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Fundamental Performance Limitations
in Tracking Sinusoidal Signals
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Abstract—This paper attempts to give a thorough treatment of
the performance limitation of a linear time invariant multivariable
system in tracking a reference signal which is a linear combination
of a step signal and several sinusoids with different frequencies.
The tracking performance is measured by an integral square error
between the output of the plant and the reference signal. Our pur-
pose is to find the fundamental limit for the attainable tracking per-
formance, under any control structure and parameters, in terms of
the characteristics and structural parameters of the given plant, as
well as those of the reference signal under consideration. It is shown
that this fundamental limit depends on the interaction between the
reference signal and the nonminimum phase zeros of the plant and
their frequency-dependent directional information.

Index Terms—Linear system structure, nonminimum phase, op-
timal control, performance limitation, tracking.

I. INTRODUCTION

T HIS paper considers the performance limitations of a
linear time-invariant (LTI) multivariable feedback control

system in tracking a reference that is a linear combination
of a step and several sinusoids of various frequencies. The
setup is shown in Fig. 1. Here, is the transfer matrix of
a given plant whose measurement and output may
not be the same, is the transfer matrix of a two degree
of freedom (2DOF) controller which is to be designed,
is the exosystem driven by an impulse which generates the
reference. We assume that the controller has full information
of the reference in the sense that it takes , the state of
the exosystem , in addition to the measurement of
the plant, as its inputs. Whether or not the measurement
contains the full information of the plant, i.e., the state of the
plant, is not important. The tracking problem is to design a
controller so that the closed loop system is internally
stabilized and the plant output asymptotically tracks a
reference signal of the form

(1)
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Fig. 1. Two-parameter control structure with reference full information.

where , are distinct real frequencies sat-
isfying and , are complex
vectors satisfying . Implicitly, we have and

is real. The reference defined in such a way is always a real
valued signal. We use the vector

to capture the magnitude and phase information of all frequency
components of the reference. The transient error is measured by
its energy

(2)

The tracking problem has a well-known solution, with well-
known numerical methods to design controllers so that
is small. Nevertheless, it is desirable to have a deeper under-
standing of the smallest tracking error

(3)

obtainable when the controller is chosen among all possible
stabilizing controllers. Such a smallest error then gives a fun-
damental limit in the transient performance of tracking. In this
paper, we achieve this understanding in the form of an explicit,
simple, and informative relationship between this fundamental
limit and the plant characteristics.

The value of course depends on. If we are inter-
ested in an overall performance measure of the feedback system
in tracking all references of the type (1), then we normally turn
our attention to an averaged version of the tracking error, av-
eraged over all possible whose entries have zero mean, are
mutually uncorrelated, and have a unit variance. Such an aver-
aged performance measure is given by

(4)

where is the expectation operator. In this case, the perfor-
mance limit becomes

(5)
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It turns out that the averaged performance limit is simple
enough to be presented as follows. Under some minor assump-
tions

(6)

where , are the nonminimum phase zeros of
the transfer function from to . The dependent perfor-
mance limit need more elaborations but also turn out to
be simple.

Results of this sort can be traced back for over a decade. For
single-input–single-output (SISO) systems and constant refer-
ences, vector degenerates to a real scalar. Then, the linearity of
the plant implies that and .
It is obtained in [11] that

For multivariable systems and for the case when the reference
is either a constant or a sinusoid with a single frequency,

it was obtained in [14] that

respectively. The study of the performance limit for a
fixed constant reference in the multivariable case started in [5].
It is shown there that the performance limit in this case depends
on not only the locations of the nonminimun phase zeros but also
their directional information. The study in [5] has since been ex-
tended to more general references [6], [7], and discrete-time sys-
tems [18]. There have also been generalizations to nonright-in-
vertible plant [20], [3], to the cases where the controller has
previewed information of [7], where the plant input is subject
to saturation [12], and where the tracking performance measure
includes the input energy [4], respectively. It has been shown
that, consistent with common intuitions, the preview of the ref-
erence can reduce the best achievable tracking error and on the
other hand any input saturation or any input energy constraint
would likely increase the best achievable tracking error. Related
issues for nonlinear systems and filtering problems are studied
in [17], [1], and [15].

