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A b s t r a c t  

This paper attempts t o  give a thorough treatment 
of the performance limitation of a linear time invari- 
ant multivariable system in tracking a reference sig- 
nal which is a linear combination of a step signal and 
several sinusoids with different frequencies. The track- 
ing performance is measurcd by an integral square er- 
ror between the output of the plant and the reference 
signal. Our purpose is to find the fundamental limi- 
tation for the attainable tracking performance, under 
any control structure and parameters, in terms of the 
characteristics and structural parameters of the given 
plant, as well as those of the reference signal under 
consideration. It is shown that this fundamental lim- 
itation depends on the interaction between the refer- 
ence signal and the nonminimum phase zeros of the 
plant and their frequency-dependent directional infor- 
mation. The main results of this paper are based on the 
assumption that the controller accesses the full infor- 
mation of the reference. However, when the full infor- 
mation of the reference is unavailable, we also obtain 
a simple performance limit, for an important special 
case, which clearly shows the extra cost one has to pay 
due to the information restriction. 

Keywords: Linear system, Performance limitation, 
Optimal Control, Tracking, Nonminimum phase. 

1 I n t r o d u c t i o n  
This paper considers the performance limitations of 

an LTI multivariable feedback control system in track- 
ing a reference that is a linear combination of a step 
and several sinusoids of various frequencies. The initial 
setup is shown in Figure 1. Here P ( s )  is the transfer 

F igure  1: A two-parameter control structure with refer- 

matrix of a given plant whose measurement y ( t )  and 
output z ( t )  may not be the same, K ( s )  is the transfer 
matrix of a two degree of freedom (ZDOF) controller 
which is to he designed, S(5) is the exosystem driven 
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ence full information 
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by an impulse which generates the reference. Initially, 
we assume that the controller have full information of 
the reference in the sense that it takes ~ ( t ) ,  the state 
of the exosystem S(s),  in addition to the measurement 
y(t) of the plant, as its inputs. Whether or not the 
measurement y ( t )  contains the full information of the 
plant, i.e., the state of the plant, is not important. The 
tracking problem is t o  design a controller K ( s )  so that 
the closed loop system is internally stabilized and the 
plant output t ( t )  asymptotically tracks a reference sig- 
nal r ( t )  of the form: 

where w k ,  k = 0, f l , .  . . , i n ,  are distinct real frequen- 
cies satisfying w-k = -Wk and U X ,  k = 0, f l ,  . . . , fn ,  
are complex vectors satisfying U-& = 6 k .  Implicitly, 
we have wo = 0 and u0 is real. The reference de- 
fined in such a way is always a real valued signal. W: 

t o  capture the magnitude and phase information of all 
frequency components of the reference. The transient 
error is measured by its energy: 

use the vector v = [ U ? ,  . . .  U', U; U; . . .  U,!"] 

J ( u )  = Lm Ilr(t) - z(t)l12dt = Lm Ile(t)lI2dt. (2) 

The tracking problem has a well-known solution, with 
well-known numerical methods to design controllers so 
that J ( u )  is small. Nevertheless, it is desirable t o  have 
a deeper understanding of the smallest tracking error 

obtainable when the controller K is chosen among all 
possible stabilizing controllers. Such a smallest error 
then gives a fundamental limit in the transient perfor- 
mance of tracking. In this paper, we achieve this un- 
derstanding in the form of an explicit, simple, and in- 
formative relationship between this fundamental limit 
and the plant characteristics. 

The value Japt(zi) of course depends on U. If we 
are interested in an overall performance measure of the 
feedback system in tracking all references of the type 
(l), then we normally turn our attention to an averaged 
version of the tracking error, averaged over all possible 
zi whose entries have zero mean, are mutually uncor- 
related, and have a unit variance. Such an averaged 
performance measure is given by 

J = E { J ( U )  : E ( O )  = 0, E ( w * )  = r ) .  (4) 
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In this case, the performance limit becomes 

It  turns out that the averaged performance limit Jopt is 
simple enough to be presented as follows: Under soine 
minor assumptions, 

where z i , i  = 1 , 2 , .  . . ,m, are the nonminimum phase 
zeros of the transfer function from u(t)  to z ( t ) .  The v 
dependent performance limit Ja,,(v) need more elabo- 
rations but also turn out t o  be simple. 

