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FUNDAMENTAL PERFORMANCE LIMITATIONS IN ESTIMATION

PROBLEMS∗

LI QIU† , ZHIYUAN REN‡ , AND JIE CHEN§

Abstract. In this paper, we address the performance limitation issues in estimation problems.

Our purpose is to explicitly relate the best achievable estimation errors with simple plant character-

istics. In particular, we study performance limitations in achieving four objectives: (1) estimating

the output of an LTI system from its version corrupted by a white noise, (2) estimating a Brownian

motion from its version distorted by an LTI system, (3) estimating the output of an LTI system from

its version corrupted by a Brownian noise, (4) estimating a white noise from its version distorted by

an LTI system.

- P

- j - F
?

6

j -

?

u

y

z

z̃

e

n

+
−

Fig. 1. A general estimation problem

1. Introduction. A standard estimation problem can often be schematically

shown by Fig. 1. Here P =

[
G

H

]
is an LTI plant, u is the input to the plant, n is

the measurement noise, z is the signal to be estimated, y is the measured signal, z̃

is the estimate of z. Often u and n are modelled as stochastic processes with known
means and covariances. We can assume, without loss of generality, that the means of
the stochastic processes are zero. The objective is to design LTI filter F so that the
steady state error variance

V = lim
t→∞

E[e(t)′e(t)]

is small. Clearly, for V to be finite for nontrivial u and n, it is necessary that F ∈ RH∞
and H − FG ∈ RH∞. This condition is also necessary and sufficient for the error
to be bounded for arbitrary initial conditions of P and F , i.e., for the filter to be a
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bounded error estimator (BEE). There is an extensive theory on the optimal design
of the filter F to minimize V , see for example [1, 2, 6]. The optimal error variance is
then given by

V ∗ = inf
F,H−FG∈RH∞

V.

Our interest in this paper is not on how to find the optimal filter F , which is addressed
by the standard optimal filtering theory. Rather, we are interested in relating V ∗ with
some simple characteristics of the plant P in some important special cases. Since V ∗

gives a fundamental limitation in achieving certain performance objectives in filtering
problems, the simple relationship between V ∗ and the plant characteristics, in addition
to providing deep understanding and insightful knowledge on estimation problems, can
be used to access the quality of different designs and to ascertain impossible design
objectives before a design is carried out.

The variance V gives an overall measure on the size of the steady state estimation
error. Sometimes, we may wish to focus on some detailed features of the error. For
example, we may wish to see the steady state variance of the i-th entry of the error,
which is given by

Vi = lim
t→∞

E[ei(t)2].

More generally, we may wish to investigate the variance of the projection of the
estimation error on certain direction. This variance then gives a measure of the error
in a particular direction. Assume that z(t), z̃(t), e(t) ∈ Rm. Let ξ ∈ Rm be a vector
of unit length representing a direction in Rm. Then the projection of e(t) to the
direction represented by ξ is given by ξ′e(t) and its steady state variance is given by

Vξ = lim
t→∞

E[(ξ′e(t))2].

The best achievable error in ξ direction is then given by

V ∗ξ = inf
F,H−FG∈RH∞

Vξ.

The optimal or near optimal filter in minimizing Vξ in general depends on ξ. This
very fact may limit the usefulness of V ∗ξ , since we are usually more interested in the
directional error information under an optimal or near optimal filter designed for all
directions, i.e., designed to minimize V . Let {Fk} be a sequence of filters satisfying
Fk,H − FkG ∈ RH∞ such that the corresponding sequence of errors {ek} satisfies

V = lim
k→∞

lim
t→∞

E[ek(t)ek(t)′].

Then we are more interested in

V ∗(ξ) = lim
k→∞

E[(ξ′ek(t))2].
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In this paper, we will also give the relationship between V ∗ξ , V ∗(ξ) and simple char-
acteristics of the plant P for the same cases when that for V ∗ is considered.

The performance limitations in estimation have been studied recently in [4, 5,
11, 12] in various settings. In [4, 5, 11], sensitivity and complimentary sensitivity
functions of an estimation problem are defined and it is shown that they have to
satisfy certain integral constraints independent of filter design. In [12], a time domain
technique is used to study the performance limitations in some special cases when
one of n and u is diminishingly small and the other one is either a white noise or a
Brownian motion.

