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Fundamental Performance Limitations
In Tracking Sinusoidal Signals

Weizhou Su, Li Qiy Senior Member, IEEEand Jie ChenSenior Member, IEEE

Abstract—This paper attempts to give a thorough treatment of r(t)
the performance limitation of a linear time invariant multivariable |
system in tracking a reference signal which is a linear combination 8(t) v(t) u(t) 2(t) Yte(t)
of a step signal and several sinusoids with different frequencies. — 5(s) > K(s) > P(s)
The tracking performance is measured by an integral square error -
between the output of the plant and the reference signal. Our pur- %I

pose is to find the fundamental limit for the attainable tracking per-

formance, under any control structure and parameters, interms of Fig. 1. Two-parameter control structure with reference full information.
the characteristics and structural parameters of the given plant, as

well as those of the reference signal under consideration. Itis shown

that this fundamental limit depends on the interaction between the Wh?rewk-/ k =0,£1,...,+£n, are distinct real frequencies sat-
reference signal and the nonminimum phase zeros of the plant and isfying w_; = —wj andwvg, k = 0,+1,...,+n, are complex
their frequency-dependent directional information. vectors satisfying_; = . Implicitly, we havew, = 0 and
Index Terms—Linear system structure, nonminimum phase, op- v iS real. The reference defined in such a way is always a real
timal control, performance limitation, tracking. valued signal. We use the vector
v="[PL, - vl vy vy -]

. INTRODUCTION

HIS paper considers the performance limitations of tg capture the magnitude and phase infqrmation qf all frequency
linear time-invariant (LTI) multivariable feedback Controlf:omponents of the reference. The transient error is measured by

system in tracking a reference that is a linear combinatid§ €Neray
of a step and several sinusoids of various frequencies. The oo oo
setup is shown in Fig. 1. Heré3(s) is the transfer matrix of J(v) = / [lr(t) = 2()||* dt = / le(®)][*dt.  (2)

a given plant whose measuremeyit) and outputz(t) may 70 70

not be the samek (s) is the transfer matrix of a two degreeThe tracking problem has a well-known solution, with well-
of freedom (2DOF) controller which is to be designeétis) known numerical methods to design controllers so that)

is the exosystem driven by an impulse which generates tigesmall. Nevertheless, it is desirable to have a deeper under-
reference. We assume that the controller has full informatigtanding of the smallest tracking error

of the reference in the sense that it tak€s), the state of
the exosystenf(s), in addition to the measuremen(t) of

the plant, as its inputs. Whether or not the measuremg@nt . . .

contains the full information of the plant, i.e., the state of th%bta!r_la}ble when the controlléf is chosen among all _possmle

plant, is not important. The tracking problem is to design tabilizing controllers. Such a smallest error then gives a fun-

contryoller K(s) so that the closed loop system is internall amental Iimit_in the _transient perf_orm_ance of tracking. In thi_s

stabilized and the plant output() asymptotically tracks a aper, we achieve this understanding in the form of an explicit,

reference signal(t) of the form simple, and informative relationship between this fundamental
’ limit and the plant characteristics.

r(t) = i o eIt ) The valueJ,,(v) of course depends om If we are inter-
B k ested in an overall performance measure of the feedback system
in tracking all references of the type (1), then we normally turn
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Itturns out that the averaged performance lifijt, is simple information of the reference. It is this assumption that makes it
enough to be presented as follows. Under some minor assurmgssible to find a uniformly optimal controlldf to minimize

tions J(v) for all v. Note that when the reference only contains a con-
m  n 1 stant term, the value of the reference already contains its full in-

Bopr=2» > ——— (6) formation. Therefore in this particular case, whether or not the

i1 k=n 20 Wk controller can assess the state of the reference is not an issue.

wherez;,i = 1,2,...,m, are the nonminimum phase zeros of This paper gives a rather complete picture for the tracking

the transfer function fromy(¢) to z(¢). Thew dependent perfor- performance limitation problem for general reference signals

o . containing several frequency components. We first give some
mance limitJ,(v) need more elaborations but also turn outtg~ " .
be simple. new insight on linear system structure. We show that each non-

Results of this sort can be traced back for over a decade. E?)lpmum phase zero has associated frequency dependent direc-

single-input—single-output (SISO) systems and constant refte'9-ns' A key technical result in this paper is a relation among di-

