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Abstract

This paper studies the tracking performance of linear time-invariant multi-variable discrete-time systems. The specific problem under
consideration is to track a multi-tone sinusoidal reference signal consisting of linear combinations of a step and several sinusoidal signals,
whereas the tracking performance is measured by the energy of the error response between the output of the plant and the reference signal.
Our purpose is to find the fundamental limit for the best attainable performance, under any control structures and parameters, and we seek
to determine this limit analytically in terms of the given plant and reference characteristics. Both the full-information and partial-information
tracking schemes are formulated and investigated to address these goals, which are concerned with whether or not the reference information is
fully available for tracking. Analytical expressions are developed in full generality under full-information tracking, and for a more specialized
case under partial-information scheme. In addition, an optimal cheap control design is constructed to show that the performance limit can
be attained asymptotically in the full-information case. The results show that in general plant nonminimum phase zeros and reference modes
can interact to fundamentally constrain a system’s tracking ability. They also show that absence of full reference information can degrade the
tracking performance, thus demonstrating an intrinsic trade-off between the tracking objective and the availability of the reference information.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Performance limitation; Optimal control; Tracking; Nonminimum phase zeros

1. Introduction

Solutions to optimal control problems are often in the form
of numerical algorithms that do not readily exhibit the relation-
ship between the optimal performance and the properties of the
plant to be controlled, whereas knowing such relationship is
useful for a number of purposes, for example, in assessing the
limitation of the plant, in understanding the trade-offs in the
design task, and in knowing the fundamental design limits. Re-
cently, there have been significant research activities devoted
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to such control limitation and trade-off issues, focusing on
the study of the optimal performance achievable by feedback
control, and especially on how the performance may be in-
trinsically constrained by the properties of the plant. A strong
indication of the ongoing research in this area is seen by the
publication of the recent Special Issue of the IEEE Transac-
tions on Automatic Control, on New Developments and Ap-
plications in Performance Limitation of Feedback Control (cf.
IEEE Transactions on Automatic Control, vol. AC-48, no. 8,
August 2003).

Performance limitation studies in the aforementioned spirit
were pursued in the context of optimal control by Kwakernaak
and Sivan (1972). They showed that for a right-invertible
linear time-invariant (LTI) system, the best achievable per-
formance of the cheap optimal LQR control is zero if and
only if the plant is minimum phase; in other words, perfect
regulation can be attained whenever the plant is minimum
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phase. This result was subsequently extended by Francis
(1979) to general multi-input multi-output (MIMO) LTI sys-
tems. In a similar manner, optimal tracking problems have also
been under heavy scrutiny. Davison and Scherzinger (1987)
showed that with a specified class of reference and disturbance
signals, it is possible to achieve perfect asymptotic tracking
and disturbance rejection for minimum phase square systems.
Furthermore, Morari and Zafiriou (1989), Qiu and Davison
(1993), and Chen, Qiu, and Toker (2000) obtained analytical
expressions of the optimal tracking performance, for a variety
of reference inputs including step and sinusoidal signals. It
became clear that the best tracking performance depends on
the nonminimum phase zeros of the plant and the interaction
between such zeros and the frequency of the reference signal,
and that for a MIMO system, it also depends on how the zero
and input directions may be aligned.

This paper studies optimal tracking problems concerning
MIMO discrete-time systems. Earlier work on the tracking
performance of discrete-time systems includes Qiu and Chen
(1999), Toker, Chen, and Qiu (2002), and Jemaa and
Davison (2003), for such reference inputs as step and sinu-
soidal signals. The present paper continues the development of
Su, Qiu, and Chen (2003), investigating, in a MIMO discrete-
time setting, the limitation in tracking linear combinations of a
step and several sinusoidal signals of different frequencies. The
study has in it the goal to understand how the reference input
information may affect tracking ability. For this purpose, two
cases will be considered. In the first case, we assume that the
tracking controller has full access of the reference information;
more specifically, with the reference signal posed as the output
of an exosystem, we assume that the state of the exosystem is
fully accessible for control. Alternatively, in the second case, we
assume that the controller is only driven by the reference signal
itself and no state information is available. We refer to these
two cases as full-information and partial-information tracking,
respectively.

The case of full-information tracking was fully explored
by Su et al. (2003) for continuous-time systems. This
paper develops parallel results for MIMO discrete-time sys-
tems. Analytical expressions are obtained for the best tracking
performance, whether it is measured with respect to a fixed
reference signal or averaged over all references. The results
reinforce the findings of Su et al. (2003), demonstrating that
a fundamental limit exists for tracking performance, which is
determined by the interaction between the plant nonminimum
phase zeros and the harmonic frequencies of the multi-tone
reference signal. Additionally, the performance is also dictated
by the mutual orientations between certain directions of the
nonminimum phase zeros and the directions of the harmonic
components of the reference signal.

The partial-information case, on the other hand, is signif-
icantly different and adds a distinctly new ingredient in our
study of the tracking performance. While in general it appears
highly nontrivial to obtain an analytical result of desired in-
sight and simplicity, we derive a simple expression of the best
tracking performance in a special, yet still rather meaningful
situation. Specifically, we consider a single-tone sinusoidal

signal. We show that in this case the tracking performance will
be additionally impeded, in addition to the limit imposed in the
full-information case. This additional limitation is attributed
to the lack of full reference information available for tracking,
and consequently indicates a possible trade-off between the
availability of the information and the quality in tracking. The
result thus leads to a more in-depth understanding of the track-
ing performance limitations. It shows that for reference signals
of sufficient harmonic contents, not only the characteristics
of the reference signal and the tracking system, but also how
the signal information may be accessed can play an important
role.

In an additional result of this paper, we show that the
performance limit of the full-information tracking can be
achieved in the limit by optimal cheap LQR control de-
sign. We construct explicitly a control law to demonstrate
this effect, which consists of a standard observer-based state
feedback and a feedforward of the full information of the
reference states. While this optimal controller is LTI, the
result indicates that it is in fact the optimal among all pos-
sible stabilizing nonlinear, time-varying controllers for the
tracking problem under consideration; in other words, more
general nonlinear and time-varying controllers have no advan-
tage for the given problem, as far as tracking performance is
concerned.

The remainder of this paper is organized follows. In
Section 2, we formulate the tracking performance problem.
Both the directional and average tracking performance are
introduced. In Section 3, we present a preliminary result on
the inner–outer factorization of right-invertible MIMO sys-
tems. The factorization is developed specifically to facilitate
the subsequent study of the optimal tracking performance,
and it consists of a cascade connection of first-order inner
factors and a minimum phase factor. In Section 4, we solve
analytically the general full-information tracking problem
and a partial-information tracking problem for MIMO sys-
tems. In Section 5, we show that the performance limit ob-
tained can be approached in the limit by an observer-based
linear controller designed via the cheap linear quadratic con-
trol method. An illustrative example is given in Section 6.
Section 7 concludes the paper. To streamline the presentation,
all the proofs are relegated to the appendices at the end of the
paper.

The notation used throughout this paper is fairly standard. For
any complex number, vector and matrix, denote their conjugate,
transpose, conjugate transpose, real and imaginary part by ¯(·),
(·)T, (·)∗, Re(·) and Im(·), respectively. Denote the pseudo-
inverse of a matrix by (·)†. Denote the expectation of a random
variable by E{·}. Let the open unit disk and the unit circle be
denoted by D and T, respectively. The usual Lebesgue space
of vector-valued square integrable functions on T is denoted by
L2. The set of those functions in L2 which are analytic in D

is denoted by H2 and the set of those in L2 that are analytic
on the complement of D∪T and vanish at the origin is denoted
by H⊥

2 . It is well-known that H2 and H⊥
2 form an orthogonal

complement as subspaces of L2. The Euclidean vector norm
and the norm in the space L2 are both denoted by ‖ · ‖2. The



W. Su et al. / Automatica 43 (2007) 15–30 17

symbol RH∞ denotes the set of all stable, rational transfer
matrices. Finally, the inner product of two complex vectors u, v

is defined as 〈u, v〉 := u∗v.