This paper addresses similar problems as in [12] and their extensions, but studies
them from a pure input output point of view using frequency domain techniques. We
also study them in more detail by providing directional information on the best errors.
The results obtained are dual to those in [3, 7] where the performance limitations of
tracking and regulation problems are considered. The new investigation provides more
insights into the performance limitations of estimation problems.

This paper is organized as follows: Section 2 provides background materials on
transfer matrix factorizations which exhibit directional properties of each nonmini-
mum phase zero and antistable pole. Section 3 relates the performance limitation
in estimating a signal from its corrupted version by a white noise to the antistable
modes, as well as their directional properties, of the signal. Section 4 relates the per-
formance limitation in estimating a Brownian motion from its version distorted by an
LTI system to the nonminimum phase zeros of the system, as well as their directional
properties. Section 5 addresses a similar problem as Section 3 except that the noise is
assumed to be a Brownian motion. Section 6 addresses a similar problem as section
4 except that the process to be estimated is assumed to be a white noise. Section 7
gives concluding remarks.

2. Preliminaries. Let G be a continuous time FDLTI system. We will use the
same notation G to denote its transfer matrix. Assume that G is left invertible.
The poles and zeros of G, including multiplicity, are defined according to its Smith-
McMillan form. A zero of G is said to be nonminimum phase if it has positive real
part. G is said to be minimum phase if it has no nonminimum phase zero; otherwise, it
is said to be nonminimum phase. A pole of G is said to be antistable if it has a positive
real part. G is said to be semistable if it has no antistable pole; otherwise strictly
unstable. A stable G is said to be unitary if G(jω)G(jω)∗ = G(jω)∗G(jω) = I.

Suppose that G is stable and z is a nonminimum phase zero of G. Then, there
exists a vector u of unit length such that

G(z)u = 0.

We call u a (right or input) zero vector corresponding to the zero z. Let the non-
minimum phase zeros of G be ordered as z1, z2, . . . , zν . Let also η1 be a zero vector
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corresponding to z1. Define

G1(s) = I − 2 Re z1

s + z∗1
η1η

∗
1 .

Note that G1 is so constructed that it is unitary, has only one zero at z1 with η1 as a
zero vector. Now GG−1

1 has zeros z2, z3, . . . , zν . Find a zero vector η2 corresponding
to the zero z2 of GG−1

1 , and define

G2(s) = I − 2 Re z2

s + z∗2
η2η

∗
2 .

It follows that GG−1
1 G−1

2 has zeros z3, z4, . . . , zν . Continue this process until η1, . . . , ην

and G1, . . . , Gν are obtained. Then we have one vector corresponding to each non-
minimum phase zero, and the procedure yields a factorization of G in the form of

(1) G = G0Gν · · ·G1,

where G0 has no nonminimum phase zeros and

(2) Gi(s) = I − 2 Re zi

s + z∗i
ηiη

∗
i .

Since Gi is unitary, has the only zero at zi, and has ηi as a zero vector corresponding
to zi, it can be considered as a generalization of the standard scalar Blaschke factor,
see [10] for example, and hence will be called a matrix Blaschke factor. Accordingly,
the product

Gz = Gν · · ·G1

will be called a matrix Blaschke product. The vectors η1, . . . , ην will be called zero
Blaschke vectors of G corresponding to the nonminimum phase zeros z1, z2, . . . , zν .
Keep in mind that these vectors depend on the order of the nonminimum phase zeros.
One might be concerned with the possible complex coefficients appearing in Gi when
some of the nonminimum phase zeros are complex. However, if we order a pair of
complex conjugate nonminimum phase zeros adjacently, then the corresponding pair
of Blaschke factors will have complex conjugate coefficient and their product is then
real rational and this also leads to real rational G0.