. . re%ctions at different frequencies. Using this result, we derive an
ences, vector degenerates to a real scalar. Then, the linearity 0 . . I
T 9 expression fot, (v) which elegantly exhibits the effect of the
the plantimplies thaf,, (v) = v? Jopt (1) aNdEqpe = Jopt(1). . . .
. : . plant nonminimum phase zeros, as well as the interaction be-
It is obtained in [11] that — .
. tween each frequency component and the directions mentioned
Tope(1) = 2 Z 1 above, toward the performance limitations.
opt p zi There has been a surge of activities in the study of perfor-
mance limitations in feedback control. In addition to the type
ree S SR .
of performance limitations studied in this paper, which focus
on system time responses and, hence, are called time domain
performance limitations, there is a whole body of literature on
1 design limitations on system frequency responses, known as fre-
Eopt =2 Z Z_
i=1 """

For multivariable systems and for the case when the refere
r(t) is either a constant or a sinusoid with a single frequency
it was obtained in [14] that

guency domain performance limitations. For the history and the
recent progress on frequency domain performance limitations,
> see [2], [8], [16]. Some intriguing connections have been re-

and

FEopt = 22 < ! — + ! - alized between the time domain limitations and the frequency
o \F Wzt W domain ones [10].
respectively. The study of the performance linfit, (v) for a The organization of this paper is as follows. In Section II,
fixed constant reference in the multivariable case started in [leliminary materials on linear system factorizations are
It is shown there that the performance limit in this case depen@igsented. It is shown that a right-invertible system can be
on not only the locations of the nonminimun phase zeros but afégtorized as a cascade connection of a series of first-order
their directional information. The study in [5] has since been eianer factors and a minimum phase factor. The factorization
tended to more general references [6], [7], and discrete-time sigsfrequency dependent. The inner factors then contain all the
tems [18]. There have also been generalizations to nonright-information associated with the nonminimum phase zeros.
vertible plant [20], [3], to the cases where the controller hdg Section I, we formally formulate the problems studied
previewed information of [7], where the plant input is subje@nd then state and discuss the main result and some of its
to saturation [12], and where the tracking performance measgansequences. Section IV extends the main result in Section I1I
includes the input energy [4], respectively. It has been showtthe case where the plant contains time delays. Section V is
that, consistent with common intuitions, the preview of the rethe conclusion. Finally, the proof of the results in Sections I
erence can reduce the best achievable tracking error and onahé IV are given in Appendices | and Il, respectively.
other hand any input saturation or any input energy constraintThe notation used throughout this paper is fairly standard.
would likely increase the best achievable tracking error. Relaté@r any complex number, vector, and matrix, denote their con-
issues for nonlinear systems and filtering problems are studiggate, transpose, conjugate transpose, real and imaginary part
in [17], [1], and [15]. by (-),(-),(-)*,Re(-), andIm( -), respectively. Denote the
Although E,,; gives an overall quality measure for the plangéxpectation of a random variable 8/ - }. Let the open-right
as far as tracking is concerned, the reference direction dependiit left-half plane be denoted I8y, andC_, respectivelyL,
performance limit/,,(v) gives more information and deepetis the standard frequency domain Lebesgue spdgendHs
insights. If we know.J,;(v) and if the optimalK” which min- are subspaces df, containing functions that are analytic@n.
imizes J(v) is independent of), then E,,,; can be obtained andC , respectively. It is well-known thak{, andH, con-
after simple operations. This is why we adopt the thinking in [Sititute orthogonal complements . RH is the set of all
to place our main emphasis o, (v). In the aforementioned stable, rational transfer matrices. Finally, the inner product be-
formulation, the assumption that the state of the exosysterrfween two complex vectors, v is defined by(u, v) := u*v.
available to the controller is crucial. This means that not only
the reference but also all magnitude and phase information of
its frequency components is known to the controller. This may
look unrealistic in the first glance, but it does give a limitation Let G(s) be a real rational matrix representing the transfer
more fundamental than any other one based only on the parfiaiction of a continuous time finite-dimensional, linear time in-

Il. PRELIMINARIES
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variant (FDLTI) system. Let us assume th@fs) is right in-
vertible. Its poles and zeros, including multiplicity, are defined
according to its Smith—McMillan formz(s) is said to be min-
imum phase if all its zeros have nonpositive real parts; othetig. 2. Cascade factorization.
wise, it is said to be nonminimum phase.

