~Y:II ~ II Z2 I I - -~ ' (2` ,  ~ ) .  

In the second case, 

This shows that 

2`, ..~± 

y ( ~ / , 2 ` ) = m a x { ¢ l - r E ( z * Y ) ,  ¢1 - r 2 ( Z * l ? )  ) >_ ¢1 - y2(gF, 2`)  , 

i.e., (6) holds if y ( ~ ,  y )  = 1. Similarly, we can show that (6) holds if y ( ~ ,  .2") = 1. So we have proved 
(6) for two special cases. Now we assume that y ( ~ ,  ,g/) < 1 and y ( ~ ,  2`) < 1. This implies that r(Yt), 
r(Yl*), z (Z  I) and r(Zl*) are all greater than zero. Let Yi and Z I have polar decompositions Yi = I Yi I U 
and Z~ = I Z~ I V respectively. Since Yz and Z 1 are invertible, the partial isometrics U and V are actually 
unitary [10, Problem 136]. Therefore, we can also assume, without loss of generality, that Y~ and Z~ are 
positive definite self-adjoint operators. Under this assumption, we have YI = ( I -  Y~Y2) 1/2 and ZI = 
( 1 -  Z~Z2)  ~/2. A unitary dilation of Z is given by 

[ ( l - Z f f Z 2 )  '/2 -Zf f  ] 

Z2 ( I - Z 2 Z ~  ) ~/2 " 

Therefore its right column is an isometry with range 2`  ±. By using formula (4), 

~,(~, 2`) >_ ~'(~, 2`) 

= - z :  ( 1 - z : z J ' ) ' Q  
v: 

--II( z -  z : z : ) ' , v : -  z:( z -  v:* v:)'" II 
= ( I - Z 2 Z ~ I ' J 2 [ y 2 ( I  - y~'y2) - ' /2  - ( I - Z 2 Z ~ ) - ' / 2 Z 2 ] ( I  - r2*v2) '/2 

>_~[( i -  z :z : )"]  IIr~(1- g;.v~)-'/:l] -I1( I-  z:z:)-'/:z:l] ~[( i -  v:v:)':] 
-- ~[¢ i -  z : z : ) ' - ]  IIv~¢ i -  Y:.Y~)-'/2l]-I1¢ i -  z : z : ) - ' : z :  II ~[¢ i -  v:. r: ) ' - ]  

IIY2 II II z2  II 
= r ( Z , )  ¢1_11Y2112 ¢1_11Z2112 ~'(YI) 

) ¢ l - r 2 ( y ' )  ¢1 - ~'2(Z,) I 
= r(Z, r(Y,) -~(--~) r(Y,) 

=[,/.(Zl)¢ 1 _,./.2(Yi) _7.(]71)¢1 _,./.2(Z¿) [ 

= ] y ( ,~ ,  2`)¢1 - V 2 ( , ~ ,  ,,g/) - y ( , ~ ,  ~/)¢1 _ y 2 ( ~ ,  2") I. 

This completes the proof. [] 
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Corollary 1. Let ~2", y ,  .U be subspaces of a Hilbert space ~,U. Then 

O ( y ,  .U) >_ I 0 (~ ' ,  _U) - 0 ( ~ ,  Y ) I ,  (7) 

_w) _< 3/) + 0 (y ,  (s) 

Proof. (7) follows from (6) by applying the 'arcsin' function. (8) follows from (7). [] 

Corollary 2. Let ~Y, y ,  _2" be subspaces of a Hilbert space ~¢~. I f  y 2 ( S ,  y )  + y2 (y ,  .U) < 1, then 

y ( ~ , ,  y )  < y ( ~ 2 ~ , y ) v / l _ y 2 ( y , Z )  + T ( y ,  L U ) V ' I - y 2 ( ~ , y ) .  (9) 

Proof. (9) follows from (8) by applying the 'sin' function. The condition y 2 ( y ,  y )  + y 2 ( y ,  .U) < 1, 
I which is equivalent to 0(~¢ ", y )  + 0 ( y ,  .U) < 7w, is necessary since the 'sin' function is not monotoni- 