2. Problem statement

The tracking system under consideration is depicted in
Fig. 1. In this configuration, � is the unit delay operator, P(�)

the given plant transfer matrix (the �-transform of the plant im-
pulse response sequence), K(�) the controller transfer matrix,
and S(�) the exosystem which is excited by the unit impulse
�(k) and generates the reference signal r(k). We assume that
certain information w(k) of the signal generator is available
to the controller. The full-information tracking scheme cor-
responds to w(k) = v(k), where v(k) represents the state of
the exosystem (not shown in the figure), while for partial-
information tracking, w(k) = r(k). The measurement y(k) of
the plant output is used for feedback. Whether or not y(k) con-
tains the full information of the plant, i.e., the state of the plant,
is unimportant.

The reference signal r(k) is given in the form

r(k) =
n∑

l=−n

vle
j�l k , (1)

where �l ∈ [0, �], l = 0, ±1, . . . ,±n, are distinct real fre-
quencies satisfying �−l = −�l , �l ∈ [0, �], i = 0, 1, . . . , n;
and vl , l = 0, ±1, . . . ,±n, are complex vectors satisfying the
relations v−l = v̄l . Implicitly, we take �0 = 0 and v0 to be a
real vector. Clearly, the reference defined in this way is a real-
valued signal, a multi-tone combination of sinusoids. We use the
vector

v = [v∗−n · · · v∗−1 v∗
0 v∗

1 · · · v∗
n]∗

to capture the magnitude and phase information of all frequency
components of the reference signal.

The tracking performance is measured by the energy of the
transient tracking error response

J (v) =
∞∑

k=0

‖r(k) − z(k)‖2 =
∞∑

k=0

‖e(k)‖2.

Denote the set of all internally stabilizing controllers of the
system by K. Our problem is to find an explicit expression

Fig. 1. A general two-parameter control structure.

of the smallest tracking error, i.e., the limit of performance
achievable, defined as

Jopt(v) = inf
K∈K

J (v).

The explicit dependence of J (v) and Jopt(v) on the vector v

emphasizes the fact that in general the performance varies with
v. Alternatively, it is also of interest to investigate the average
measure of performance given below, which is independent of
v. Assume that v is a random vector with entries as zero-mean
and mutually uncorrelated random variables of unit variance.
The average tracking performance is then defined by

E = E{J (v) : E(v) = 0, E(vv∗) = I }.
Accordingly, the optimal average tracking performance is de-
fined as

Eopt = inf
K∈K

E.

These indices, averaged over all input vectors v of given first
and second order statistics, serve as certain uniform measures
and benchmarks, which can be especially useful in circum-
stances where v is unknown a priori.

The authors studied in Su et al. (2003) similar tracking
performance problems for MIMO continuous-time systems,
wherein explicit expressions were obtained for the best achiev-
able performance with full-information tracking of multi-tone
continuous-time sinusoidal signals. Our purpose in the present
paper is twofold. We shall first attempt to derive explicit expres-
sions for Jopt(v) and Eopt with full-information tracking, that
is, under the assumption that the controller input w(k) is the
state of the reference generator. This corresponds to the case
that the controller has the maximal access of the reference in-
formation. Secondly, we consider the partial-information track-
ing problem, i.e., when w(k)= r(k). In this case, the controller
has the minimal access of the reference information.

3. A preliminary result

Let G(�) be a right-invertible real rational matrix rep-
resenting a discrete-time LTI system. We define the poles
and zeros (including multiplicity) of G(�) according to its
Smith–McMillan form. A zero q of G(�) is said to be a non-
minimum phase zero if q ∈ D, and G(�) is said to be nonmin-
imum phase if it has at least one nonminimum phase zero, and
minimum phase otherwise. With this convention, zeros at the
origin are considered nonminimum phase and are taken into
account in our analysis.

Conduct the right coprime factorization G(�)=N(�)M−1(�),
where M(�), N(�) ∈ RH∞. It is known that q is a nonmin-
imum phase zero of G(�) if and only if it is also a nonmini-
mum phase zero of N(�). For any nonminimum phase zero q
of N(�), there exists a unit vector � such that

�∗N(q) = 0.

We call the vector � the (left or output) zero vector of G(�)

associated with the nonminimum phase zero q.
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Suppose that G(�) has nonminimum phase zeros q1, q2, . . . ,

qm. Order the zeros so that each pair of complex conjugate
zeros are in adjacent order. For the given frequency �l ∈ R,
assume that qi 
= ej�l , i = 1, 2, . . . , m. We may find a unitary
vector ��l1 and construct

G�l1(�) = I − ��l1
1 − |q1|2
ej�l − q1

� − ej�l

�q∗
1 − 1

�∗
�l1

= U�l1

[ ej�l q∗
1 −1

ej�l −q1

�−q1
�q∗

1 −1 0

0 I

]
U∗

�l1, (2)

where ��l1 is selected as the zero vector of G(�) associated
with q1, and U�l1 is a unitary matrix whose first column is
��l1 and remaining columns are arbitrary as long as U�l1 is
unitary. Being so constructed, G�l1(�) is inner, has only one
zero at q1 with zero vector ��l1, and satisfies the property
G�l1(e

j�l ) = I . We call G�l1(�) a matrix Blaschke factor at
the frequency �l and ��l1 the corresponding Blaschke vector;
indeed, G�l1(�) generalizes the notion of scalar Blaschke factor
to matrix-valued functions. It is evident that G−1

�l1
(�)G(�) has

nonminimum phase zeros q2, q3, . . . , qm. Performing the same
construction for the zero q2, we find

G�l2(�) = U�l2

[ ej�l q∗
2 −1

ej�l −q2

�−q2
�q∗

2 −1 0

0 I

]
U∗

�l2,

where the first column of U�l2 is the zero vector of
G−1

�l1
(�)G(�) associated with its zero q2 and U�l2 a unitary

matrix defined accordingly. We may continue this process
to construct all the Blaschke factors G�l1(�), . . . , G�lm(�).
Consequently G(�) can be factorized as

G(�) = G�l1(�) · · · G�lm(�)G�l0(�), (3)

with G�l0(�) being a minimum phase transfer matrix and

G�l i (�) = U�l i

[ ej�l q∗
i −1

ej�l −qi

�−qi

�q∗
i −1 0

0 I

]
U∗

�l i
. (4)

This factorization is referred to as a cascade factorization at
the frequency �l . The product G�l1(�) · · · G�lm(�) is called a
matrix Blaschke product. One should note that this factoriza-
tion is in general nonunique despite that the frequency �l and
the order of q1, q2, . . . , qm are both fixed, since ��l i

need not
be uniquely determined. Furthermore, the Blaschke vectors and
factors depend on the order of the nonminimum zeros, as well
as on the frequency �l , and thus for different frequencies �l , l=
0, ±1, . . . ,±n, different factorizations will result. Neverthe-
less, our construction is carried out specifically in such a way to
ensure that for different frequencies �l , l = 0, ±1, . . . ,±n, the
factorizations are closely related. The following lemma exhibits
such relations and they play a pivotal role leading to our main
result.

Lemma 1. Suppose that the order of q1, q2, . . . , qm is fixed.
Also suppose that we are given 2n + 1 different frequencies

�l , l = 0, ±1, . . . ,±n. Then the 2n + 1 cascade factorizations
(3) can be chosen so that for all l, l′ = 0, ±1, . . . , ±n and
i = 1, 2, . . . , m,

��l i
= G�l′ 1(e

j�l )G�l′ 2(e
j�l ) · · · G�l′ i−1(e

j�l )��l′ i .

Proof. See Appendix A. �

4. Main results: performance limits

Consider now the system shown in Fig. 1. We partition the
plant transfer matrix function compatibly with the tracking out-
put z(k) and the measurement y(k), that is,

P(�) =
[

G(�)

H(�)

]
.

For the tracking problem to be meaningful, we make
the following assumptions throughout the remainder of
the paper.

Assumption 1.
(1) P(�), G(�) and H(�) have the same unstable poles.
(2) G(�) has no zero at ej�l , l = 0, ±1, . . . ,±n.