Let G(s) = N(s)M~'(s), whereM(s), N(s) € RHo, be factors depend on the order of the nonminimum zeros, as well
a right coprime factorization off(s). Letz € C be a nonmin- as on the frequenay;,. The product
imum phase zero df(s). Thenz is also a nonminimum phase

— Guo(8) FHGupm(8) o -+ — Gui(s) >

zero of N(s) and there exists a unit vectgrsuch that Gu(s) - Guyml(s)
7N (z) = 0. is called a matrix Blaschke product.
One should note that even when the order0ks, . . ., 2, is
We call the vector a (left or output) zero vector d(s) cor- fixed, the factorization at the frequeney, is not unique since
responding to the nonminimum phase zero Twei 1S NOt uniquely determined. Furthermore, if we hawet- 1
Let us now order the nonminimum phase zero%7¢§) (or differentfrequenciesy, k = 0, £1,...,%£n, then the factoriza-
N(s) equivalently) agy, 22, . . . , zm . Assume that each pair of tions at different frequencies are in general different. Neverthe-

complex conjugate zeros are ordered in adjacent order. Letless, they can be intimately related if we make the choices prop-
also fix a frequency, € R. We first find a unit zero vector erly. For example, it is easy to see from the above construction
Nw,1 Of G(s) corresponding te; and define thatn,, 1, the first Blaschke vector, can be chosen independent
of wg. The following lemma provides such relations and is the

2Re(z1) s = jwr . key technical vehicle that leads to the main result of this paper.

kal(s)zl_nwkl — * w1 . g
ATk s Lemma 1: Suppose that the order of, 2o, . . ., z,, is fixed.
_ %2—;; 0] 7 Also suppose that we are givem + 1 different frequencies
T et 7| et wi, k= 0,£1,...,+n. Then the2n + 1 cascade factorizations

. . L . (7) can be chosen so that for &lll = 0,+1,...,4+n andi =
whereU,,, 1 is a unitary matrix with the first column equal to

Nw,1- Here,G, 1(s) is so constructed that it is inner, has the’
only zero atz; with 7,1 as a zero vector correspondingzq Nri = Guy1(Jwi)Gu2(wi) -+« Guyi—1 (Jwk ) Neyi- 9)
andG,,1(jwr) = I. SinceG,,1(s) is a generalization of the ) L

standard scalar Blaschke factor, we call it a matrix Blaschke Fro0f: Let us first prove that the factorizations can be
factor at the frequencyy, and.,,; a corresponding Blaschke C10Sen so thatfor all, i = 0,x1,..., xn andi = 1,2,...,m

PR

vector. Also, notice_ghat the choice of other columnﬁfml_ is Noni = Wii( 1) hni (10)
immaterial. NowG_ ' (s)G(s) has zeros, z3, . . ., z,. Find and
a zero vecton,, o Of G;k‘ll(s)G(s) corresponding ta, and . . .
define Goi(8) - G ()G (5)Gun(8)Gupa(s) - - Guis)
=: Wiu (11)

2Re(22) s — jwr

GWA-?(S) =1- Newy.2 - * w2 N . e
Ze = Jwk 23tz are constant unitary matrices. Here, it is understoodithag =
Z3 F9k 228 0] I. The proof is based on an inductiondnLet us first consider
T I Usyo the case whem = 1. We know thaty,,, ; can be chosen inde-
. _ o . pendent ofv,.. Hence U1 can also be chosen independent of
whereU,,,» is a unitary matrix with the first column equal to,,, . Thus, rather trivially, for alk = 0, +1 +n
—1 —1 7 ’ y s sy
Nup2- Then G7 o (s)G 1 (s)G(s) has zeroszs, za, ..., Zm.
Continue this process until Blaschke vectots:, ..., Mw,m Nur1 = WkioNw,1
and Blaschke factor&,, 1(s), ..., Gy, m(s) are all obtained. and
This procedure shows thét(s) can be factorized as GZh(5)Gun ()
i 2y
G(5) = Gy (5) - G ()G ) ™ _u,, [ FEE A 0} Ut U
L 0 1 k

where WL zi—s

2Re(z;) s — jws X [Zl_]“’ sits } o1

Gopi(8) =1 = Nui ———— o 0 T :
Z; —Jwk 2, + 8 Mz —jwr 2] +Jwi 0
z; +J.UJA- zi=s =Uy1 zZi+jwr z1—jwi } ol
=Uy,i [ zimjwk zits } Us,i (8) I
0 I =: Wi

and G.,0(s) has no nonminimum phase zero. We call thi§ o onstant unitary matrices.

factorization a cascade factorization at frequengy which Now, assume that,, 1. .., Hows ANAGo, 1(5), -, Goi(s)
is shown schematically in Fig. 2. In this factorization, each, .« peen chosen soktr/lat TR REATTTTT R
Blaschke vector and Blaschke factor correspond to one non-

minimum phase zero. Keep in mind that these vectors and Nori = Wri(i—1)Nwyis 1=1,2,...,m
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and fork=0,£1,...,£n,7=1,2,...,m.
GZL(s) ... G ()G (8)Gun (5)