2zr]. [] cally increasing outside [0, 

The inequalities (6)-(9) are tight in the sense that if we fix y(~ ' ,  y )  and y ( y ,  .2") with y z ( ~ ,  y )  + 
1 ye(,~e', .2") < 1 (or 0(~,-~', ~V) and 0(if', .2") with 0(~- ~ ,  ~/) + 0(~/, .U) < ~rr) and fix any one subspace 

among ~ ,  y ,  .U, then we can always choose the other two to achieve the equalities. 
In the rest of this section, we relate the intended robustness measure v(P, C) defined in (2) with the 

gap between two spaces. Let NM-l  and VU-1 be right coprime factorizations of P and C respectively. 
It is well known [5] that the pair (P,  C) is stable if and only if the matrix 

is unimodular in , ~ ,  i.e., this matrix and its inverse are both in , ~ , ~ .  Let us denote 

and call it the int,erse graph of C. Then it follows from [10, Problem 52] that (P,  C) is stable if and only if 

The following lemma is essentially Theorem 1 in [4], but we are going to give a proof based on 
formulae (4) and (5). 

Lemma 1. Let ~ ,  ~/ be subspaces of a Hilbert space Y .  Then ~ r) ~z" = {0} and ~" + ~/= ~U if and only if 
3'(~, Y +) < 1. 

Proof. Decompose ~ into ~ ~ ± .  Then an isometry with range ~ is [/] and an isometry with range 
Yi ~/ has the form Iv2]-The condition that ~t°~n~/= {0} and ~-~+~g/=~ is equivalent to that [~ v' 2] is 

invertible. This is true if and only if 112 is invertible. Since 

3 ' ( ~ ,  ~7 ± ) =  max{~/~- ~ ( Y ~ ) ,  V"I- r2(Y~ *) }, 

we can easily see that 112 is invertible if and only if y ( ~ ,  ~ ±) < 1. [] 

Lemma 1 implies that (P,  C) is stable if and only if 

y ( ~ e ,  ~'~',±) < 1. 

Further, one might naturally conjecture that the distance of Y(ffe, ff~'±) from 1 has a connection with 
the stability robustness of (P,  C). Indeed, the main results in the next section will establish such a 
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connection. Here, we relate y(~p, ~ ± )  with the intended robustness measure v(P, C) defined in the 
last section. 

Proposition 2. Let (P, C) be stable. Then 

y(~p, ~-L)  = ~/1- v2( p, c )  . (10) 

Proof. We have to introduce some local notation first. Let ~ 2  and _~  be the standard Lebesgue spaces 
of vector and matrix valued functions with domain being the imaginary axis, and let .~,~wo~ be the set of 
real rational members of ~cp. For F ~'.2Po~, we define F"  by F"  (s) = F ' ( - s ) .  The orthogonal projection 
from .2a2 to "~e is denoted by H+. 

Since (P,  C) is stable, it follows from Lemma 1 that y(ffp, ,ff~±) < 1, which implies that y(SCe, .~±)  
= ~(~'e, ~ ± ) .  Let NM -j and VU -I  be normalized right coprime factorizations of P and C respec- 
tively. Since [N M] is an isometry from ~'~2 to .~p and [v] is an isometry from Z2  to ff~, formula (4) leads 
to 

The above norm is the induced Yf2 to g(2 operator  norm of a Topolitz operator  with an ,gL~ matrix 
symbol. It is known [10, Problem 245] that this norm is equal to the . ~  norm of the symbol. Hence, 

Let /_)- II? be a left coprime factorization of C. Since the matrix [v-  ~ v] defines a unitary operator on 
5¢ 2, we then have 

=v(P,  C). 

[] 

An alternative expression for (10) is 

O( ~p, ~W~ ± ) = arccos v( P, C). 

3. The main results 

In the statements of the following theorems, we always assume that i, j ~ {1, 2} are arbitrary but fixed 
and that r I and r 2 are positive real numbers. 

Theorem 1. Let (Po, Co) be stable. Then (P, C) is stable for all P ~ i ( P o ,  r l) and C ~ ( C o ,  r 2) if and 
only if 

1 (11) arcsin r I + arcsin r 2 + arccos v(Po, Co) <_ ~ .  