Results of this sort can be traced back for over a 
decade. For SISO systems and constant references, 
vector U degenerates t o  a real scalar. Then the lin- 
earity of the plant implies that JOpt(v) = v2J,,,,(1) and 
J,,t = Jopt(l). It  is obtained in [8] that  

For multivariable systems and for the case when the 
reference r ( t )  is either a constant or a sinusoid with a 
single frequency w ,  it was obtained in (111 that 

m l  1 1 Jopt = 2 c ; and JOpt = 
, = I  i=l 

respectively. The study of the performance limit 
& ( U )  for a fixed reference in the multivariable case 
started in [3 ] .  It is shown there that  the performance 
limit in this case depends on not only the locations 
of the nonminimun phase zeros but also their direc- 
tional information. The study in [3] has since been 
extended to more general references (4, 51, and discrete 
time systems [16] .  There have also been generalizations 
to non-right-invertible plant [l], to the cases where the 
controller has previewed information of the reference 
[ 5 ] ,  where the plant input is subject to saturation [9], 
and where the tracking performance measure includes 
the input energy [Z], respectively. I t  has been shown 
that, consistent with common intuitions, the preview 
of the reference can reduce t h e  best achievable track- 
ing error and on the other hand any input saturation 
or any input energy constraint would likely increase 
the best achievable tracking error. Related issues for 
nonlinear systems and filtering problems are studied in 

Although JOpt gives an  overall quality measure for 
the plant as far as tracking is concerned. the reference 
direction dependent performance limit Jopt(v) gives 
more information and deeper insights. If we know 
JOSt(v) and if the optimal K which niinimizes J ( u )  
is independent of U, then Jopt can he obtained after 
simple operations. This is why we adopt the think- 
ing in [3] t o  place our main emphasis on Jopt(v). In 
the above formulation, the assumption that the state 
of the exosystem is available t o  the controller is cru- 
cial. This means that not only the reference but also 
all magnitude and phase information of its frequency 
components is known to the controller. This may look 

~ 4 ,  121. 

unrealistic in the first glance, but it does give a limita- 
tion more fnndameirtal than any other one based only 
on the partial information of the reference. I t  is this 
assumption that makes it possible to find a uniformly 
optimal controller K to minimize J ( u )  for all 2). Note 
that  when the reference only contains a constant term, 
the value of the reference already contains its full infor- 
mation. Therefore in this particular case, whether or 
not the controller can assess the state of the reference 
is not an issue. 

This paper gives a rather complete picture for the 
tracking performance limitation problem for general 
reference signals containing several frequency compc- 
nents. We first give some new insight on linear system 
structure. We show that each nonminimum phase zero 
has associated frequency dependent directions. A key 
technical result in this paper is a relation among direc- 
tions at  different frequencies. Using this result, we de- 
rive an  expression for Jopt(u) which elegantly exhibits 
the effect of the plant nonminimum phase zeros, as well 
as the interaction between each frequency component 
and the directions mentioned above, towards the per- 
formance limitations. 

What  will happen if the full informat.ion of the ref- 
erence is unavailable, in particular if only the value of 
the reference is available, t o  the controller? This issue 
motivates us to consider the performance limitation for 
the setup shown in Figure 2. Mathemat,ically, it still 

Figure 2: A two-parameter control structure with only 
reference information 

makes sense t o  consider the v dependent performance 
limit JOpt(u). We will show that in this case the ex- 
pression of JOpt(u) remains the same as that in the full 
information case. What  becomes different is that  the 
optimal controller K is no longer independent of the 
initial state 2) of the reference. If such a controller is 
used, Figrire 2 is essentially Figure 1 in disguise from 
the viewpoint of information flow. We believe that in 
the case when only the reference is accessable to the 
controller, it is more meaningful to consider the aver- 
aged performance limit Jopt defined by (4) and ( 5 ) .  It  
turns out that  deriving a simple expression for JOpt is 
hard for the general reference of the form (1). We will 
consider instead a special case when ~ ( t )  is a scalar 
signal containing a single sinusoid: 

r ( t )  = ,,-jut + 

With our notation convention, we have U = [h 
here. 
find that 

a]' 
Under some mild assumptions, we are able to 

Jopt= 2 m 1  (- + -) 1 
i=, zi - j w  zi + p  

m 

+! W sin2 [2 L(zi  - j w ) ]  
i=l 

where L(z i  - j w )  stands for the phase or argument of 
the complex number zi - jw .  Comparing this with the 
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performance limit in the full reference information case, 
which is 

1 m 

Jopt = zc (L zi -jw + -+ z;+jw 
i= l  

we are able t o  pinpoint exactly the performance dete- 
rioration due to the limited information. 