Wil w2 w1 I1l. MAIN RESULT
Gw,2(3) N Gwli(s) = Wkli

Let us go back to the setup shown in Fig. 1. The measurement

are constant unitary matrices for &lll = 0,£1,...,£n. For outputy(t) of the plant might be different from the tracking
the frequency, choose a unit vectoy,,, ;+1) such that outputz(t). We denote the transfer function froaft) to z(t)
* - - - by G(s) and that fromu(t) to y(¢) by H(s), i.e
Moa(isGoi(zinn) - Goh(zi0) Goh (i) N (sign) =0 YO (1) toy(t) by H(s)
and a unitary matrix/,,,;+1) such that its first column is P(s) = [g((i))} . (13)
T (i+1) - DEfiNE
In order for the tracking problem to be meaningful and solvable,
Usr(itr) = Wroillug (i+1)- we make the following assumptions throughout the paper.
Then, the first columm,, (;41) of Uy, (i11) satisfies Assumption 1:
_ _ _ 1) P(s),G(s), andH (s) have the same unstable poles.
* 1 1 1 ’
Mon (i41) G (Zi1) -+ GLo(2i01) G (Zig 1) N (2i41) 2) G(s) has no zero afwy, k = 0,+1,. .., £n.
=0, (Hl)W,jOiG;:i(ziH) .. G;klz(ziﬂ) The first item in the assumption means that the measurement
X GZY (2i41)N(zig1) can be used to stabilize the system and at the same time does not
. “ a1 -1 introduce any additional unstable modes. A more precise way of
= M) Gagi(Zi1) -+ GLga(Zi41) stating this is that if
x G (2i1)N(zig1)
wol\#i+1 +1 N(S) -1
=0. P(s) = [L(s) M~ (s)
This shows that,,, ;1) is indeed what we need. Define is a coprime factorization, then we assume tNak) M~ (s)
tution zipis and L(s)M~!(s) are also coprime factorizations. The second
G (i41)(8) = Usy (i) Zir1—jwk Ziy s : (i41) item is necessary for the solvability of the tracking problem.
0 ' We now state our main result, whose proof will be given in
forall k = 0,+1,...,£n. Then, we have Appendix I. o
Theorem 1l:Let G(s) have nonminimum phase zeros
Nwy (i+1) 21,%9,---,2m With  corresponding Blaschke vectors
= Wil (i+1) = Wkoi Wioilw, (i+1) = WhtiTl, (i+1) Nopls-- s Nwemsk = 0,%£1,..., +n, satisfying Lemma 1.
and Then 2
Go L (GIL(9) .. Gol (5)Gu(s) ... T i 2 Re(z) z": (i )
X Gwzt( )Gwz(i+1)(3) i=1 ke C1 T IWE
1 m n n
=G, wi (i41) ( )WkliGw(i-i-l)(s) Z Z Z 2R9 ) (VK Mooy i) {Thori> V1)
Zit1 =Wk Zip1ts . f Z —|-ka)(2¢ — jwl) '
= Uy (i41) | ZivaTi9r i1 ms Ug (i) Whi T .
0 This formula shows that each nonminimum phase zero con-

tributes additively to the performance limit. However, the con-
:,(i+1)' tribution of each frequency component of the reference enters
the performance limit in a quadratic form and the cross cou-

ZZ+1+J:°-’I Zig1—$ 0
X le(i—l—l) Zi+17]w(l) zi,ts

Zig1—Jwn Zipts . . pling of pairs of frequencies appears in the performance limit. It
= Uy (i+1) za-ﬂﬂwg Zit1—8 7 Ulei+yWroiWioi  also shows that generically, perfect tracking is impossible when
the plant is nonminimum phase. However, if it happens that the

ZZ+1+jwl Zig1—S .
X Ui l Zosi—den 7, Fe 0 U i vectorw is orthogonal to the vectors
0 * * * *
7zi+1;‘7:wk 7z;+11»3:w1 0 % 1 Zi — jw—n Zq Zi — jwn

= Uy ity | Zie1 ]w‘“oz“rl T w; (i+1) 1=1,2,...,m

=: Whi(i+1) then perfect tracking can be achieved. Hereaptures the mag-
nitude and phase information of the reference andaptures

are unitary matrices for alt,/ = 0,+£1,...,+£n. This proves P andap

the property of the plant at the nonminimum phase zerdhis
(10) and (11). Finally, (9) fOHOWS from subst|tut|ng (11) into orthogonallty may happen in two ways. One is over the output
(10) with s replaced byjwy. channels:vk is orthogonal tay,,,; foralli = 1,2,... ,m,k =
One may wonder what these Balschke vectors look like whﬁ 41, +n. This can only occur for multlvanable systems
Gi(s) is SISO. In this case, proper choices lead to The other is over the frequencies: the orthogonality over output
R [ Zi_1 Zi—1 — jwk (12) channels does not occur huandn; are orthogonal due to some
Mot = 254 jwr zi1 25+ jwk special alignment of the magnitude and phase of the reference.
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This can happen even for the SISO case. For example, in thieere(; is a real unit vector characterizing the directional in-
case wherm = 1 andG(s) is SISO, ifv, happens to make formation of this delay antf; is a real orthogonal matrix whose