Inequality (11) gives rise to the shaded area in Figure 2. Some of the useful features of this area can 
be exposed more clearly by recognizing that inequality (11) is equivalent to 

r~ + r~ + 2rlr2~/1 - v2(P0, Co) _< v2(Po, Co) , (12) 
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which is the condit ion derived in [12] for the pointwise gap metric case. It can be easily seem from (12) 
that the up-right boundary  is part  of  an ellipse. This boundary  is always inside the arc centered at the 
origin with radius u(Po, C o) and outside the segment  described by r I + r e = u(P o, Co). 

We emphasize that  the balls used in above theorems are open  balls. However,  Theo rem 1 is true even 
if one of  the balls is replaced by a closed ball 2. We can verify this by simple modification of  the ' if '  part  
of  the proof; the 'only if' part  remains true automatically. If  we replace one of  the balls in Theo rem 1 by 
a closed ball and let the closed ball have radius zero, then we obtain Theo rem 5, Theo rem 3'  and 
Theorem 6 of  [7], which are the conditions for the stability robustness of  the closed loop system when 
only the plant or the controller  is subject to gap metric or T-gap metric uncertainty. W h e n  we refer to 
Theorem 1 in the following development ,  we sometimes mean  the version with one of  the open  balls 
being replaced by a closed ball. 

Theorem 2. Let (Po, Co) be stable and let (r I, r 2) satisfy (11). Then 

in f{u(P ,  C ) :  P ~ i ( P o ,  rl) and C ~ j ( C  o, r2) } = cos[arcsin r I + arcsin r 2 + arccos u(Po, C0) ] . 

(13) 

In a similar fashion, one of  the balls in (13) can be replaced by a closed ball, and the closed ball is 
allowed to have radius zero. This version of  T he o rem 2 will be useful in the following development  and 
will be meant  sometimes when we refer to Theorem 2. 

4. Proof of the main results 

We need  two lemmas before proceeding to the proofs. 
Given a real rational matrix P,  let NM -~ and M-~A) be its normalized right and left coprime 

factorizations. The  right and left normalized factor balls centered  at P with radius r are the following 
sets of  real rational matrices: 

= < r,  M + A M is invertible , ~ l ( P ,  r) ( N + AN)(  M + AM)- ' :  AM 

II[aM a ]ll.<r,M+aM i s inver t ib le) ,  

respectively. The  following lemma is a combinat ion of  the Lemma 2 and Lemma 3 in [7], and their dual 
versions. 

• ~ rMcs)l and ~ '2(P ,  r)=C~'2(P, r) for each r < Lemma 2. ~,~,(P, r ) = ~ ' , ( P ,  r) for each r< inrRts)>0LN~)j, 
infRt~) > 0[M(s)  /V(s)]. 

The  following lemma follows from T he o re m  3'  in [7]. 

Lemma 3. (P, C) is stable for all P ~ i ( P o ,  rl); C ~ ( C  0, r 2) and for all i, j ~ {1, 2} if  and only if  the 
statement is true for any one particular i, j ~ {1, 2}. 

: A closed ball centered at P0 with radius r is defined to be, e.g., {P: ~(P, P0) < r}. One should note here however that a closed 
ball is not necessarily the closure of the open ball with the same center and radius. For example, the closure of 5~'1(0, 1) is not 
equal to {P: ~(P, 0)_< 1}. 
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Proof of Theorem 1. Lemma 3 implies that in the following proof, we can choose the actual value of i and 
j as we feel convenient. 

(I) ' I f '  part.  We prove this part  for i = j  = 1. Let  

0 0 = arccos ~'(Po, Co),  01 = arcsin r l ,  0 2 = arcsin r 2. 