Assumption 1.1 means that the plant is stabilizable via
output feedback of the measurement y(k), a premise to achieve
the tracking, while the measurement channel does not intro-
duce more anti-stable poles. A simple interpretation of this
assumption is that if P(�)=[N(�)

L(�)
]M−1(�) is a coprime factor-

ization, then N(�)M−1(�) and L(�)M−1(�) are also coprime
factorizations of G(�) and H(�).

We are now ready to state our main results.

4.1. Full-information tracking

Our first result concerns the directional tracking performance
limit under the full-information tracking scheme.

Theorem 1. Let G(�) have nonminimum phase zeros
q1, . . . , qm with Blaschke vectors ��l1, . . . , ��lm

, l =
0, ±1, . . . ,±n, so that they are constructed to satisfy Lemma
1. Assume that w(k) = v(k). Then

Jopt(v) =
m∑

i=1

(1 − |qi |2)
∣∣∣∣∣

n∑
l=−n

〈�−�l i
, vl〉

1 − qiej�l

∣∣∣∣∣
2

=
m∑

i=1

n∑
l,l′=−n

〈vl, �−�l i
〉〈�−�l′ i , vl′ 〉(1 − |qi |2)

(1 − q∗
i e−j�l )(1 − qiej�l′ )

. (5)

Proof. See Appendix B. �

The above formula shows that the performance limit Jopt(v)

depends on the nonminimum phase zeros in an additive way.
It also demonstrates how the frequency components of the
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multi-tone reference signal may affect the performance limit,
and this effect is characterized by the inner products of their di-
rectional vectors and the Blaschke vectors at the corresponding
frequencies. It is clear that when the zeros qi are near the refer-
ence modes ej�l , Jopt(v) is likely to become very large unless
the directional vector vl of the reference component and the
zero vectors �−�l i

are nearly orthogonal. Note also that when
n = 0, i.e., the reference contains only a step component, then
we get

Jopt(v) =
m∑

i=1

(1 − |qi |2)
|1 − qi |2 |〈�0i , v〉|2.

This expression replicates the formula given by Toker et al.
(2002), concerning the tracking of pure step reference signals.

The effect of the reference directional vectors on Jopt(v)

can be further illustrated by examining the following extreme
scenarios. Define

Z∗ = [z∗
�n

· · · z∗
�0

· · · z∗−�n
]

and, for i = 0, ±1, . . . ,±n,

z∗
�i

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − q1

1 − q∗
1

√
1 − |q1|2�∗

�i1

1 − q1e−j�i

1 − q2

1 − q∗
2

√
1 − |q2|2�∗

�i2

1 − q2e−j�i

...

1 − qm

1 − q∗
m

√
1 − |qm|2�∗

�im

1 − qme−j�i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, the performance limit Jopt(v) in (5) can be rewritten as

Jopt(v) = v∗ZZ∗v.

Every row of the matrix Z characterizes the directional infor-
mation of the plant associated with one of its nonminimum
phase zeros at all frequencies of the reference. It is clear that

�2
min(Z)‖v‖2 �Jopt(v)��2

max(Z)‖v‖2,

where �min(Z) and �max(Z) are the smallest and largest singu-
lar values of the matrix Z. In particular, in the limiting case, the
lower and upper bounds can be attained by the reference input
vector v, when it coincides with the singular vector of Z cor-
responding to �min(Z) and �max(Z), respectively. These two
cases give rise to the best and the worst-case tracking perfor-
mance, corresponding to the most and least desired reference
input.

Our next result concerns the average tracking performance
Eopt, averaged over all reference inputs with the designated
statistical specifications. We also assume that the full refer-
ence information is available to the tracking controller. In light
of the proof for Theorem 1, it follows that a controller, or a

sequence of controllers, independent of v can be found to attain
the performance limit given in (5). This feature provides a short-
cut to the following expression of Eopt. The result illustrates
in a simple way the essential role of the plant nonminimum
phase zeros, showing how in an average sense, the zeros and
the reference modes may interact to limit the best performance
achievable.

Theorem 2. Let G(�) have nonminimum phase zeros
q1, . . . , qm. Assume that w(k) = v(k). Then,

Eopt =
m∑

i=1

n∑
l=−n

1 − |qi |2
|1 − qiej�l |2 .

Proof. It follows from the definition of Eopt that

Eopt = inf
K∈K

E{J (v) : E(v) = 0, E(vv∗) = I }

= E
{

inf
K∈K

J (v) : E(v) = 0, E(vv∗) = I

}

=
m∑

i=1

n∑
l,l′=−n

�∗−�l′ iE(vl′v∗
l )�−�l i

(1 − |qi |2)
(1 − q∗

i e−j�l )(1 − qiej�l′ )

=
m∑

i=1

n∑
l=−n

�∗−�l i
�−�l i

(1 − |qi |2)
(1 − q∗

i e−j�l )(1 − qiej�l )

=
m∑

i=1

n∑
l=−n

1 − |qi |2
|1 − qiej�l |2 . (6)

The crucial equation (6) is due to the independence of the opti-
mal controller or nearly optimal controller K on the coefficient
vector v. The proof is completed. �

4.2. Partial-information tracking

We now study the tracking performance in the partial-
information case. This case, unlike that of the full-information
tracking, proves to be considerably more intertwined; it ap-
pears rather difficult to derive a general analytical result of
desired simplicity. For this reason, we consider single-tone
sinusoidal reference signals of the form

r(k) = v−1e−j�k + v1ej�k, � ∈ [0, �]. (7)

Furthermore, we address the average tracking performance
Eopt. The results should serve as a useful anecdote in how
the lack of reference state information may further impact the
tracking performance.

Let G(s) = GinNout(s) be an inner–outer factorization
of the MIMO plant G(s). We give the following result for
the system.
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Theorem 3. Let G(�) have nonminimum phase zeros
q1, . . . , qm. Assume that w(k) = r(k). Then,

Eopt =
m∑

i=1

(
1 − |qi |2

|1 − qie−j�|2 + 1 − |qi |2
|1 − qiej�|2

)
+ Ea,

where

Ea = tr{�∗Gin(ej�)�Gin(ej�)}
2 sin �

and

�Gin(e
j�) = Gin(e

j�) − Gin(e
−j�).

Proof. See Appendix C. �

When restricted to the following more specialized cases,
more explicit expression can be obtained, as summarized in
Corollaries 1 and 2.

Corollary 1. Suppose that G(�) is a SISO transfer function
and that it has nonminimum phase zeros q1, . . . , qm. Assume
that w(k) = r(k). Then,

Eopt =
m∑

i=1

(
1 − |qi |2

|1 − qie−j�|2 + 1 − |qi |2
|1 − qiej�|2

)
+ Ea,

with

Ea = 2

sin �
sin2

[
2

m∑
i=1


 (1 − qie
−j�) + m�

]
.

Proof. For the SISO plant G(�), one of its inner factor Gin(�)

is given by

Gin(�) = � − q1

1 − �q∗
1

· · · � − qm

1 − �q∗
m

.

Denote

�i = 2 
 (1 − qie
−j�) + �, i = 1, . . . , m.

Then,

Gin(e
j�) = ej(�1+···+�m)

and

Gin(e
−j�) = e−j(�1+···+�m).

From

�1 + · · · + �m = 2
m∑

i=1


 (1 − qie
−j�) + m�,

it follows that

�∗Gin(e
j�)�Gin(e

j�)

= 4sin2

[
2

m∑
i=1


 (1 − qie
−j�) + m�

]
. (8)

The proof is then completed by invoking Theorem 3. �

Corollary 2. Let G(�) have only one real nonminimum phase
zero q. Assume that w(k) = r(k). Then,

Eopt = 1 − q2

|1 − qe−j�|2 + 1 − q2

|1 − qej�|2

+ 2 sin �

(
1 − q2

1 − 2q cos � + q2

)2

. (9)

Proof. Since G(�) has only one real nonminimum phase zero
q with Blaschke vector ��, its inner factor is given by

Gin(�) = I − ���∗
�

(1 − q2)(� − ej�)

(ej� − q)(�q − 1)
.