v /(21 — jwg) imaginary for allk = 0,+£1,...,+n, then the firstcolumnis¢;. G;(s) is assumed to be a Blaschke factor with
performance limit is zero. zero z;. The last factorGy(s), not necessarily rational is as-
In the case whem = 0, i.e., the reference only has a stepumed to have a coprime factorizatidf(s)M; ' (s) with an
component, we get outerNy(s). Itis easy to see that a multlvarlable FDLTI system
m with independent delays in all output channels can be written in
Tope(v) = Z 2Re(2) (107, 0) 2. the form of (17). However, at this moment, it is not clear what is

|2i]? the general class of transfer matrices that admit this type of fac-
torizations. It is not even clear how we can write a multivariable
system with independent time delays in the input channels in
the form of (17). It would be interesting to clarify these issues.

For systems given in the form of (17), we have a generalized

i=1
This is exactly the formula given in [5].

In the case when the systef{(s) is SISO, the performance
limit becomes

L Meowi iy i ViVt version of Lemma 1.
Jo = 2Re(z; - - . .
pi(v) p k;ﬂ l;n o(z )(z;k + jwi)(z — jwi) Lemma 2: Suppose that we are givem + 1 different fre-
(14) quenciesvg, k = 0,+1,..., £n. Then, there existn + 1 cas-
cade factorizations
wheren,, ;,i = 1,...,m, are scalars with unit modulus given
by (12). k G(8) = Luwy1(8) + -« L a(8)Guwp1(8) - o . Gy (8)Guoyo(8)
The proof of Theorem 1, as given in Appendix I, shows thathere fori = 1,...,d
a controller or a sequence of controllers, independent oan (i)
be found to attain the performance linig,, (v). Therefore Leoyi(s) = 1 = Cop (1 -€ ) Coni
Eopt = inf E{J(v) : B(v) = 0, E(vv") = I} (15) andfori=1,....,m
. 2Re(z;) s — jwr
=E {lgg J(v) : B(v) = 0,E(w*) =T} (16) Cuonil#) = I =i 2 o e

n n

D> 2R

1 k=—nl=—n

055, B (01 )Ny The factorizations can be chosen such that for all
kl=0,41,...,+n

[
Ms

0+ jon) e — jan)

m n nw”nw” Cw;\,i = Lwll(jwk)-~-Lwli—1(jwk)Cwli7 1= 1./...,d
= Z Z 2Re Z +ka)(zl — jwk> Nwpi = Lwll(jwk) .. Lwld(jwk)
m _n 2 Re(2) X Guy1(Jwi) - - Guoyi(JWk )Neoyis i1=1,...,m.
= Z m The proof of this lemma, in a constructive way, is similar to
i=1 k=—n ' that of Lemma 1 and is omitted.
This immediately leads to the following theorem. Now, again we consider the setup shown in Fig. 1, with refer-
Theorem 2:Let G(s) have nonminimum phase zerosence signat(t) given in (1) and the performance limifs,(v)
21,29, -, Zm. Then and E,,,; defined in (3) and (5). Assume that Assumption 1
m n m n holds. Before stating the result, we note that whea &, the
Eop = Z Z 2Re(Zi) —9 Z Z 1. _ fraction (e/(“r=<¥)7 — 1)/(j(w; — wy)) should be interpreted
p il e o R e TR [ asr;, the limit of the fraction ass; goes tawy,.

Theorem 3:Let G(s) be a system with factorizations satis-

From Theorem 2 it is seen that the average performance I| })an Lemma 2. Then

has a strikingly simple form; it is the simple sum of the contri-
butions of all nonminimum phase zeros at all frequencies; eachJopt(v)

of such contributions is the reciprocal of the distance between a n n piwi—wn)T
nonminimum phase zero and a mode of the reference. = Z Z Z

<vk7 ka’i> <Cw1'i7 vl>

J(wr — wr)
IV. PERFORMANCE LIMITATION FOR SYSTEMS

m 2Re(2;) (ke i) (Moyi» 01)
WITH TIME DELAYS + Z Z Z (zf +jwk)(;i - jul)l) (18)

In this section, we generalize the previous result a bit further 41,4
to systems with time delays. We assume thHat) admits a fac-
torization of the form Eopt = Z(En + 1)1 +2 Z Z - . (19)