The choice of Gi as in (2) seems ad hoc notwithstanding that Gi has to be unitary,
have the only zero at zi and have ηi as a zero vector corresponding to zi. Another
choice, among infinite many possible ones, is

(3) Gi(s) = I − 2 Re zi

zi

s

s + z∗i
ηiη

∗
i ,

and if this choice is adopted, the same procedure can be used to find a factorization
of the form (1). Of course, in this case the Blaschke vectors are not the same. We
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see that for the first choice Gi(∞) = I, whereas for the second choice Gi(0) = I. We
will use both choices in the following. For this purpose, we will call the factorization
resulting from the first choice (2) of Type I and that from the second choice (3) of
type II.

For an unstable G, there exist stable real rational matrix functions[
X̃ −Ỹ

−Ñ M̃

]
,

[
M Y

N X

]

such that

G = NM−1 = M̃−1Ñ

and [
X̃ −Ỹ

−Ñ M̃

][
M Y

N X

]
= I.

This is called a doubly coprime factorization of G. Note that the nonminimum phase
zeros of G are the nonminimum phase zeros of Ñ and the antistable poles of G

are the nonminimum phase zeros of M̃ . If we order the antistable poles of G as
p1, p2, . . . , pµ and the nonminimum phase zeros of G as z1, z2, . . . , zν , then M̃ and Ñ

can be factorized as

M̃ = M̃0M̃µ · · · M̃1

Ñ = Ñ0Ñν · · · Ñ1

with

(4) M̃i(s) = I − 2 Re pi

s + p∗i
ζiζ

∗
i , i = 1, 2, . . . , µ

or

(5) M̃i(s) = I − 2 Re pi

pi

s

s + p∗i
ζiζ

∗
i , i = 1, 2, . . . , µ

and

(6) Ñi(s) = I − 2 Re zi

s + z∗i
ηiη

∗
i , i = 1, 2, . . . , ν

or

(7) Ñi(s) = I − 2 Re zi

zi

s

s + z∗i
ηiη

∗
i

where ζ1, ζ2, . . . , ζµ are zero Blaschke vectors (of type I or II) of M̃ and η1, η2, . . . , ην

are those of Ñ . Here also Ñ0 and M̃0 have no nonminimum phase zeros.
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Consequently, for any real rational matrix G with nonminimum phase zeros
z1, z2, . . . , zν and antistable poles p1, p2, . . . , pµ, it can always be factorized to

(8) G = G−1
p G0Gz,

as shown in Fig. 2, where

Gp(s) =
µ∏

i=1

[
I − 2 Re pi

s + p∗i
ζiζ

∗
i

]
or

µ∏
i=1

[
I − 2 Re pi

pi

s

s + p∗i
ζiζ

∗
i

]

Gz(s) =
ν∏

i=1

[
I − 2 Re zi

s + z∗i
ηiη

∗
i

]
or

ν∏
i=1

[
I − 2 Re zi

zi

s

s + z∗i
ηiη

∗
i

]

and G0 is a real rational matrix with neither nonminimum phase zero nor antistable
pole. Although coprime factorizations of G are not unique, this nonuniqueness does
not affect factorization (8). Here η1, η2, . . . , ην are called zero Blaschke vectors (of
type I or II) and ζ1, ζ2, . . . , ζν pole Blaschke vectors (of type I or II) of G.

- Gz1
-· · · - Gzν

- G0
- G−1

pµ
-· · · - G−1
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-

Fig. 2. Cascade factorization
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Fig. 3. Estimation under measurement noise

3. Estimation under White Measurement Noise. Consider the estimation
problem shown in Fig. 3. Here G is a given FDLTI plant, and n is a standard
white noise. Assume that u is a white noise with vanishingly small covariance, i.e.,
E[u(t)u(t)′] = ε2δ(t)I and ε → 0. The purpose is to design a stable LTI filter F such
that it generates an estimate z̃ of the true output z using the corrupted output y. This
problem is clearly a special case of the general estimation problem stated in Sect. 1

with P =

[
G

G

]
. Since ε may be nonzero, we need to have F,G−FG ∈ RH∞. On the

other hand, since ε is vanishingly small, the error of estimation can be approximated
by Fn in a practical sense. Since n is a standard white noise, the steady state variance
of the error is then given by

V = ‖F‖22
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where ‖ · ‖2 is the H2 norm. If we want V to be finite, we need to have F (∞) = 0, in
addition to F,G− FG ∈ RH∞. Therefore

V ∗ = inf
F,G−FG∈RH∞,F (∞)=0

‖F‖22.