Then we have

�Gin(e
j�) = ���∗

�
(1 − q2)(e−j� − ej�)

(ej� − q)(e−j�q − 1)
.

The rest of the proof follows from Theorem 3 and a straight-
forward calculation. �

In Theorem 2, it is stated that if the full state information of
the reference signal is available, the best tracking performance
with respect to the single-tone reference (7) is

Eopt =
m∑

i=1

(
1 − |qi |2

|1 − qie−j�|2 + 1 − |qi |2
|1 − qiej�|2

)
.

Theorem 3, along with Corollaries 1 and 2, reveals that due
to the additional nonnegative term Ea, an additional limit is
incurred when such information becomes inaccessible. This
additional limit may be interpreted as the cost for the controller
to estimate the reference state, whereas the estimated state is
then used by the controller to track the reference, resulting in
the same performance as that of full-information tracking. In
this vein, Theorem 3 exhibits a trade-off between the tracking
performance and the information of the reference available for
tracking.

It is instructive to inspect the term Ea in further depth. Toward
this end, one first notes that Ea → 0 as � → 0. This can be
readily verified, and it shows that in the limit when the reference
signal becomes the unit step, the term vanishes, thus replicating
the best achievable performance in tracking the latter. One also
notes that Ea → 0 as � → �. In these two cases, the exogenous
system degenerates from an order twice the output dimension
to an order equal to the output dimension, and hence no effort is
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needed in estimating its state from the output. Consider next the
case where G(�) has only one real nonminimum phase zero q.
With no loss of generality, assume that � > 0. Then, it follows
from (9) that

Ea = 2 sin �

(
1 − q2

1 − 2q cos � + q2

)2

.

As a function of � > 0, Ea attains its minimum Ea = 0
at � = 0 or �, and maximum at

� = cos−1
(

2q

1 + q2

)
.

At this frequency,

Ea = 2
1 + q2

1 − q2 = 1

2
Eopt.

It is then evident that the contribution of Ea to Eopt can be
rather substantial.

5. Optimal cheap controller

Having obtained the performance limits in the preceding
section, we now examine how a control law may be devised
to attain the limits. We show that in the full-information case
the best tracking performance can be attained in the limit us-
ing a cheap control strategy. For continuous-time systems, it is
known that in tracking a step or a single-tone sinusoid, cheap
control can be employed to asymptotically achieve the best,
limiting performance (see, e.g., Qiu & Davison, 1993); we ex-
tend this result herein to multi-tone sinusoidal signals in the
discrete-time setting, by constructing explicitly a cheap control
law that is asymptotically optimal. This controller being so de-
signed consists of a measurement feedback and an exosystem
state feedforward. More specifically, the feedback part is an
observer state feedback with a cheap control gain, and the feed-
forward part is designed to provide the required steady-state
input. The development indicates, as an important byproduct,
that nonlinear time-varying controllers have no advantage for
the tracking problem under consideration.

We begin by first providing a brief review of the cheap
linear quadratic control problem; for more details, see, e.g.,
Kwakernaak and Sivan (1972). Let a stabilizable and detectable
system be given by

x(k + 1) = Ax(k) + Bu(k), x(0) = x0,

y(k) = Cx(k) + Du(k). (10)

Consider the quadratic cost

J	 =
∞∑

k=0

(‖y(k)‖2 + 	2‖u(k)‖2).

It is well-known that the optimal input that minimizes J	 is
given by

u(k) = F	x(k),

where

F	 = −(	2I + B∗P	B)−1B∗P	A,

and P	 is the unique stabilizing solution of the ARE associated
with the system (10), that is, P	 is the positive definite solution
of

P	 − A∗P	A + (A∗P	B + C∗D)(D∗D + 	2I

+ B∗P	B)−1(B∗P	A + CD∗) − C∗C = 0. (11)

With this control input applied, the optimal cost is given by

J	,opt = inf
u

J	(x0) = x∗
0P	x0.

The cheap control problem is to find the linear optimal con-
trol law to minimize the cost function in the limit as 	 →
0. A remarkable result on the cheap control was obtained by
Kwakernaak and Sivan (1972) for continuous-time LTI sys-
tems, who showed that for a right-invertible minimum phase
system the minimal cost approaches zero as 	 → 0. Likewise,
based on Kwakernaak and Sivan (1972), it is straightforward
to show that for right-invertible minimum phase discrete-time
LTI systems, the solution P	 of the ARE (11) approaches zero
as 	 → 0, i.e., lim	→0P	 = 0.

Consider next a nonminimum phase plant G(�). Let G(�)

be factorized as G(�)=Gin(�)G0(�), where Gin(�) is an inner
factor of G(�) and G0(�) is minimum phase. Let

be a minimum balanced realization (Zhou, Doyle, & Glover,
1995), and

be a stabilizable and detectable realization. Then G(s) has a
stabilizable and detectable realization

G(�) = Gin(�)G0(�)

= (12)

The following lemma provides a characterization of the ARE
solution P	 when 	 → 0. Its proof mimicks that of Qiu and
Davison (1993) for continuous-time systems and hence
is omitted.
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Lemma 2. Let be the realization of a nonminimum

phase transfer matrix G(�), as given in (12). Let P	 be the
unique solution of the ARE associated with the realization. The
matrix P	 is given by

P	 =
[
I 0
0 P0	

]
.

The identity matrix I is the solution of the ARE associated with
the minimum balanced realization of the inner factor Gin(�),
i.e.,

I − A∗
inAin + (A∗

inBin + C∗
inDin)(D

∗
inDin + 	2I

+ B∗
inBin)

−1(B∗
inAin + CinD

∗
in) − C∗

inCin = 0,

and the matrix P0	 is the solution of the ARE associated with
the outer factor G0(�), i.e.,

P0	 − A∗
0P0	A0 + (A∗

0P0	B0 + C∗
0D0)(D

∗
0D0 + 	2I

+ B∗
0 P0	B0)

−1(B∗
0 P0	A0 + C0D

∗
0) − C∗

0C0 = 0.

Furthermore, it holds

lim
	→0

P	 =
[
I 0
0 0

]
.

This characterization is instrumental in analyzing the asymp-
totic behavior of the optimal cheap controller, to be constructed
below for the tracking problem.

Suppose that a stabilizable and detectable realization of the

plant P(�) =
[

G(�)
H(�)

]
is given by

x(k + 1) = Ax(k) + Bu(k),

z(k) = Cx(k) + Du(k),

y(k) = Ex(k).

It follows from Assumption 1.1 that both (C, A) and (E, A)

are detectable.
For the problem of tracking the sinusoidal signal (1), let the

steady-state parts of the plant input, plant state, and plant output
be denoted by uss(k), xss(k), and yss(k), respectively. Then a
simple steady-state analysis shows that the asymptotic tracking
requires that

yss(k) = r(k) =
n∑

l=−n

vle
j�l k ,

uss(k) =
n∑

l=−n

G†
(

e−j�l

)
vle

j�l k ,

xss(k) =
n∑

l=−n

(ej�l I − A)−1BG†(e−j�l )vle
j�l k ,

where G†(e−j�l ) is a right inverse of G(e−j�l ). Denote
the transient parts of x(k) and u(k) by xt (k) and ut (k),

respectively, i.e.,

xt (k) = x(k) − xss(k), ut (k) = u(k) − uss(k).

Then it follows from algebraic manipulations that

xt (k + 1) = Axt (k) + But (k),

e(k) = Cxt (k) + Dut(k),

ut (k) = Fxt (k), (13)

with

xt (0) = − xss(0)

= −
n∑

l=−n

(ej�l I − A)−1BG†(e−j�l )vl .

It follows from the discussion above that the cost function of
the cheap optimal control problem for system (13) is given by

J	(v) =
∞∑

k=0

(‖e(k)‖2 + 	2‖ut (k)‖2).

Lemma 2 gives the optimal solution for this cheap optimal
control problem. Note the fact that

J (v) = lim
	→0

J	(v).