— Jwk
i=1 k=—n
G(s) =1L ...L G o . G (8)Go(s). 17
(5) 1(s) 4(8)Gr(s) (8)Go(s) (17) The proof of this theorem is given in Appendix II.
Here, L;(s) is assumed to have the form

s 0] V. CONCLUSION

—rms\,x _ 17 | € *
Li(s) =T =Gl —e7™)¢ = Vi [ o 1|% In this paper, we have accomplished the following.
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1) A formula is obtained for the best tracking performance
when the reference is a given linear combination of step
and sinusoidal signals. This is given in Theorem 1. This
formula clearly reveals the role that each nonminimuiiig. 3. Matrix Blaschke factor.
phase zero, as well as its corresponding frequency-depen-

Ti(t) — Gugi(s) F—> zi(t)

dent directions, plays toward the performance limitation. APPENDIX |
2) Aformulais obtained for the best average tracking perfor- PROOF OF THETHEOREM 1
mance over all references with the same frequency com+e start with a system shown in Fig. 3. He@, ;(s) is a
.. . . e 0t
ponents. This is given in Theorem 2. matrix Blaschke factor of the form
3) Theformulas are extended beyond FDLTI systems to sys- e s
s o : 2Re(z) 8 — jwo
tems with time delays. This is done in Theorem 3. Gupi(s) =1~— nwoimm woi
In our derivation, great emphasis has been placed on the sim- Z*J:jwo‘jz Es ¢
plicity and the elegance of the formulas obtained. We believe =U,,i [ zi—jwo z} +s 0} e (20)
that these results are significant in the further understanding of 0 I

linear system structures and their effects on the best achievabte input and output of the system argt) andz;(t) respec-

performance by feedback control. tively. Let us first consider the following problem. Given a ref-
We have used 2DOF controllers in our study of tracking pegrence signal

formance limitations in this paper. Since such controllers are n

the most general controllers with given plant measurement and ri—1(t) = Z a(i,l)kej“"‘t

reference information, the performance limits obtained herein k=—n

are the most fundamental regardless of what controller structygich is parameterized by the vector shown in the equation at

may be used. A pleasant consequence of using 2DOF controligfs pottom of the page, find a bounded inpL(t) to minimize
is that the performance limits only depend on the nonminimum

phase zeros, together with their directional properties, but not on Ji(ai—1) = / ri1(t) — z:(t)]|3 dt.
the poles and other zeros. One may also notice that the tracking o _
performance when using 2DOF controllers depends on only of\BPlying the Parseval's identity and denoting the Laplace trans-

degree of freedom among the two available. In other words, thgm of r;(t) by Ri(s), we have
2

other degree of freedom in the controller is completely irrele- o

vant as far as the tracking error is concerned. This gives us anJj;(a;_;) = Z ﬂ — Gopi(8)Ri(3)

opportunity to use this extra degree of freedom to achieve other e ° T Ik )

performance specifications, such as disturbance rejection and n 2

robustness. We are currently trying to propose a meaningful per- - ijoli(s) Z a(L—_l)k — Ri(s)

formance specification which requires the proper utilization of e S T IWE )

both degrees of freedom in the controller and will then study the 2 — jwy 2Re(z) n

limitation in achieving such a performance specification. = |[Mgi — o A i Z ﬂ
In the setup of this paper, we assumed that the controller has Z tJwo zi— 8 T P T Ik

fullinformation of the reference. What will happen if the full in- "G (ww)ag 2
formation of the reference is unavailable, in particular if only the + S0 Tt JERAGEDE g (s
value of the reference is available, to the controller? Recently, k——n § = JWk )

we have shown that in this case the best achievable performamiousw the optimal; (s) which minimizesJ;(a;_,) is
. . . . . ’ (2 K3 11—
will suffer deterioration compared to the performance limita-

tions reported in this paper. In some special cases, the increment Ri(s) = Z Gwol,i (Jwr)agi-1)k

in the minimum achievable cost due to the partial information 5 — jwk

of the reference can be exactly characterized, in a rather simpl

way, in terms of the nonminimum phase zeros and the refere

frequencies. Such results will be reported in a follow-up paper.  J; opt(@i—1)
Another possible extension is to the case when the controller

has previewed information of the reference, which occurs in =

many practical tracking problems. It is easy to conclude that the

preview can help to reduce the performance limitation in gen-

eral, but a simply and exact characterization on the amount of = 2Re(z)

reduction seems technically difficult.

k=—n

e - .
d the minimum value of;(a;_1) is

2
“zi — jwo 2Re(2) Z Agi—1)k

Tl T jwn s 0 2 T
2

k=—n

" 2
Z <nw0i7 a(i—l)k> .