I ±  It follows from Proposition 2 that 0 0 = arcsin y(~'p,, .~'~, ). For each (P,  C) with P ~ I ( P o ,  r l) and 
C E~q~l(Co, r2), 

<o2 0( p,  po) < 0,, , 

The first equality above follows from the definition easily; the second follows from the unitary invariance 
of the gap. By using Corollary 1, 

' _ , ( ~.'±~ 0 [ ~ . "  " )  c , , j+  

which means y(~'p, ' ± ~ ) < 1, i.e., (P ,  C) is stable. 
(II) 'Only if' part. We prove this part  for i = 1 and j = 2. Assume that a pair (r  I, r 2) is given which 

satisfies 

1 arcsin r I + arcsin r 2 + arccos u(Po,  Co) > ~w- 

We have to show that there exist P ~ ' l ( P o ,  r 1) and C ~ ' 2 ( C o ,  r 2) with 61(P, Po) < rl and ~2(C, C o) < 
r 2 such that (P,  C) is unstable. The assumption made implies that there exist t~ and t 2 with 0 < t~ < r~ 
and 0 < t 2 < r 2 such that 

arcsin t 1 + arcsin t 2 + arccos u( Po, Co) = ~-IT. 

Let 

00 = arccos v ( P  o, Co), 01 = arcsin t I, 02 = arcsin t 2. 

1 Then we have 0 o + 0~ + 02 = 2~-. Let NoM o ~ be a normalized right coprime factorization of Po and let 
0o117" o be a normalized left coprime factorization of C o. Since 

~'(eo, Co) = [l(0oMo -VoNo)" - '  [I ~ - l =  inf _o[/-)o(jw)Mo(jw) - ~)(Jw)No(jW)],  
o J E R  

there must exist ~ ~ [0, ~] such that ff[/)o(j~)Mo(j~) - I?o(j~)No(J~)] = u(Po, Co). Assume the following 
singular value decomposition: 

No( j~)  

where X, Y are unitary matrices. In this case, we can always choose X, Y and an additional unitary 
matrix Z such that 

Z * [ O o ( j ~ ) - I T " o ( j ~ ) ] X = [ A  B] 

where 

-) A = d i a g ( a , , a  2 . . . . .  a , , , ) ~ N  ~ x ' ' ,  B = d i a g  a ~ , ¢ l - a ~  . . . .  , ¢ l - - ami , lmm ) ~ 

and a~ = i f ( A ) .  (Here  we assume that Po is p × m  and Co is m x p . )  Then 

a, = i f ( A )  = f f ( Z A Y * )  = Lr[0o(j~)Mo(JU ) - l~o(jU)No(j~)] = ~'(Po, Co). 
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Let 

W =  

s i n  01 0 - - .  0 

0 1 . . -  0 

0 0 "--  1 

cos Oj 0 . . .  0 

0 0 . . .  0 

0 0 - - .  0 

cos Oj 0 . . .  0 -  

0 0 - - .  0 

0 0 - . .  0 

- s i n  01 0 . - -  0 

0 1 . . .  0 

0 0 . . .  1 

which  is c lear ly  a real  o r t h o g o n a l  matr ix .  T h e n  

- s i n  01 0 - - • 0 

0 1 " -  0 

0 0 " "  1 

COS 01 0 " ' "  0 

0 0 " "  0 

0 0 . - -  0 

a n d  

[A  B ] W ' =  

~ / 1 - - X  2 0 

0 a 2 

0 0 

• ° ° 

0 x 

0 0 

a m 0 

" ° " 0 

. - .  o 

wher e  x = cos 0 0 cos Ol - sin 0 0 sin 0~. H e n c e  x = cos(O 0 + 0 1 )  = sin 0 2. 
F or  a f ixed n u m b e r  ~ ~ (0, oo), de f ine  a m a p  ¢h~ f rom C to real  r a t iona l  f unc t i ons  by 

/ ~  s - / 3  if h is no t  rea l ,  
~ ( a ) =  s+/3 

if A is rea l ,  

w h e r e  a ~ ~ a n d  /3 ~ (0, o~) a re  d e t e r m i n e d  f rom 

j ~ - / 3  
A = a  

j~+/3 

This  m a p  m a p s  a complex  n u m b e r  h to a s table  a l l -pass  real  r a t iona l  f u n c t i o n  whose  va lue  at ~ is h. 
Le t  u~ be  the  first c o l u m n  of  X W ' ,  u 2 the  first row of  Y * ,  u 3 the  first c o l u m n  of  Z a n d  u 4 the  