The optimal tracking problem, which amounts to minimizing
the cost function J (v), is equivalent to the optimal cheap control
problem for system (13), in the limit as 	 → 0. In light of this
equivalence, the optimal tracking problem may be solved as
one of the optimal cheap control.

Theorem 4. Let P	 be the stabilizing solution of ARE (11). Let

F	 = −(	2I + B∗P	B)−1B∗P	A,

and L be any matrix such that A + LE is stable. Construct the
controller as

x̃(k + 1) = (A + BF 	 + LE)x̃(k) − Ly(k),

u(k) = F	x̃(k) +
n∑

l=−n

[I − F	(e
j�l I − A)−1B]G†(e−j�l )vle

j�l k .

Then,

lim
	→0

J	(v) = Jopt(v).

Proof. See Appendix D. �

We note that the controller in the theorem is simply an
observer-based state feedback plus a reference state feedfor-
ward, where the latter is seen to provide the required steady-
state input to the plant. The feedforward term requires the
knowledge of vlej�l k, l=0, ±1, . . . ,±n, which can be consid-
ered as the state variables of the exosystem. Theorem 4 states
that whenever such information is available, it can be embed-
ded in the control law, so that the tracking performance limit
Jopt(v) is attained in the full-information case by the optimal
cheap controller asymptotically when 	 → 0.
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6. An example

In this section, we use a numerical example to illustrate the
results in this paper. The plant considered is an FIR system
with two nonminimum phase zeros, whose transfer function is
given by

G(�) = (� − 0.5)(� + 0.5).

The reference under consideration is the sinusoidal signal of
the form

r(t) = v̄e−j�t + vej�t = 2|v| cos(�t + 
 v),

where � is the frequency of the sinusoid and v is the coefficient
that determines its magnitude and phase.

We first consider performance limits under the full-
information control structure when the coefficient v is
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Fig. 2. The plot of Jopt(v) when |v| = 1 and 
 v varies in [0,�].
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Fig. 3. Plots of Eopt in the full-information and the partial information cases as functions of the reference frequency �.

known to the controller. Set � = �/2 and assume that the
magnitude |v| is normalized to 1 and the phase 
 v varies
in [0, �]. The v-dependent performance limit Jopt(v) is plot-
ted in Fig. 2. For comparison purpose, we also draw the av-
eraged performance limit Eopt in Fig. 2. One can see from
Fig. 2 that in the full-information case Jopt can be much greater
and less than its averaged counterpart depending on how the
phase of the reference and the nonminimum phase zeros are
aligned.

We next compare the averaged performance limits Eopt in
the full-information and partial-information cases. Fig. 3 shows
the performance limits Eopt in both cases, as functions of the
reference frequency � varying in the interval [0, �].

From Fig. 3, we see that the difference of Eopt in the
full-information case and the partial information case can
be quite significant, possibly beyond 100% of the per-
formance limit in the full-information case. We also see
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that the performance limits Eopt in both cases are the same when
� = 0, �, and �/2. Whereas this phenomenon is no surprising
and is always the case when �= 0 or �=� due to the reasons
discussed in Section 4, why this also occurs when � = �/2
is due to the special symmetric zero pattern in this particular
example.

7. Conclusion

In this paper, analytical expressions were obtained for the
best achievable performance of LTI MIMO discrete-time sys-
tems in tracking multi-tone sinusoidal signals, which consist
of linear combinations of step and sinusoidal signals. The
full-information tracking problem was studied in its full gen-
erality. The results exhibit how plant nonminimum phase zeros
may fundamentally constrain a system’s tracking ability, and
characterize explicitly the roles of such zeros and their corre-
sponding zero vectors. Both the directional and average track-
ing performance measures demonstrated the effects. It is seen
that the fundamental performance limits can be approached
asymptotically by a linear optimal cheap control law, which is
explicitly constructed in the paper.

The partial-information tracking problem proved far more
difficult, for which we provided an analytical result for a more
specialized reference with one single-tone sinusoid. The result
shows that when the full state information of the reference is
unavailable, an additional limit to the tracking performance re-
sults. This extra cost is seen as a result of the trade-off between
the tracking performance objective and the information avail-
able to the controller, and it can be interpreted as a penalty for
the system to estimate the reference state needed to perform
tracking.
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Appendix A. Proof of Lemma 1

We shall first show that the factorizations can be constructed
so that for all l, l′ = 0, ±1, . . . ,±n and i = 1, 2, . . . , m,

��l i
= Wll′(i−1)��l′ i , (14)

where

Wll′i = G−1
�l i

(�) · · · G−1
�l2

(�)G−1
�l1

(�)

× G�l′ 1(�)G�l′ 2(�) · · · G�l′ i (�) (15)

are constant unitary matrices. We begin by adopting the con-
vention that Wll′0 = I , and next carrying out induction in i.

Consider i = 1. The fact that ��l1 can be chosen independent
of �l leads to

��l1 = Wll′0��l′ 1 = ��l′ 1, l, l′ = 0, ±1, . . . ,±n.

Hence U�l
can be selected independent of �l so that

U�l1 = U�l′ 1, l, l′ = 0, ±1, . . . ,±n.

These lead to

G−1
�l1

(�)G�l′ 1(�) = U�l1

[
ej�l −q1

ej�l q∗
1 −1

ej�
l′ q∗

1 −1

ej�
l′ −q1

0

0 I

]
U∗

�l1,

that is, Wll′1 is a constant unitary matrix. Suppose then that
��l1, . . . , ��l i

and G�l1(�), . . . , G�l i (�) have been chosen so
that

��l i
= Wll′(i−1)��l′ i , i = 1, 2, . . . , m

and

Wll′i = G−1
�l i

(�) · · · G−1
�l2

(�)G−1
�l1

(�)

× G�l′ 1(�)G�l′ 2(�) · · · G�l′ i (�)

are constant unitary matrices for all l, l′ = 0, ±1, . . . ± n. For
the frequency �0, choose a unit vector ��0(i+1) such that

�∗
�0(i+1)G

−1
�0i

(qi+1) · · · G−1
�02(qi+1)G

−1
�01(qi+1)N(qi+1) = 0.

Select also a unitary matrix U�0(i+1) such that its first column
is ��0(i+1). Define

U�l (i+1) = Wl0iU�0(i+1).

Then the first column ��l (i+1) of U�l (i+1) satisfies the property

�∗
�l (i+1)G

−1
�l i

(qi+1) · · · G−1
�l2

(qi+1)G
−1
�l1

(qi+1)N(qi+1)

= �∗
�0(i+1)W

∗
l0iG

−1
�l i

(qi+1) · · · G−1
�l2

(qi+1)G
−1
�l1

(qi+1)

× N(qi+1)

= �∗
�0(i+1)G

−1
�0i

(qi+1) · · · G−1
�02(qi+1)G

−1
�01(qi+1)N(qi+1)

= 0.

Define further

G�l (i+1)(�) = U�l (i+1)

[
ej�l q∗

i+1−1

ej�l −qi+1

�−qi+1
�q∗

i+1−1 0

0 I

]
U∗

�l (i+1)

for all l = 0, ±1, . . . ± n. It follows that

��l (i+1) = Wl0i��0(i+1) = Wl0iW
∗
l′0i��l′ (i+1).
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Due to the fact that Wll′i = Wl0iW
∗
l′0i

, we have

��l (i+1) = Wll′i��l′ (i+1).

Moreover,

Wll′(i+1) = G−1
�l (i+1)(�)G−1

�l i
(�) · · · G−1

�l1
(�)

× G�l′ 1(�) · · · G�l′ i (�)G�l′ (i+1)(�)

= G−1
�l (i+1)(�)Wll′iG�l′ (i+1)(�).

Note that

U∗
�l (i+1)Wll′iU�l′ (i+1) = U∗

�l (i+1)Wl0iW
∗
l′0iU�l′ (i+1) = I .

Consequently, it holds

Wll′(i+1) = U�l (i+1)

[
ej�l −qi+1

ej�l q∗
i+1−1

ej�
l′ q∗

i+1−1

ej�
l′ −qi+1

0

0 I

]
U∗

�l′ (i+1).