There has been a surge of activities in the study of 
performance limitations in feedback control. In addi- 
tion to the type of performance limitations studied in 
this paper, which focus on system time responses and 
hence are called time domain performance limitations, 
there is a whole body of literature on design limitations 
on system frequency responses, known as frequency do- 
main performance limitations. For the history and the 
recent progress on frequency domain performance lim- 
itations, see 1131. Some intriguing connections have 
been realized between the time domain limitations and 
the frequency domain ones [7] 

The  organization of this paper is as follows. In Sec- 
tion 2, preliminary materials on linear system factoriza- 
tions are presented. I t  is shown that a right-invertible 
system can he factorized as a cascade connection of se- 
ries of first order inner factors and a minimum phase 
factor. The factorization is frequency dependent. The 
inner factors then contain all the information associ- 
ated t o  the nonminimum phase zeros. In Section 3, 
we formally formulate the problems studied and 'then 
state and discuss ttie main result and some of its con- 
sequences. The proof of the main result is given in Sec- 
tion 4. Section 5 extends the main results in the p r e  
vious sections to the case in which the linear system 
contains delays. Section 6 considered the case when 
only the reference signal, not the state of the refer- 
ence signal, is assessable t o  the controller. Section 7 is 
the conclusion. Due t o  space limitation, all proofs.are 
omitted in this conference paper. They can he found 
in [15]. 

The notation used throughout this paper is fairly 
standard. For any complex number, vector and matrix, 
denote their conjugate, transpose,- conjugate trans- 
pose, real and imaginary part by (.), (.)', (.)*, Re(.) 
and Im(.) ,  respectively. The phase or argument of a 
nonzero complex number is denoted by L(.). Denote 
the expectation of a random variable by E {.}. Let 
the open right and left half plane be denoted by C, 
and C-, respectively. LZ is the standard frequency do- 
main Lebesgue space. 'H2 and 71: are subspaces of & 
containing functions that are analytical in C+ and C- 
respectively. I t  is well-known tha t  7 1 2  and 71: consti- 
tute orthogonal complements in C2. RH, is the set of 
all stable, rational transfer matrices. Finally, the inner 
product between two complex vectors U ,  U is defined by 
( U ,  U) := 21121. 

2 Preliminaries 
Let G(s) he a real rational matrix representing 

the transfer function of a continuous time finite- 
dimensional, linear time invariant (FDLTI) system. 
Let us assume that G(s )  is right invertible. Its poles 
and zeros, including multiplicity, are defined according 
to its Smith-McMillan form. G(s) is said t o  he mini- 
mum phase if all its zeros have nonpositive real parts; 
otherwise it is said to he nonminimum phase. 

Let C(s) = N ( s ) M - ' ( s ) ,  where M ( s ) , N ( s )  E 
RH,, he a right coprime factorization of G(s) .  Let 
z E C he a nonminimum phase zero of G(s) .  Then 
z is also a nonminimum phase zero of N ( s )  and there 
exists a unit vector q such that q*N(r)  = 0. We call 
the vector q a (left or output) zero vector of G(s)  cor- 
responding t o  the nonminimum phase zero z. 

Let us now order the nonminimum phase zeros of 
C(s) (or N ( s )  equivalently) as z1,z2,.  . .,z,. Assume 
that  each pair of complex conjugate zeros are ordered in 
adjacent order. Let us also fix a frequency wk E P. We 
first find a unit zero vector qmkl of G(s) corresponding 
to z1 and define 

where U,,, is a unitary matrix with the first column 
equal to qu,l. Here G U k l ( s )  is so constructed that 
it is inner, has the only zero at 21 with q,,l as  a 
zero vector corresponding t o  21, and GUk1(jWk) = I. 
Since G,,l(s) is a generalization of the standard scalar 
Blaschke factor, we call it a matrix Blaschke factor a t  
the frequency Wk and qUkl a corresponding Blaschke 
vector. Also notice that the choice of other columns 
in U,,, is immaterial. Now G;:,(s)G(s) has zeros 
~ 2 ~ ~ 3 , .  . . ,z,. Find a zero vector qUk2 of C;:,(s)G(s) 
corresponding to 22 and define G,,z(s) in the same 
form as that of GWhl(s),  Then C;',(S)G;:,(S)G(S) 
has zeros zg,zq,. . . ,z,. Continue &is process uritil 
Blaschke vectors q w i l , .  . . , qukm and Blaschke factors 
GWh1(s), . . . , G,,,(s) are all obtained. This procedure 
shows that G(s) can he factorized as 