Let G = M̃−1Ñ be a left coprime factorization of G. Then F ∈ RH∞ and
G − FG = (I − F )G = (I − F )M̃−1Ñ ∈ RH∞ if and only if I − F = QM̃ for some
Q ∈ RH∞. Therefore

V ∗ = inf
Q∈RH∞,Q(∞)M̃(∞)=I

‖I −QM̃‖22.

Now assume that G has antistable poles p1, p2, . . . , pµ with ζ1, ζ2, . . . , ζµ be the cor-
responding pole Blaschke vectors of type I. Then M̃ has factorization

M̃ = M̃0M̃µ · · · M̃1

where

M̃i(s) = I − 2 Re pi

s + p∗i
ζiζ

∗
i .

Since M̃i(∞) = I, i = 1, 2, . . . , µ, it follows that Q(∞)M̃(∞) = I is equivalent to
Q(∞)M̃0(∞) = I. Hence, by using the facts that M̃i, i = 1, 2, . . . , µ, are unitary
operators in L2 and that M̃−1

1 · · · M̃−1
µ − I ∈ H⊥2 and I −QM̃0 ∈ H2, we obtain

V ∗ = inf
Q∈RH∞,Q(∞)M̃0(∞)=I

‖I −QM̃0M̃µ · · · M̃1‖22

= inf
Q∈RH∞,Q(∞)M̃0(∞)=I

‖M̃−1
1 · · · M̃−1

µ − I + I −QM̃0‖22

= ‖M̃−1
1 · · · M̃−1

µ − I‖22 + inf
Q∈RH∞,Q(∞)M̃0(∞)=I

‖I −QM̃0‖22.

Since M̃0 is minimum phase with invertible M̃0(∞), there exists a sequence {Qk} ∈
RH∞ with Qk(∞)M̃0(∞) = I such that limk→∞ ‖I −QkM̃0‖2 = 0. This shows

V ∗ = ‖M̃−1
1 · · · M̃−1

µ − I‖22
= ‖M̃−1

2 · · · M̃−1
µ − I + I − M̃1‖22

= ‖M̃−1
2 · · · M̃−1

µ − I‖22 + ‖I − M̃1‖22

=
µ∑

i=1

‖I − M̃i‖22

= 2
µ∑

i=1

pi.

Here the first equality follows from that M̃1 is a unitary operator in L2, the second
from that M̃−1

2 · · · M̃−1
µ − I ∈ H⊥2 and I − M̃1 ∈ H2, the third from repeating the
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underlying procedure in the first and second equalities, and the last from straightfor-
ward computation. The above derivation shows that an arbitrarily near optimal Q

can be chosen from the sequence {Qk}. Therefore

V ∗(ξ) = lim
k→∞

‖ξ′(I −QkM̃0M̃µ · · · M̃1)‖22.

The same reasoning as in the above derivation gives

V ∗(ξ) =
µ∑

i=1

‖ξ(I − M̃i)‖22 = 2
µ∑

i=1

pi cos2 ∠(ξ, ζi).

The last equality follows from straightforward computation.
The directional steady state error variance with an arbitrary F is

Vξ = ‖ξ′F‖22

and the optimal directional steady state error variance is

V ∗ξ = inf
F,G−FG∈RH∞

‖ξ′F‖22

= inf
Q∈RH∞,Q(∞)M̃0(∞)=I

‖ξ′(I −QM̃0M̃µ · · · M̃1)‖22.

By following an almost identical derivation as the non-directional case, we can show
that the same sequence {Qk} giving near optimal solutions there also gives near
optimal solutions here for every ξ ∈ Rm. Hence,

V ∗ξ = V ∗(ξ) = 2
µ∑

i=1

pi cos2 ∠(ξ, ζi).

We have thus established the following theorem.
Theorem 1. Let G’s antistable poles be p1, p2, . . . , pµ with ζ1, ζ2, . . . , ζµ being the

corresponding pole Blaschke vectors of type I. Then

V ∗ = 2
µ∑

i=1

pi

and

V ∗ξ = V ∗(ξ) = 2
µ∑

i=1

pi cos2 ∠(ξ, ζi).