: (21)
Zi — JWk

k=—n

aj—1 = [a?i—l)(—n) a>(ki—1)(—1) 0?1—1)0 a>(k7:—1)1 a?v’,—l)nj|
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Tm(t) zm(t) r1(t) z1(t)
—» Gugm(s) —> -+ — Gug1(s) —>

Fig. 4. Matrix Blaschke product.

By repeatedly applying this procedure, we get

opt (lo E Jz ,opt a'z 1

:ZZRe(z)

2
(22)

zn: <77w0i7a(i—1)k>

Next, we consider a matrix Blaschke product e [
Goy1(s )...Gw m(s) shown in Fig. 4. The signals-;(t)
and zi(t),i = 1....,m, are the inputs and outputs ofVN€r€air = Gu6ﬂ<J“’k)“(z k4 = 1,...,m, and the optimal
Guoi(s),i = 1,...,m, respectively. Suppose that a referenc@”(t) IS given by
signalry(t) = Zk}n aore’“*t is given and we wish to find a " Gk
bounded input-, (t) so that R (s) = k;ﬂ P (23)

J(ao) = / T liro(t) — 2 (0)3 de

is minimized. If we denote the Laplace transformrof(¢) b

R,.(s), thenJ(ag) can be rewritten as

aok
J(ao)=| Y S_O’fw — Guy1(8) Guya(s) . ..
k——n JWk
2
Gugm(8)Rin(s)
2
_ —1 - Aok _
Goh(s) Y T o Gen2®)

GwoM(s)Rm(S)

2

21 — jwo 2Re(z1)

w
Nwol Nwo1 E :
2+ jwo 71 — 0 W F — Jwg

n

A1k
-G,
+Z s — jwr 02()

k=—n

2
X Gugm(5) R (s)

2

Wherealk = G;()ll(jwk)a()k and ZZ:_n(alk/(s — jwk)) is
Gug1 Ri(s)]3.

exactly Ry (s) which minimizes/; = ||Ro(s) —
It follows from the orthogonality that

z1 — jwo 2Re(z1)

Tlao) = |l 2i +jwo 21— s Mo ; Zi — Jwk
-G,
- k; o Gw2(s)
2
Gwom(S)Rm(S)
2

n

>
s — Jw
[— JWk
2

= Jl,opt(a()) +

- Gw02(5> PN

Gwom(s)Rm(5>

The procedure in deriving (22) shows that the problem of
finding an optimal input to minimize the tracking error of a
Blaschke product can be decomposed into a series of such prob-
lems for its factors. The reference signal for a particular factor
is the optimal input of the subsequent factor. The synthesis of
the optimal input is carried out in an opposite direction to that
of the signal flow.

Now, let us consider our original tracking problem as shown
in Fig. 1. LetG(s) = N(s)M~!(s) be a coprime factoriza-
tion. Using the parametrization of all stabilizing 2DOF con-
trollers [19], we find that, under Assumption 1, all possible
transfer functions fromv(t) to z(t) are given byN(s)Q(s),
whereQ(s) is an arbitrary transfer function iH . Let us de-
note the Laplace transform oft) by R(s) and that ofv(¢) by
V(s). Then, the integral square error (2) becomes

J(v) = |R(s) = N(s)Q(s)V (s)]l3-

Notice thatN (s) is stable and its nonminimum phase zeros are
the same as those 6f(s). If G(s) is factored as

G(5) = Guo1(s) - - Gugm(5)Gugo(5)

where G, i(s) is a Blaschke factor of the form of (20) and
Gu,0(8) is minimum phase. TheN (s) has the inner—outer fac-
torization

N(8) = Gin(8)Nout(8)
= [Gup1(8) -+ Gugm (9)][Gugo(s) M (s)].
The tracking performancé(v) can be rewritten as

Jw) = ¥ —

Gils) Y ——- i —Gi_“l(j@’“)”’“]
s — jwg ]