Although gives an overall quality measure for the plant
as far as tracking is concerned, the reference direction dependent
performance limit gives more information and deeper
insights. If we know and if the optimal which min-
imizes is independent of , then can be obtained
after simple operations. This is why we adopt the thinking in [5]
to place our main emphasis on . In the aforementioned
formulation, the assumption that the state of the exosystem is
available to the controller is crucial. This means that not only
the reference but also all magnitude and phase information of
its frequency components is known to the controller. This may
look unrealistic in the first glance, but it does give a limitation
more fundamental than any other one based only on the partial

information of the reference. It is this assumption that makes it
possible to find a uniformly optimal controller to minimize

for all . Note that when the reference only contains a con-
stant term, the value of the reference already contains its full in-
formation. Therefore in this particular case, whether or not the
controller can assess the state of the reference is not an issue.

This paper gives a rather complete picture for the tracking
performance limitation problem for general reference signals
containing several frequency components. We first give some
new insight on linear system structure. We show that each non-
minimum phase zero has associated frequency dependent direc-
tions. A key technical result in this paper is a relation among di-
rections at different frequencies. Using this result, we derive an
expression for which elegantly exhibits the effect of the
plant nonminimum phase zeros, as well as the interaction be-
tween each frequency component and the directions mentioned
above, toward the performance limitations.

There has been a surge of activities in the study of perfor-
mance limitations in feedback control. In addition to the type
of performance limitations studied in this paper, which focus
on system time responses and, hence, are called time domain
performance limitations, there is a whole body of literature on
design limitations on system frequency responses, known as fre-
quency domain performance limitations. For the history and the
recent progress on frequency domain performance limitations,
see [2], [8], [16]. Some intriguing connections have been re-
alized between the time domain limitations and the frequency
domain ones [10].

The organization of this paper is as follows. In Section II,
preliminary materials on linear system factorizations are
presented. It is shown that a right-invertible system can be
factorized as a cascade connection of a series of first-order
inner factors and a minimum phase factor. The factorization
is frequency dependent. The inner factors then contain all the
information associated with the nonminimum phase zeros.
In Section III, we formally formulate the problems studied
and then state and discuss the main result and some of its
consequences. Section IV extends the main result in Section III
to the case where the plant contains time delays. Section V is
the conclusion. Finally, the proof of the results in Sections III
and IV are given in Appendices I and II, respectively.

The notation used throughout this paper is fairly standard.
For any complex number, vector, and matrix, denote their con-
jugate, transpose, conjugate transpose, real and imaginary part
by , and , respectively. Denote the
expectation of a random variable by . Let the open-right
and left-half plane be denoted by and , respectively.
is the standard frequency domain Lebesgue space.and
are subspaces of containing functions that are analytic in
and , respectively. It is well-known that and con-
stitute orthogonal complements in . is the set of all
stable, rational transfer matrices. Finally, the inner product be-
tween two complex vectors is defined by .

II. PRELIMINARIES

Let be a real rational matrix representing the transfer
function of a continuous time finite-dimensional, linear time in-
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variant (FDLTI) system. Let us assume that is right in-
vertible. Its poles and zeros, including multiplicity, are defined
according to its Smith–McMillan form. is said to be min-
imum phase if all its zeros have nonpositive real parts; other-
wise, it is said to be nonminimum phase.

Let , where , be
a right coprime factorization of . Let be a nonmin-
imum phase zero of . Then is also a nonminimum phase
zero of and there exists a unit vectorsuch that

We call the vector a (left or output) zero vector of cor-
responding to the nonminimum phase zero.