This theorem says that to estimate a signal from its version corrupted by a stan-
dard while noise, the best achievable steady state error variance is proportional to
the sum of the antistable modes of the signal to be estimated. The best achiev-
able directional steady state error variance depends, in addition, on the directional
characteristics of the antistable modes.
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Fig. 4. Estimation of a stochastic process

4. Estimation of Brownian Motion. Consider the estimation problem shown
in Fig. 4. Here G is a given FDLTI plant, u is the input to the plant which is assumed
to be a Brownian motion process, i.e., the integral of a standard white noise, which
can be used to model a slowly varying “constant”, n is a white noise with vanishingly
small covariance, i.e., E[n(t)n(t)′] = ε2δ(t)I and ε → 0. Assume that G(0) is left
invertible. The objective is to design an LTI filter F such that it measures the output
of G and generates an estimate ũ of u. This problem is clearly a special case of the

general estimation problem stated in Sect. 1 with P =

[
G

I

]
. Since ε is nonzero, we

need constraints F, I − FG ∈ RH∞. On the other hand, since ε is vanishingly small,
the error of estimation can be approximated by (I −FG)u in a practical sense. Since
u is a Brownian process, the variance of the error is given by

V = ‖(I − FG)U‖2

where U(s) = 1
sI is the transfer matrix of m channels of integrators. If we want V

to be finite, we need to have I − F (0)G(0) = 0, in addition to F, I − FG ∈ RH∞.
This requires G(0), the DC gain of of G, to be left invertible, which will be assumed.
Equivalently, we need to have F, FG ∈ H∞ and F (0)G(0) = I. Therefore,

V ∗ = inf
F,FG∈RH∞,F (0)G(0)=I

‖(I − FG)U‖22.

Let G = M̃−1Ñ be a left coprime factorization of G. Then it is easy to see that
F, FG ∈ H∞ is equivalent to F = QM̃ for some Q ∈ H∞. Hence

V ∗ = inf
Q∈RH∞,Q(0)Ñ(0)=I

‖(I −QÑ)U‖22.

Now let G have nonminimum phase zeros z1, z2, . . . , zν with η1, η2, . . . , ην being the
corresponding input Blaschke vectors of type II. Then Ñ has factorizations

Ñ = Ñ0Ñν · · · Ñ1

where

Ñi = I − 2 Re zi

zi

s

s + z∗i
ηiη

∗
i .
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Since Ñi(0) = I, i = 1, 2, . . . , ν, it follows that Q(0)Ñ(0) = I is equivalent to
Q(0)Ñ0(0) = I. Hence, by using the facts that Ñi, i = 1, 2, . . . , ν, are unitary
operators in L2 and that Ñ−1

1 · · · Ñ−1
ν − I ∈ H⊥2 and I −QÑ0 ∈ H2, we obtain

V ∗ = inf
Q∈RH∞,Q(0)Ñ0(0)=I

‖(I −QÑ0Ñν · · · Ñ1)U‖22

= inf
Q∈RH∞,Q(0)Ñ0(0)=I

‖(Ñ−1
1 Ñ−1

2 · · · Ñν − I)U + (I −QÑ0)U‖22

= ‖(Ñ−1
1 Ñ−1

2 · · · Ñν − I)U‖22 + inf
Q∈RH∞,Q(0)Ñ0(0)=I

‖(I −QÑ0)U‖22.

Since Ñ0 is minimum phase with invertible Ñ(0), there exists a sequence {Qk} ∈ RH∞
with Qk(0)Ñ0(0) = I such that limk→∞ ‖(I −QkÑ0)U‖ = 0. This shows

V ∗ = ‖(Ñ−1
1 · · · Ñ−1

ν − I)U‖22
= ‖(Ñ−1

2 · · · Ñ−1
ν − I + I − Ñ1)U‖22

= ‖(Ñ−1
2 · · · Ñ−1

ν − I)U‖22 + ‖(I − M̃1)U‖22

=
ν∑

i=1

‖(I − Ñi)U‖22

= 2
ν∑

i=1

1
zi

.