S — JWg
[— JWk

2

n

S Gl (5)00s)V (s

S — Jw
[— JWk

+

2
It is easy to see that

- " G :
-y G (J@k)vk € HE

S — Jw
h——n JWk
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and n —1,- ’I‘i(t) —> Lwoi(s) — z,'(t)
Gin (Jwi)ve
Z W — Nout(5)Q(s)V (s)
k=-n Fig. 5. Delay factor.
can be made to belong 1d, by properly choosing)(s). It then
follows that made arbitrarily small by choosin@(s), independent of.
) 9 Consequently
| P —~  u o Gnl(wr)ok 5
=Gl 3 X T ae= | 32 g 3o Gallimn
n 2 ’ Op k=—n 5 jwk " k=—n s jwk
Gy (Jwn )V . 04 ’
| X T T NewROVO)| - @Y e tety = ag, then YT (G (wn)ue) /(s — juwr) IS
h==n 2 exactly the optimal inpuR,,,(s) defined in (23). Therefore
Without loss of generality, we can assume < >
Newois A(i—1)k
* * * * Jo 2Re(z;)
Vis) = U——" v—o_ Uin . pt Z k; P — JWk
S+ Jw_n s+ jwo S+ Jwn "
PartitionQ(s) consistently as whereag = v anda;, = Goy;(jwr)ag—1k- Plugginga; into
the expression, we get
Q(s) =[Q-n(s) -+ Qo(s) -+ Quls)]
Jo 2Re(
Then, we have pe(v Z o(z
n —1/ - 2 —1 . —1 /- 2
: n o G . )...G y
S Gl Qe V (s 5> <’7 o Ol (90) - G u)
k= O Yk ) == Zi = Jwh
G rw_n) G Hjwn) Finally, Lemma 1 immediately yields
B 5= Jjw_ g 85— jw, n 77 ’Uk
opt Z 2Re Zl Z w’\l
Q_n(s) Qn(s) = k=—n ' Jwk
— Nows(s) |- o S0
2‘9 —JWn § 7 JWn This completes the proof.
V_p
> : ) APPENDIX ||
U' PROOF OFTHEOREM 3

We will only sketch the proof since it follows the same idea
as that for the delay-free case. Let us first consider the fol-
lowing problem: Givenr;_1(t) = > p__ a<i_1)kef‘“kt where
w_p = —wy anda(;_1)(—x) = a(i—1)k, Choose a bounded(t)

Let

Quls) = N'(Gun) + =221 (9)

k=—n

) L to minimize
whereNT(jw;) is a right inverse ofV (jwy ). Also, denote o
1. . Ji(ai—1) = / ll7iz1(t) — 2:(t)|13 dt
- —1¢, T( 1 5
Nu(s) = GalGon) _ v N1 Gen) 0
57 Wk 8T Wk where the transfer function betweesit) andz;(t) is given by
and notice that it is aft{s function. Then L,,i(s) as shown in Fig. 5. The Laplace transformref; (¢) is
Gin' (jwn) — aG-1)k
.. n Ri— = - .
[t - S 0= 3 5
2
— Nout(9) [M M] Denote the Laplace transformof(t) by R;(s). Apparently
§— Jw_p S = Jwn ]y
- - Jiai=1) = | Ri=1(s) = Lugi(s)Ri(s)|3
= |Vo(s) - Na(s)] T
= [ L5 () Riza(s) = Ri(s)][,
1~ ~ 2 n L—ll(x )
— N, —[Q_, n . _ —1 ] _ woi ka)a(z—l)k
t(S)s—l— p[@=n(s) @n(s)] ) = ‘ Lob(s)Ria(s) = Y P

Since Nout(s)(1/(s + 1)) is outer, we can always find 2

Qr(s),k = 0,£1,...,+n, such that the above expression is +
arbitrarily small. This shows that the second term of (24) can be

n

L_14 7 i—
Z wgz(ka)a( 1)k _ Rl(S)

S — JWk

k=—n 2
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n

Jope(0) = Zd: Xn: [ej(“” we)T } {aG—1yk> Cwo1) {Cwots Ai—1)1)

Py Jlwr — wi)
d n n
+Z Z Z 2Re(2:) (b—1)k> Mwoi) (Mooi> bi—1)1)
i=1 k=—nl=—n (= + jwi)(zi = jwi)
Using the orthogonality, we see that the optimdt) is LwoZ(ka)a(l_l)k, andb; is defined ashy = a4 andb;, =
. GWOL(ka)b@_l)k In this expression, the first term gives the
(1) = L=L( el pgrformance limit due to the'delay factors and the sec;ond term
ri(?) k;ﬂ aoilJr)a-pee gives that due to the nonminimum phase zeros. Pluggiragd

b; into the previous expression and, using Lemma 2, we then
and the optimall;(a;_1) is obtain

Ji,opt(ai—l) opt Z Z Z I:ej<‘*’l WE)Ti :|

2

B n L_l<(jwk)a('71)k 1=1 k=—nl=—n
= Lwol’i(s)Ri—l(s) - Z WOZS — jwkz % <Uk7 ka1> <<wk17vl>
h=—n 2 j(wz — W)
n -1 —1. 2 n
_ Z [Lwoi(*S) - Lwoi(jwk)] A(i—1)k n Z Z Z ZRB ) (Vs Moyei) (Mg V1)
c=—n s sz 2 1=1 k=—nl=—n Z + ka)(zl - le) .
. 2
B En: (eTiS _ e”“’"‘) <<woi7 a(i—l)k> o
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