This shows that Wll′(i+1) are constant unitary matrices for all
l, l′ = 0, ±1, . . . ,±n. As such, we have established (14) and
the fact that Wll′i in (15) are constant unitary matrices. The
Proof of Lemma 1 is then completed by substituting (15) into
(14), with � replaced by ej�l .

Appendix B. Proof of Theorem 1

Denote the �-transforms of r(k), v(k), w(k), z(k) by R(�),
V (�), W(�), and Z(�), respectively. Introducing the pa-
rameterization of all stabilizing two-degree-of-freedom con-
trollers (Vidyasagar, 1985), it is easy to find that Z(�) =
N(�)Q(�)W(�), where Q(�) ∈ H∞ is an arbitrary transfer
matrix at the designer’s choice. Under the full-information
tracking scheme, W(�) = V (�). Hence, according to Parseval
identity, we have

J (v) = ‖R(�) − N(�)Q(�)V (�)‖2
2.

Since N(�) is stable and its nonminimum phase zeros coincide
with those of G(�), an inner–outer factorization of N(�) at the
frequency �0 can be obtained as

N(�) = G�01(�) · · · G�0m(�)N�0out(�)

= G�0in(�)N�0out(�) (16)

where G�0i (�) is a Blaschke factor of qi in the form of (2)
and N�0out(�) is outer. For simplicity, denote G�0in(�) and
N�0out(�) by Gin(�) and Nout(�), respectively. With the factor-
ization (16) and R(�), the tracking performance J (v) can be
written as

J (v) =
∥∥∥∥∥

n∑
l=−n

vl

1 − �ej�l
− Gin(�)Nout(�)Q(�)V (�)

∥∥∥∥∥
2

2

.

Furthermore, noting the fact that Gin(�) is an inner function,
we have

J (v) =
∥∥∥∥∥

n∑
l=−n

G−1
in (�)vl

1 − �ej�l
− Nout(�)Q(�)V (�)

∥∥∥∥∥
2

2

=
∥∥∥∥∥
[

n∑
l=−n

G−1
in (�)vl

1 − �ej�l
−

n∑
l=−n

G−1
in (e−j�l )vl

1 − �ej�l

]

+
[

n∑
l=−n

G−1
in (e−j�l )vl

1 − �ej�l
− Nout(�)Q(�)V (�)

]∥∥∥∥∥
2

2

.

One can see that

n∑
l=−n

G−1
in (�)vl

1 − �ej�l
−

n∑
l=−n

G−1
in (e−j�l )vl

1 − �ej�l
∈ H⊥

2 ,

and that by a proper choice of Q(�) ∈ H∞,

n∑
l=−n

G−1
in (e−j�l )vl

1 − �ej�l
− Nout(�)Q(�)V (�) ∈ H2.

That H2 and H⊥
2 form an orthogonal complement suggests

that

J (v) =
∥∥∥∥∥

n∑
l=−n

G−1
in (�)vl

1 − �ej�l
−

n∑
l=−n

G−1
in (e−j�l )vl

1 − �ej�l

∥∥∥∥∥
2

2

+
∥∥∥∥∥

n∑
l=−n

G−1
in (e−j�l )vl

1 − �ej�l
− Nout(�)Q(�)V (�)

∥∥∥∥∥
2

2

. (17)

Without loss of generality, we may assume that

V (�) =
[

vT−n

1 − �ej�−n
· · · vT

0

1 − �ej�0
· · · vT

n

1 − �ej�n

]T

.

Partition Q(�) compatibly as

Q(�) = [Q−n(�) · · · Q0(�) · · · Qn(�)]

and construct

Ql(�) = N
†
out(e

−j�l )G−1
in (e−j�l ) + (1 − �ej�l )Q̃l(�),

where N
†
out(e

−j�l ) is a right inverse of Nout(e−j�l ), and Q̃l(�) ∈
H∞. It follows that

n∑
l=−n

G−1
in (e−j�l )vl

1 − �ej�l
− Nout(�)Q(�)V (�)

=
n∑

l=−n

{
[I − Nout(�)N

†
out(e

−j�l )] G−1
in (e−j�l )vl

1 − �ej�l

−Nout(�)Q̃l(�)vl

}
∈ H2.
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Evidently, for l = 0, ±1, . . . ,±n,

[I − Nout(�)N
†
out(e

−j�l )] G−1
in (e−j�l )

1 − �ej�l
∈ H2.

It is therefore possible to find Q̃l(�), which is independent of
vl , such that{

[I − Nout(�)N
†
out(e

−j�l )] G−1
in (e−j�l )

1 − �ej�l

−Nout(�)Q̃l(�)
}

vl −→ 0.

Equivalently, we may find Q(�) ∈ H∞ independent of v, such
that∥∥∥∥∥

n∑
l=−n

G−1
in (e−j�l )vl

1 − �ej�l
− Nout(�)Q(�)V (�)

∥∥∥∥∥
2

2

−→ 0.

As a result, the second term of (17) can be made arbitrarily
small by choosing Q(�) independent of v, hence leading to

Jopt(v)=
∥∥∥∥∥

n∑
l=−n

[
vl

1−�ej�l
−Gin(�)

G−1
in (e−j�l )vl

1−�ej�l

]∥∥∥∥∥
2

2

. (18)

With �0 = 0 and Gin(�) given by (16), we have

Jopt(v) =
∥∥∥∥∥

n∑
l=−n

{[
G−1

01 (�)

1 − �ej�l
− G−1

01 (e−j�l )

1 − �ej�l

]
vl

+
[

G−1
01 (e−j�l )

1 − �ej�l
− G02(�) · · · G0m(�)

× G−1
in (e−j�l )

1 − �ej�l

]
vl

}∥∥∥∥∥
2

2

. (19)

It can be readily observed that

G−1
01 (�)

1 − �ej�l
− G−1

01 (e−j�l )

1 − �ej�l
∈ H⊥

2

and

G−1
01 (e−j�l )

1 − �ej�l
− G02(�) · · · G0m(�)

G−1
in (e−j�l )

1 − �ej�l
∈ H2.

Hence (19) can be rewritten as

Jopt(v) =
∥∥∥∥∥∥

n∑
l=−n

[
G−1

01 (�)

1 − �ej�l
− G−1

01 (e−j�l )

1 − �ej�l

]
vl

∥∥∥∥∥∥
2

2

+
∥∥∥∥∥∥

n∑
l=−n

{
G−1

01 (e−j�l )vl

1 − �ej�l
− G02(�) · · · G0m(�)

×[G−1
0m(e−j�l ) · · · G−1

02 (e−j�l )][G−1
01 (e−j�l )vl ]

1 − �ej�l

}∥∥∥∥∥
2

2

.

Repeating this procedure gives rise to

Jopt(v) =
∥∥∥∥∥

n∑
l=−n

[
G−1

01 (�)

1 − �ej�l
− G−1

01 (e−j�l )

1 − �ej�l

]
vl

∥∥∥∥∥
2

2

+
m∑

i=2

∥∥∥∥∥
n∑

l=−n

[
G−1

0i (�)

1 − �ej�l
− G−1

0i (e−j�l )

1 − �ej�l

]

× G−1
0i−1(e

−j�l ) · · · G−1
01 (e−j�l )vl

∥∥∥∥∥
2

2

. (20)

In light of (4),

n∑
l=−n

G−1
0i (�)

1 − �ej�l
−

n∑
l=−n

G−1
0i (e−j�l )

1 − �ej�l

= 1 − qi

1 − q∗
i

[
n∑

l=−n

1 − |qi |2
1 − ej�l qi

�0i�
∗
0i

]
1

� − qi

. (21)

It thus follows by substituting (21) into (20) that

Jopt(v) =
m∑

i=1

∥∥∥∥∥
[

n∑
l=−n

1 − |qi |2
1 − qiej�l

�0i�
∗
0i

]
1

�q∗
i − 1

× G−1
0i−1(e

−j�l ) · · · G−1
01 (e−j�l )vl

∥∥∥∥∥
2

2

=
m∑

i=1

(1 − |qi |2)

×
∣∣∣∣∣

n∑
l=−n

〈�0i , G
−1
0(i−1)(e

−j�l ) · · · G−1
01 (e−j�l )vl〉

1 − qiej�l

∣∣∣∣∣
2

.