Let us now order the nonminimum phase zeros of (or
equivalently) as . Assume that each pair of

complex conjugate zeros are ordered in adjacent order. Let us
also fix a frequency . We first find a unit zero vector

of corresponding to and define

where is a unitary matrix with the first column equal to
. Here, is so constructed that it is inner, has the

only zero at with as a zero vector corresponding to,
and . Since is a generalization of the
standard scalar Blaschke factor, we call it a matrix Blaschke
factor at the frequency and a corresponding Blaschke
vector. Also, notice that the choice of other columns in is
immaterial. Now has zeros . Find
a zero vector of corresponding to and
define

where is a unitary matrix with the first column equal to
. Then has zeros .

Continue this process until Blaschke vectors
and Blaschke factors are all obtained.
This procedure shows that can be factorized as

(7)

where

(8)

and has no nonminimum phase zero. We call this
factorization a cascade factorization at frequency, which
is shown schematically in Fig. 2. In this factorization, each
Blaschke vector and Blaschke factor correspond to one non-
minimum phase zero. Keep in mind that these vectors and

Fig. 2. Cascade factorization.

factors depend on the order of the nonminimum zeros, as well
as on the frequency . The product

is called a matrix Blaschke product.
One should note that even when the order of is

fixed, the factorization at the frequency is not unique since
is not uniquely determined. Furthermore, if we have

different frequencies , then the factoriza-
tions at different frequencies are in general different. Neverthe-
less, they can be intimately related if we make the choices prop-
erly. For example, it is easy to see from the above construction
that , the first Blaschke vector, can be chosen independent
of . The following lemma provides such relations and is the
key technical vehicle that leads to the main result of this paper.

Lemma 1: Suppose that the order of is fixed.
Also suppose that we are given different frequencies

. Then the cascade factorizations
(7) can be chosen so that for all and

(9)

Proof: Let us first prove that the factorizations can be
chosen so that for all and

(10)

(11)

are constant unitary matrices. Here, it is understood that
. The proof is based on an induction in. Let us first consider

the case when . We know that can be chosen inde-
pendent of . Hence, can also be chosen independent of

. Thus, rather trivially, for all

are constant unitary matrices.
Now, assume that and

have been chosen so that
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and

are constant unitary matrices for all . For
the frequency , choose a unit vector such that

and a unitary matrix such that its first column is
. Define

Then, the first column of satisfies

This shows that is indeed what we need. Define

for all . Then, we have

are unitary matrices for all . This proves
(10) and (11). Finally, (9) follows from substituting (11) into
(10) with replaced by .

One may wonder what these Balschke vectors look like when
is SISO. In this case, proper choices lead to

(12)

for .

III. M AIN RESULT

Let us go back to the setup shown in Fig. 1. The measurement
output of the plant might be different from the tracking
output . We denote the transfer function from to
by and that from to by , i.e.,

(13)

In order for the tracking problem to be meaningful and solvable,
we make the following assumptions throughout the paper.

Assumption 1:

1) , and have the same unstable poles.
2) has no zero at .
The first item in the assumption means that the measurement

can be used to stabilize the system and at the same time does not
introduce any additional unstable modes. A more precise way of
stating this is that if

is a coprime factorization, then we assume that
and are also coprime factorizations. The second
item is necessary for the solvability of the tracking problem.

We now state our main result, whose proof will be given in
Appendix I.

Theorem 1: Let have nonminimum phase zeros
with corresponding Blaschke vectors

, satisfying Lemma 1.
Then

This formula shows that each nonminimum phase zero con-
tributes additively to the performance limit. However, the con-
tribution of each frequency component of the reference enters
the performance limit in a quadratic form and the cross cou-
pling of pairs of frequencies appears in the performance limit. It
also shows that generically, perfect tracking is impossible when
the plant is nonminimum phase. However, if it happens that the
vector is orthogonal to the vectors

then perfect tracking can be achieved. Here,captures the mag-
nitude and phase information of the reference andcaptures
the property of the plant at the nonminimum phase zero. This
orthogonality may happen in two ways. One is over the output
channels: is orthogonal to for all

. This can only occur for multivariable systems.
The other is over the frequencies: the orthogonality over output
channels does not occur butand are orthogonal due to some
special alignment of the magnitude and phase of the reference.
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This can happen even for the SISO case. For example, in the
case when and is SISO, if happens to make

imaginary for all , then the
performance limit is zero.