Here the first equality follows from that Ñ1 is a unitary operator in L2, the second
from that (Ñ−1

2 · · · Ñ−1
ν − I)U ∈ H⊥2 and (I − Ñ1)U ∈ H2, the third from repeat-

ing the underlying procedure in the first and second equalities, and the last from
straightforward computation.

The above derivation shows that an arbitrarily near optimal Q can be chosen
from the sequence {Qk}. Therefore

V ∗(ξ) = lim
k→∞

‖ξ′(I −QkÑ0Ñν · · · Ñ1)U‖22.

The same reasoning as in the above derivation gives

V ∗(ξ) =
µ∑

i=1

‖ξ(I − Ñi)U‖22 = 2
µ∑

i=1

1
zi

cos2 ∠(ξ, ηi).

The last equality follows from straightforward computation.
The directional steady state error variance with an arbitrary F is

Vξ = ‖ξ′(I − FG)U‖22

and the optimal directional steady state error variance is

V ∗ξ = inf
F,G−FG∈RH∞

‖ξ′(I − FG)U‖22

= inf
Q∈RH∞,Q(0)Ñ0(0)=I

‖ξ′(I −QÑ0Ñν · · · Ñ1)U‖22.
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By following an almost identical derivation as the non-directional case, we can show
that the same sequence {Qk} giving near optimal solutions there also gives near
optimal solutions here for every ξ ∈ Rm. Hence,

V ∗ξ = V ∗(ξ) = 2
ν∑

i=1

1
zi

cos2 ∠(ξ, ηi).

We have thus established the following theorem.
Theorem 2. Let G’s nonminimum phase zeros be z1, z2, . . . , zν with η1, η2, . . . , ην

being the corresponding Blaschke vectors of type II, then

V ∗ = 2
ν∑

i=1

1
zi

and

V ∗ξ = V ∗(ξ) = 2
ν∑

i=1

1
zi

cos2 ∠(ξ, ηi).

This theorem says that to estimate a Brownian motion from its version distorted
by an LTI system, the best achievable steady state error variance is proportional to
the reciprocal sum of the nonminimum phase zeros of the LTI system. The best
achievable directional steady state variance depends, in addition, on the directional
characteristics of the nonminimum phase zeros.

5. Estimation under Brownian Noise. Consider the estimation problem con-
sidered in Sect. 3, but let us assume that the noise n is a Brownian motion process
instead of a white noise. In this case, the steady state variance of the estimation error
is given by

V = ‖FN‖22

where N(s) = 1
sI. Following similar arguments as in Sect. 3, we get

V ∗ = inf
F,G−FG∈RH∞,F (0)=0

‖FN‖22

= inf
Q∈RH∞,Q(0)M̃(0)=I

‖(I −QM̃)N‖22.

Here we assume that G = M̃−1Ñ is a left coprime factorization of G. Now assme
that G has antistable poles p1, p2, . . . , pµ with ζ1, ζ2, . . . , ζµ be the corresponding pole
Blaschke vectors of type II. Then M̃ has factorization

M̃ = M̃0M̃µ · · · M̃1

where

M̃i(s) = I − 2 Re pi

pi

s

s + p∗i
ζiζ

∗
i .
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Now the problem becomes similar to the one considered in Sect. 4 with Ñi replaced
by M̃i. The following theorem is then obtained by using similar arguments as in Sect.
4.

Theorem 3. Let G’s antistable poles be p1, p2, . . . , pµ with ζ1, ζ2, · · · , ζµ being
the corresponding pole Blaschke vectors of type II. Then

V ∗ = 2
µ∑

i=1

1
pi

and

V ∗ξ = V ∗(ξ) = 2
µ∑

i=1

1
pi

cos2 ∠(ξ, ζi).

This theorem says that to estimate a signal from its version corrupted by a Brow-
nian motion noise, the best achievable steady state error variance is proportional to
the reciprocal sum of the antistable modes of the signal to be estimated. The best
achievable directional steady state error variance depends, in addition, on certain
directional characteristics of the antistable modes.