The proof is then completed by invoking Lemma 1, yielding

Jopt(v) =
m∑

i=1

(1 − |qi |2)
∣∣∣∣∣

n∑
l=−n

〈�−�l i
, vl〉

1 − qiej�l

∣∣∣∣∣
2

.

Appendix C. Proof of Theorem 3

It follows from the proof of Theorem 1 that, the output of
the closed-loop system shown in Fig. 1 with a two-degree-of-
freedom controller is given by

Z(�) = N(�)Q(�)W(�)

for some Q(�) ∈ H∞. Hence, the energy of the transient
tracking error response is written as

J (v) = ‖R(�) − N(�)Q(�)W(�)‖2
2.

In the partial-information case under consideration, the
information from the signal generator is the reference,
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i.e., W(�) = R(�). Furthermore the reference is assumed to be
a signal-tone sinusoidal signal

R(�) = v−1

1 − �e−j� + v1

1 − �ej�

and the coefficients of the signal have zero-mean, unit variance
and are mutually uncorrelated, i.e.,

E(v) = 0, E(vv∗) = I ,

where v∗ = [v∗−1 v∗
1 ].

The averaged tracking performance becomes

E = E{J (v) : E(v) = 0 and E(vv∗) = I }

=
∥∥∥∥[I − N(�)Q(�)]

[
I

1 − �e−j�

I

1 − �ej�

]∥∥∥∥
2

2
.

Conduct a spectral factorization (Vidyasagar, 1985) to find
R̂(�) such that

R̂(�)R̂∼(�)I

=
[

I

1 − �e−j�

I

1 − �ej�

] [
I

1 − �e−j�

I

1 − �ej�

]∼

where R̂∼(�) = R̂(1/�). Then E can be rewritten as

E = ‖[I − N(�)Q(�)]R̂(�)‖2
2. (22)

Note that the spectral factor R̂(�) need not be unique. One
particular spectral factor that will simplify our analysis is given
by

R̂(�) = ej(�/2−(�/4))

1 − �ej� + e−j(�/2−(�/4))

1 − �e−j� .

Denote an inner–outer factorization of N(�) by

N(�) = Gin(�)Nout(�).

Denote the dimension of the output by n and pth column of
identify matrix I by ep, p = 1, . . ., n. Then, (22) is rewritten to

E =
n∑

p=1

[‖R̂(�)ep − Gin(�)Nout(�)Q(�)R̂(�)ep‖2
2].

Applying the same argument as that used to establish (17) in
the proof of Theorem 1, we have

E =
n∑

p=1

∥∥∥G−1
in (�)R̂(�)ep − R̂m(�)ep

∥∥∥2

2

+ ‖R̂m(�) − Nout(�)Q(�)R̂(�)‖2
2, (23)

where

R̂m(�) = G−1
in (e−j�)

ej(�/2−(�/4))

1 − �ej� + G−1
in (ej�)

e−j(�/2−(�/4))

1 − �e−j� .

Due to the fact that R̂(�) is minimum phase, the optimal Q(�)

which minimizes E is given by

Q(�) = Q̂(�) := N
†
out(�)

R̂m(�)

R̂(�)
. (24)

Consequently, it holds that

Eopt = ‖[I − N(�)Q̂(�)]R̂(�)‖2
2

= E{‖[I − N(�)Q̂(�)]R(�)‖2
2:

E(v) = 0, E(vv∗) = I }. (25)

Denote the performance function J (v) under the optimal Q̂(�)

by Ĵ (v), i.e.,

Ĵ (v) = ‖[I − N(�)Q̂(�)]R(�)‖2
2. (26)

With the same argument as that used to establish (23), Eq. (26)
is written as

Ĵ (v) =
∥∥∥G−1

in (�)R(�) − Ropt(�)

∥∥∥2

2

+ ‖Ropt(�) − Nout(�)Q̂(�)R(�)‖2
2, (27)

where

Ropt(�) = G−1
in (ej�)v−1

1 − �e−j� − G−1
in (e−j�)v1

1 − �ej� .

It is easily verified from (18) that

Jopt(v) = ‖G−1
in (�)R(�) − Ropt(�)‖2

2.

Substituting (24) into (27) leads to

Ĵ (v) = Jopt(v) +
∥∥∥∥∥Ropt(�) − R̂m(�)

R̂(�)
R(�)

∥∥∥∥∥
2

2

. (28)

It follows from some further algebra manipulation that

Ropt(�) − R̂m(�)

R̂(�)
R(�)

= [G−1
in (e−j�) − G−1

in (ej�)]

× (e−j(�/2−(�/4))v−1 − ej(�/2−(�/4))v1)

2 cos(�
2 − �

4 ) − 2� cos(�
2 + �

4 )
. (29)
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Substituting (29) into (28) results in

Ĵ (v) = Jopt(v) +
∥∥∥∥∥[G−1

in (e−j�) − G−1
in (ej�)]

× (e−j(�/2−(�/4))v−1 − ej(�/2−(�/4))v1)

2 cos(�
2 − �

4 ) − 2� cos(�
2 + �

4 )

∥∥∥∥∥
2

2

. (30)

Following (25), (26) and taking average at both sides of (30),
we have

Eopt = Jopt + 2

∥∥∥∥∥ G−1
in (e−j�) − G−1

in (ej�)

2 cos(�
2 − �

4 ) − 2� cos(�
2 + �

4 )

∥∥∥∥∥
2

2

= Jopt + 2

∥∥∥∥ Gin(ej�) − Gin(e−j�)

2 cos(�
2 − �

4 ) − 2� cos(�
2 + �

4 )

∥∥∥∥
2

2

,

where the last equality is from the fact that Gin(s) is an inner
factor. Note that

∥∥∥∥ 1

2 cos(�
2 − �

4 ) − 2� cos(�
2 + �

4 )

∥∥∥∥
2

2

= 1

4[cos2(�
2 − �

4 ) − cos2(�
2 + �

4 )]

and

cos2
(�

2
− �

4

)
− cos2

(�

2
+ �

4

)
= sin �.

We have

Eopt = Jopt

+ tr[Gin(ej�) − Gin(e−j�)]∗[Gin(ej�) − Gin(e−j�)]
2 sin �

.

Appendix D. Proof of Theorem 4

The following lemma will be used in the subsequent proof
of Theorem 4. Its proof mimicks that of a continuous-time
counterpart (see, e.g., Chen, 2000; Qiu & Davison, 1993) and
is thus omitted.

Lemma 3. Let and be the balanced realiza-

tions of the inner transfer matrices G1(�) and G2(�), respec-
tively. Then

is a balanced realization of G1(�)G2(�).

Now we proceed to prove Theorem 4. Let be a real-

ization of G(�) given as in (12), i.e.,

.

Then

xt (0) = −
n∑

k=−n

[
ej�k I − Ain −BinC0

0 ej�k I − A0

]−1 [
BinD0

B0

]

× G
†
0(e

−j�k )G−1
in (e−j�k )vk

= −
n∑

k=−n

[(
ej�k I − Ain

)−1
BinG

−1
in (e−j�k )vk

?

]
. (31)

Here the question mark stands for an irrelevant quantity. Let
G(�) be factorized in the cascade form at frequency �0=0, i.e.,
G(�) = G�01(�) · · · G�0m(�)G�00(�). A balanced realization
of G�0i (�) can be found to be (see, e.g., Chen, 2000)

where �i = 1 − |qi |2. Denote the state in this realization by
xi(k). Then the vector [x1(k) · · · xm(k)]′ forms the state of

Gin(�) = G�01(�) · · · G�0m(�), with the realization ,

which, by virtue of Lemma 3, is a balanced realization. Fur-
thermore, the transfer matrix from the input to the state is

(�−1I − Ain)
−1Bin

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
1 − |q1|2�
1 − q∗

1 �
�∗
�01G�02(�) · · · G�0m(�)

√
1 − |q2|2�
1 − q∗

2 �
�∗
�02G�03(�) · · · G�0m(�)

...√
1 − |qm|2�
1 − q∗

m�
�∗
�0m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that

�∗
�0i

G−1
�0i

(�) = 1 − qi

q∗
i − 1

q∗
i � − 1

� − qi

�∗
�0i

.
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Then

(�−1I − Ain)−1BinG−1
in (�)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − q1

1 − q∗
1

√
1 − |q1|2�
� − q1

�∗
�01

1 − q2

1 − q∗
2

√
1 − |q2|2�
� − q2

�∗
�02G−1

�01(�)

.