(rn + 1)-th row of  W X * .  If  ~ is 0 or  oo, they can  be  m a d e  all real ;  o therwise ,  we rep lace  the i r  e l e m e n t s  by 
the  images  of  themse lves  u n d e r  m a p  &~. 
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Let 

A= 

if W = 0 or co, 

if WE (0, a), 

i 

s-l 2n 
u3(s) sin 8, - 

i I s+l %(S) if G=Oora~, 
A= 

s-w 2n 
u3(s) sin e2 - 

i 1 s+w 
u4(s) if WE (0, m), 

and let 

[“;“:::I = [:i:l] -A, [O(s) -V(s)] = [O”(S) -P&s)] -A. 

If n is large enough, both M and 0 will be invertible. For each R(s) 2 0, 

II A II I sin 8, = t, < V( PO, C,) and ]]A]] <sin tY2=t2<~(Po, C,,). 

By [7, Lemma l] and its dual version, 

This implies that [ $::“:I has full column rank and [G((s> -l?(s)] has full now rank. Hence 
right-coprime and U,‘v are left-coprime. 

Let P= NM-’ and C = i?‘v. Then P E ~,(Po, r,) and C E ‘Z2(Co, r2). By Lemma 2, 
P EB’,(P,, r,) and c E~?~(C”, r2). Since 

M, N are 

we obtain 

[ c(jO) _ p(jG)] M(j”) 
[ I N(G) 

is singular, it follows that (P, Cl is unstable. 0 

Proof of Theorem 2. Let us first prove 

inf{v( P, C,): P EzZJi( PO, I,)) = cos[arcsin r, + arccos V( PO, C,,)] 

for i = 1, 2. Let f3,, = arccos v(Po, C,,), 0, = arcsin r,. It follows from Corollary 1 that for each P E 

9,(P”, r,), 

s(yp7 q+e(%, Fp,,)+e(q,, q#4 +e,. 

Therefore, for each P EG’,(P,, r,), 

.(P, c,) = cos e(q, Sk,:) > c0s(e, + e,) 

which implies that 

inf{v( P, C,): P ES,( P,, r,)] 2 c0s(e, + e,). 
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Now suppose we have ' > '  in the above 
P ~..~'l(eo, rl), 

~,(P, Co) > cos(0, + 0 o -  • ) .  

It then follows from Theorem 1 that (P,  C) is stable for all P ~.~'l(Po, r I) and C ~ ' l [ C o ,  cos(01 + 0 o - 
• )]. However, 

arcsin r I + arcsin cos(01 + 0 o -  e) + arccos u ( P  o, Co) = 01 + ½w-  (01 + 0 o -  • )  + 0 o 
! I 

= ~ T r + •  > ~ - .  

This contradicts Theorem 1. Therefore, we must have 

inf{u(P, Co): P ~c~,(P o, r,)} = cos(0, + 0o) = cos[arcsin r I + arccos u(P o, Co) ] . 

From the identity ~,(P, C ) =  u(P', C') [7, Corollary 1], we obtain 

inf{u(P, Co): P ~.~'2(Po, rt) } = inf{u(P' ,  C/)): P '  ~.~',(P(;, r2) } 

= cos[arcsin r, + arccos t,(Po, Co)]. 

Similalry, we can show that 

inf{u(Po, C):  C E~ ' j (Po ,  r2)} = cos[arcsin r 2 + arccos t,(Po, Co)] 

for j =  1, 2. 
Now we proceed to the proof of Theorem 2: 

inf{v(P, C):  P<~i (Po ,  rt) and C e ~ j ( C o ,  r2)} 

= i n f  ( inf v ( P ,  C)} = inf cos[arcsinrl+arccost,(P,),C)] 
C~.~/(Co,r2) t, pE.,~i(Pn,rl ) C~_~j(Cn,r2 ) 

= coslarcsin r, + arccos inf v(Po,  C)I  = cos[arcsin r I + arcsin r 2 + arccos v(P0,  Co)]. 
t C ~ j (  Co,r 2 ) 1 

This completes the proof. [] 
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inequality. Then there exists • > 0 such that for each 

5. Implications of the main results 

One possible way to study closed loop stability robustness under simultaneous plant and controller 
uncertainties is to metrize the space of all plant-controller pairs in terms of the gap metrics in the 
individual plant space and controller space. A class of metrics in the plant-controller pair space of all 
(P,C) can be chosen as 

dv[ (P , ,  C,) ,  (P2, C2)1 = [SP(PI,  P2) + 8P(C,,  C2)] '/p 

for p ~ [1, oo]. 