In the case when , i.e., the reference only has a step
component, we get

This is exactly the formula given in [5].
In the case when the system is SISO, the performance

limit becomes

(14)

where are scalars with unit modulus given
by (12).

The proof of Theorem 1, as given in Appendix I, shows that
a controller or a sequence of controllers, independent of, can
be found to attain the performance limit . Therefore

(15)

(16)

This immediately leads to the following theorem.
Theorem 2: Let have nonminimum phase zeros

. Then

From Theorem 2 it is seen that the average performance limit
has a strikingly simple form; it is the simple sum of the contri-
butions of all nonminimum phase zeros at all frequencies; each
of such contributions is the reciprocal of the distance between a
nonminimum phase zero and a mode of the reference.

IV. PERFORMANCE LIMITATION FOR SYSTEMS

WITH TIME DELAYS

In this section, we generalize the previous result a bit further
to systems with time delays. We assume that admits a fac-
torization of the form

(17)

Here, is assumed to have the form

where is a real unit vector characterizing the directional in-
formation of this delay and is a real orthogonal matrix whose
first column is . is assumed to be a Blaschke factor with
zero . The last factor , not necessarily rational, is as-
sumed to have a coprime factorization with an
outer . It is easy to see that a multivariable FDLTI system
with independent delays in all output channels can be written in
the form of (17). However, at this moment, it is not clear what is
the general class of transfer matrices that admit this type of fac-
torizations. It is not even clear how we can write a multivariable
system with independent time delays in the input channels in
the form of (17). It would be interesting to clarify these issues.

For systems given in the form of (17), we have a generalized
version of Lemma 1.

Lemma 2: Suppose that we are given different fre-
quencies . Then, there exist cas-
cade factorizations

where for

and for

The factorizations can be chosen such that for all

The proof of this lemma, in a constructive way, is similar to
that of Lemma 1 and is omitted.

Now, again we consider the setup shown in Fig. 1, with refer-
ence signal given in (1) and the performance limits
and defined in (3) and (5). Assume that Assumption 1
holds. Before stating the result, we note that when , the
fraction should be interpreted
as , the limit of the fraction as goes to .

Theorem 3: Let be a system with factorizations satis-
fying Lemma 2. Then

(18)

(19)

The proof of this theorem is given in Appendix II.

V. CONCLUSION

In this paper, we have accomplished the following.
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1) A formula is obtained for the best tracking performance
when the reference is a given linear combination of step
and sinusoidal signals. This is given in Theorem 1. This
formula clearly reveals the role that each nonminimum
phase zero, as well as its corresponding frequency-depen-
dent directions, plays toward the performance limitation.

2) A formula is obtained for the best average tracking perfor-
mance over all references with the same frequency com-
ponents. This is given in Theorem 2.

3) The formulas are extended beyond FDLTI systems to sys-
tems with time delays. This is done in Theorem 3.

In our derivation, great emphasis has been placed on the sim-
plicity and the elegance of the formulas obtained. We believe
that these results are significant in the further understanding of
linear system structures and their effects on the best achievable
performance by feedback control.

We have used 2DOF controllers in our study of tracking per-
formance limitations in this paper. Since such controllers are
the most general controllers with given plant measurement and
reference information, the performance limits obtained herein
are the most fundamental regardless of what controller structure
may be used. A pleasant consequence of using 2DOF controllers
is that the performance limits only depend on the nonminimum
phase zeros, together with their directional properties, but not on
the poles and other zeros. One may also notice that the tracking
performance when using 2DOF controllers depends on only one
degree of freedom among the two available. In other words, the
other degree of freedom in the controller is completely irrele-
vant as far as the tracking error is concerned. This gives us an
opportunity to use this extra degree of freedom to achieve other
performance specifications, such as disturbance rejection and
robustness. We are currently trying to propose a meaningful per-
formance specification which requires the proper utilization of
both degrees of freedom in the controller and will then study the
limitation in achieving such a performance specification.