.

.

1 − qm

1 − q∗
m

√
1 − |qm|2�
� − qm

�∗
�0mG−1

�0(m−1)
(�) · · · G−1

�01(�)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This leads to

(ej�l I − Ain)
−1BinG

−1
in (e−j�l ) = z∗−�l

.

Here the last equality follows from Lemma 1. Finally, it follows
from Lemma 2 and (31) that

lim
	→0

J	(v) =
⎡
⎣ n∑

l=−n

(ej�l I − Ain)−1BinG−1
in (e−j�l )vl

⎤
⎦

∗

×
⎡
⎣ n∑

l=−n

(ej�l I − Ain)−1BinG−1
in (e−j�l )vl

⎤
⎦

=
m∑

i=1

n∑
l,l′=−n

(1 − |qi |2)
〈vl , �−�l i

〉〈�−�l′ i , vl′ 〉
(1 − q∗

i
e−j�l )(1 − qie

j�l′ )
.

This completes the proof.

References

Chen, J. (2000). Logarithmic integrals, interpolation bounds, and performance
limitations in MIMO feedback systems. IEEE Transactions on Automatic
Control, AC-45, 1098–1115.

Chen, J., Qiu, L., & Toker, O. (2000). Limitations on maximal tracking
accuracy. IEEE Transactions on Automatic Control, AC-45, 326–331.

Davison, E. J., & Scherzinger, B. M. (1987). Perfect control of the robust
servomechanism problem. IEEE Transactions on Automatic Control, 32,
689–702.

Francis, B. A. (1979). The optimal linear–quadratic time-invariant regulator
with cheap control. IEEE Transactions on Automatic Control, 24,
616–621.

Jemaa, L. B., & Davison, E. J. (2003). Performance limitations in the robust
servomechanism problem for discrete-time LTI systems. IEEE Transactions
on Automatic Control, 48, 1299–1311.

Kwakernaak, H., & Sivan, R. (1972). Linear optimal control systems. New
York: Wiley-Interscience.

Morari, M., & Zafiriou, E. (1989). Robust process control. Englewood Cliffs,
NJ: Prentice-Hall.

Qiu, L., & Chen, J. (1999). Time domain characterizations of performance
limitations of feedback control. In: Y. Yamamoto, & S. Hara (Eds.),
Learning, control and hybrid systems (pp. 397–415). London: Springer.

Qiu, L., & Davison, E. J. (1993). Performance limitations of nonminimum
phase systems in the servomechanism problem. Automatica, 29, 337–349.

Su, W., Qiu, L., & Chen, J. (2003). Fundamental performance limitations in
tracking sinusoidal signals. IEEE Transactions on Automatic Control, 48,
1371–1380.

Toker, O., Chen, J., & Qiu, L. (2002). Tracking performance limitations in
LTI multivariable discrete-time systems. IEEE Transactions on Circuits
and Systems, Part I, 49, 657–670.

Vidyasagar, M. (1985). Control system synthesis: A factorization approach.
Cambridge, MA: MIT Press.

Zhou, K., Doyle, J. C., & Glover, K. (1995). Robust and optimal control.
Upper Saddle River, NJ: Prentice-Hall.

Weizhou Su received the B.Eng. and M.Eng.
degrees in automatic control engineering from
the Southeast University, Nanjing, Jiangsu,
China, in 1983 and 1986, respectively, and the
Ph.D. degree in electrical engineering from
the University of Newcastle, Newcastle, NSW,
Australia, in 2000.
From 2000 to 2004, he was with the Depart-
ment of Electrical and Electronic Engineer-
ing, Hong Kong University of Science and
Technology, Hong Kong, China; the School

of QMMS, University of Western Sydney, Sydney, Australia. He joined the
School of Automation Science and Engineering, South China University
of Technology, Guangzhou, China, where he is currently a professor. His
research interests include robust control, fundamental performance limitation
of feedback control, and signal processing.

Li Qiu received the B.Eng degree in electrical
engineering from Hunan University, Changsha,
Hunan, China, in 1981, and the M.A.Sc. and
Ph.D. degrees in electrical engineering from the
University of Toronto, Toronto, Ont., Canada,
in 1987 and 1990, respectively.
Since 1993, he has been with the Depart-
ment of Electrical and Electronic Engineer-
ing, Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon,
Hong Kong SAR, China. He has also held

visiting teaching and research positions in the University of Toronto, Canadian
Space Agency, University of Waterloo, University of Minnesota, Zhejiang
University, Australia Defence Force Academy, Harbin Institute of Technology.
His current research interests include systems control theory, information
theory, signal processing, applied and numerical linear algebra. He served as
an associate editor of the IEEE Transactions on Automatic Control and an
associate editor of Automatica. He is now an associate editor of Journal of
Control Theory and Applications and a member of the editorial board of the
International Journal of Control.

Jie Chen teaches at The University of Cali-
fornia, Riverside, CA in the field of systems
and control, and signal processing. He was
born in Yichun, Jiangxi Province, The Peo-
ple’s Republic of China on 14 January 1963.
He received the B.S. degree in aerospace
engineering from Northwestern Polytechnic
University, Xian, China in 1982, the M.S.E.
degree in electrical engineering, the M.A. de-
gree in mathematics, and the Ph.D. degree in

electrical engineering, all from The University of Michigan, Ann Arbor,
Michigan, in 1985, 1987, and 1990, respectively.
From 1990 to 1993, he was with School of Aerospace Engineering and
School of Electrical and Computer Engineering at Georgia Institute of
Technology, Atlanta, Georgia. He joined University of California, Riverside,
California as an Assistant Professor in 1994, where he has been a Professor
since 1999, and served as the Department Chair for the Department of
Electrical Engineering from 2001 to 2006. He has held guest positions and
visiting appointments with Northwestern Polytechnic University, Xian, Zhe-
jiang University, Hangzhou, Dalian University of Technology, Dalian, Harbin
Institute of Technology-Shenzhen Graduate School, Shenzhen, Hong Kong
University of Science and Technology, Hong Kong, China; Tokyo Institute of
Technology, Tokyo, Japan; and The University of Newcastle, Callaghan, The
University of Western Sydney, Penrith, Australia. His main research interests
are in the areas of linear multivariable systems theory, system identification,



30 W. Su et al. / Automatica 43 (2007) 15–30

robust control, optimization, and networked control. He is the author of two
books, respectively, (with G. Gu) Control-Oriented System Identification: An
H-infinity Approach (Wiley-Interscience, 2000), and (with K. Gu and V.L.
Kharitonov) Stability of Time-Delay Systems (Birkhauser, 2003).
Dr. Chen is a recipient of 1996 US National Science Foundation CAREER
Award and of 2004 SICE International Award. He was a past Associate

Editor for the IEEE Transactions on Automatic Control, Automatica, the
Journal of Control Theory and Applications, and a past Guest Editor for the
IEEE Transactions on Automatic Control. He currently serves as the founding
Editor-in-Chief for the Journal of Control Science and Engineering, and a
Guest Editor for the IEEE Control Systems Magazine.


	Fundamental limit of discrete-time systems in tracking multi-tonesinusoidal signals62626262
	Introduction
	Problem statement
	A preliminary result
	Main results: performance limits
	Full-information tracking
	Partial-information tracking

	Optimal cheap controller
	An example
	Conclusion
	Acknowledgments
	Appendix A. Proof of Lemma 1
	Appendix B. Proof of Theorem 1
	Appendix C. Proof of Theorem 3
	Appendix D. Proof of Theorem 4
	References