Corollary 3. Let (P0, Co) be stable. Then all (P, C) satisfying 

d,[(P,  C), (Po, Co)] < r  

are stable if and only if r < u( P , C ). 

This is exactly Theorem 7 in [7]. 
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Corollary 4. Let (P0, Co) be stable and p ~ [2, oo]. Then all (P, C) satisfying 

dp[(e,  C), (Po, Co)] < r  

are stable if and only if r < 21/P(½[1 - ¢1 - v2( p,  C) l) 1/2. 

We can also use a combination of gap metrics and T-gap metrics in Corollaries 3 and 4. The proof of 
these two corollaries follows on computing the smallest H61der p-norm among the points in the 
boundary of the shaded area in Figure 2; the smallest 1-norm occurs at either end, while the smallest 
p-norm for p ~ [2, oo] occurs in the middle. 

It is also of interest to consider the stability robustness of an open loop system, which can be regarded 
as a special case of the closed loop system when the controller is set to be zero. 

Corollary 5. Let Po be stable. Then all P ~ i ( P o ,  r) are stable if and only if r< l/V/1 + IIP01t~. 
Furthermore, if the inequality is satisfied, then 

r +  v / 1 - r  2 II P0 II- 
sup{llel l . :  e e ~ i ( e o ,  r)} = ~ / 1 - r  2 - r  liP011-" 

Proof. If P is stable, then 

[ 1 ]  -1 = l 

v ( e ,  0 ) =  e ,  ¢ l + l l e l l  2 

The first part of the corollary then follows from Theorem 1. The above equality can also be expressed as 

arccos v ( e ,  0) = arctan II P I1-. 

Since inf{v(P, 0): P ~ ( P 0 ,  r)} = cos[arcsin r + arccos v(Po, 0)], it follows that 

sup{ II P II ®: e ~ i ( e o ,  r)} = tan(arcsin r + arctan II P0 II-) 
( r ) / (  r ) 

- ~/l_r~------ 7 + liP011- 1 ~ IIP011- 

=(r  + C-l-r2 l lPoll . ) / (1/1-rZ -rllPol]® ). [] 

Finally, it should be noted that an immediate consequence of Lemma 2 is that Theorem 1 and 
Theorem 2 remain valid if we replace the gap metric balls o~' i by normalized coprime factor balls ~ .  
Therefore, as a by-product, we obtain a complete characterization of the stability robustness of the 
closed loop system, when both the plant and the controller are subject to normalized coprime factor 
uncertainties. 

6. Conclusions 

The major purpose of this paper is to use the gap metric to analyze the stability robustness of a 
feedback system which has both an uncertain plant and an uncertain controller. However, one of the 
important contributions of this paper is the proof of fact that the function 0 satisfies the triangular 
inequality. One of the implications of this fact is that the function 0 also defines a metric on the set of 
subspaces of a Hilbert space; this metric, which might be called the angular gap metric, has the 
advantage that the triangular inequality is tight. In fact, a number of metrics other than the gap metric 
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1 can  be  d e r i v e d  a long  this l ine.  F o r  e x a m p l e ,  2 sin 20, wh ich  is ca l l ed  spher ica l  gap  m e t r i c  in [9], has  a 

nice  g e o m e t r i c  m e a n i n g  wh ich  can  be  e x t e n d e d  to B a n a c h  spaces  [2,11]. S ince  all o f  t h e s e  me t r i c s  d e f i n e  

t he  s a m e  bal ls  (wi th  d i f f e r e n t  radius) ,  they  a re  basical ly  t he  same.  It a p p e a r s  tha t  t he  gap  me t r i c ,  

a l t h o u g h  p o p u l a r ,  is a s o m e w h a t  ad hoc choice .  
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