6. Estimate of White Noise. Consider the estimation problem as in Sect. 4,
but now we assume that the signal to be estimated u is a white noise, instead of a
Brownian motion. In this case, the variance of the estimation error is given by

V = ‖I − FG‖22.

If we want V to be finite, we need to have I − F (∞)G(∞) = 0, in addition to
F, I − FG ∈ RH∞. This requires G(∞), the direct feedthrough term of G, to be left
invertible, which will be assumed. Equivalently, we need to have F, FG ∈ H∞ and
F (∞)G(∞) = I. Therefore

V ∗ = inf
F,FG∈RH∞,F (∞)G(∞)=I

‖I − FG‖22

= inf
Q∈RH∞,Q(∞)Ñ(∞)=I

‖I −QÑ‖22.

Here we assume that G = M̃−1Ñ is a left coprime factorization of G. Now let G have
nonminimum phase zeros z1, z2, . . . , zν with η1, η2, . . . , ην being the corresponding
input Blaschke vectors of type I. Then Ñ has factorizations

Ñ = Ñ0Ñν · · · Ñ1

where

Ñi = I − 2 Re zi

s + z∗i
ηiη

∗
i .
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Now the problem becomes similar to the one considered in Sect. 3 with M̃i replaced
by Ñi. The following theorem is then obtained by using the similar arguments as in
Sect. 3.

Theorem 4. Let G’s nonminimum phase zeros be z1, z2, . . . , zν with η1, η2, . . . , ην

being the corresponding Blaschke vectors of type I, then

V ∗ = 2
ν∑

i=1

zi

and

V ∗ξ = V ∗(ξ) = 2
ν∑

i=1

zi cos2 ∠(ξ, ηi).

This theorem says that to estimate a white noise from its version distorted by an
LTI system, the best achievable steady state error variance is proportional to the sum
of the nonminimum phase zeros of the LTI system. The best achievable directional
steady state variance depends, in addition, on the directional characteristics of the
nonminimum phase zeros.

7. Concluding Remarks. This paper relates the performance limitations in
four typical estimation problems to simple characteristics of the plants involved. By
estimation problems we mean actually filtering problems here. The general estimation
problems can include prediction and smoothing problems. We are now trying to
extend the results in this paper to smoothing and prediction problems.

We have considered two type of noises and signals: while noise and Brownian
motion. We are trying to extend our results to possibly other types of noises and
signals.
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[2] K. J. Åström, Introduction to Stochastic Control Theory, Academic Press, 1970.

[3] J. Chen, L. Qiu, and O. Toker, Limitation on maximal tracking accuracy, IEEE Trans. on

Automat. Contr., 45(2000), pp. 326–331.

[4] G. C. Goodwin, D. Q. Mayne, and J. Shim, Trade-offs in linear filter design, Automatica,

31(1995), pp. 1367–1376.

[5] G. C. Goodwin, M.M. Seron, Fundamental design tradeoffs in filtering, prediction, and

smoothing, IEEE Trans. Automat. Contr., 42(1997), pp. 1240–1251.

[6] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley-Interscience, New

York, 1972.

[7] L. Qiu and J. Chen, Time domain characterizations of performance limitations of feedback

control, Learning, Control, and Hybrid Systems, Y. Yamamoto and S. Hara, editors,

Springer-Verlag, pp. 397–415, 1998.

[8] L. Qiu and E. J. Davison, Performance limitations of non-minimum phase systems in the

servomechanism problem, Automatica, 29(1993), pp. 337–349.



384 LI QIU, ZHIYUAN REN, AND JIE CHEN

[9] Z. Ren, L. Qiu, and J. Chen, Performance limitations in estimation, Proc. 38th IEEE Conf.

on Decision and Control, pp. 3204–3209, 1999.

[10] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, 1987.

[11] M. M. Seron, J. H. Braslavsky, and G. C. Goodwin, Fundamental Limitations in Filtering

and Control, Springer, 1997.

[12] M. M. Seron, J. H. Braslavsky, D. G. Mayne, and P. V. Kokotovic, Limiting performance

of optimal linear filters, Automatica, 35(1999), pp. 189–199.