In the setup of this paper, we assumed that the controller has
full information of the reference. What will happen if the full in-
formation of the reference is unavailable, in particular if only the
value of the reference is available, to the controller? Recently,
we have shown that in this case the best achievable performance
will suffer deterioration compared to the performance limita-
tions reported in this paper. In some special cases, the increment
in the minimum achievable cost due to the partial information
of the reference can be exactly characterized, in a rather simple
way, in terms of the nonminimum phase zeros and the reference
frequencies. Such results will be reported in a follow-up paper.

Another possible extension is to the case when the controller
has previewed information of the reference, which occurs in
many practical tracking problems. It is easy to conclude that the
preview can help to reduce the performance limitation in gen-
eral, but a simply and exact characterization on the amount of
reduction seems technically difficult.

Fig. 3. Matrix Blaschke factor.

APPENDIX I
PROOF OF THETHEOREM 1

We start with a system shown in Fig. 3. Here, is a
matrix Blaschke factor of the form

(20)

The input and output of the system are and respec-
tively. Let us first consider the following problem. Given a ref-
erence signal

which is parameterized by the vector shown in the equation at
the bottom of the page, find a bounded input to minimize

Applying the Parseval’s identity and denoting the Laplace trans-
form of by , we have

Obviously, the optimal which minimizes is

and the minimum value of is

(21)
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Fig. 4. Matrix Blaschke product.

Next, we consider a matrix Blaschke product
shown in Fig. 4. The signals

and , are the inputs and outputs of
, respectively. Suppose that a reference

signal is given and we wish to find a
bounded input so that

is minimized. If we denote the Laplace transform of by
, then can be rewritten as

where and is
exactly which minimizes .
It follows from the orthogonality that

By repeatedly applying this procedure, we get

(22)

where , and the optimal
is given by

(23)

The procedure in deriving (22) shows that the problem of
finding an optimal input to minimize the tracking error of a
Blaschke product can be decomposed into a series of such prob-
lems for its factors. The reference signal for a particular factor
is the optimal input of the subsequent factor. The synthesis of
the optimal input is carried out in an opposite direction to that
of the signal flow.

Now, let us consider our original tracking problem as shown
in Fig. 1. Let be a coprime factoriza-
tion. Using the parametrization of all stabilizing 2DOF con-
trollers [19], we find that, under Assumption 1, all possible
transfer functions from to are given by ,
where is an arbitrary transfer function in . Let us de-
note the Laplace transform of by and that of by

. Then, the integral square error (2) becomes

Notice that is stable and its nonminimum phase zeros are
the same as those of . If is factored as

where is a Blaschke factor of the form of (20) and
is minimum phase. Then has the inner–outer fac-

torization

The tracking performance can be rewritten as

It is easy to see that
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can be made to belong to by properly choosing . It then
follows that

(24)

Without loss of generality, we can assume

Partition consistently as

Then, we have

...

Let

where is a right inverse of . Also, denote

and notice that it is an function. Then

Since is outer, we can always find
, such that the above expression is

arbitrarily small. This shows that the second term of (24) can be

Fig. 5. Delay factor.

made arbitrarily small by choosing , independent of .
Consequently

If we let , then is
exactly the optimal input defined in (23). Therefore

where and . Plugging into
the expression, we get

Finally, Lemma 1 immediately yields

This completes the proof.

APPENDIX II
PROOF OFTHEOREM 3

We will only sketch the proof since it follows the same idea
as that for the delay-free case. Let us first consider the fol-
lowing problem: Given where

and , choose a bounded
to minimize

where the transfer function between and is given by
as shown in Fig. 5. The Laplace transform of is

Denote the Laplace transform of by . Apparently
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Using the orthogonality, we see that the optimal is

and the optimal is

Rewriting the previous expression in an inner product form, we
have

The Parseval’s identity leads to

By using the same idea as in the delay-free case, we can show
that the equation at the top of the page holds, where

is defined as and

, and is defined as and
. In this expression, the first term gives the

performance limit due to the delay factors and the second term
gives that due to the nonminimum phase zeros. Pluggingand

into the previous expression and, using Lemma 2, we then
obtain
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