C(S) = G,,I(s) ~..G,,m(s)G,,a(s) (7) 

where 

and G,,o(s) has no nonminimum phase zero. We call 
this factorization a cascade factorization at  frequency 
W k ,  which is shown schematically in Figure 3. In this 
factorization, each Blaschke vector and Blaschke factor 
correspond to one nonminimum phase zero. Keep in 
mind that these vectors and factors depend on thc order 
of the nonminimum zeros, as well as on the frequency 
Wk. The product 

Gu,i(s). . . G,,m(s) 

is called a matrix Blaschke product. One should note 

Figure 3: Cascade factorization 

that even when the order of ~ 1 . ~ 2 , .  . . , 2, is fixed, the 
factorization at the frequency Wk is not unique since 
quki is not uniquely determined. Furthermore, if we 
have 2n + 1 different frequencies Wk, k = 0,  f l ,  . . . , h, 
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then the factorizations a t  different frequencies are in 
geoeral different. Nevertheless, they can be intimately 
related if we make the choices properly. For example, 
it is easy to see from the above construction that qw, l ,  
the first Blaschke vector, can be chosen independent of 
i J k .  The following lemma provides such relations and is 
the key technical vehicle that  Ieads to the main result 
of this paper. 

Lemma 2.1 Suppose that the order o f z l ,  2 2 , .  . . ,zm is 
fied. Also suppose that we are given 2n + 1 different 
Jrequencies W k ,  k = O , f l , .  . . , f n .  Then the 2n + 1 
ulscade factorizations (7) can be chosen so that for all 
k , l  = O , f l , .  . . ,fn and i = 1 , 2 , .  . . ,m, 

V u k ;  = G w ~ l ( j W k ) G w , Z ( j w k ) " ' G w , ; - l ( j w k ) q ~ , * .  (9) 

One may wonder what these Balschke vectors look 
like when G(s) is SISO. In this case, proper choices lead 
to 

for k = O , f l , .  , , , + n , i  = 1 , 2 , .  . .  ,m. 

3 The Main Result 
Let, us go back to the setup shown in Figure 1. The 

measurement output y(t) of the plant might be dif- 
ferent from the tracking output z ( t ) .  We denote the 
transfer function from u(t)  to z ( t )  by C(s) and that 

from u ( t )  to y ( t )  by H ( s ) ,  i.e.. P ( s )  = [ E\:] 1 '  In 
order for the tracking problem t o  be meaningful and 
solvable, we make the following assumptions through- 
out the paper. 

Assumption 3.1 

poles. 
I .  P ( s ) ,  G(s) and H ( s )  have the same unstable 

2. G(s) ha5 no zero a t j w k , k = O , + l ; . -  ,fn 

The first item in the assumption means that the mea- 
surement can be used t o  stabilize the system and a t  
the same time does not introduce any additional unsta- 
ble modes. A more precise way of stating this is that  

if P ( s )  = [ ] ~ - 1 ( s )  is a coprime factorization, 

then we assume that N(s)M-'(s) and L(s )M- ' ( s )  are 
also coprime factorizations. The  second item is neces- 
sary for the solvability of the tracking problem. 

Theorem 3.1 Let G ( s )  have nonminimum phase ze- 
ros z ~ , z z , .  . . ,zrn with corresponding Blaschke vectors 
q w k l , .  . . ,qwkm,  k = 0,  f l ,  . . . , fn, satisfying Lemma 
2.1. Then 

We now state our main result. 

This formula shows that  each nonminimum phase 
zero contributes additively t o  the performance limit. 
However the contribution of each frequency compo- 
nents of the reference enters the performance limit in 
a quadratic form and the cross coupling of pairs of 
frequencies appears in the performance limit. I t  also 
shows that generically, perfect tracking is impossible 
when the plant is nonminimum phase. However, if it 
happens that  the vector U is orthogonal t o  the vectors 

then perfect tracking can be achieved. Here v . c a p  
tures the magnitude and phase information of the ref- 
erence and q; captures the property of the plant a t  the 
nonminimum phase zero 2; .  This orthogonality may 
happen in two ways. One is over t he  output chan- 
nels: vk is orthogonal to qw,i for all i = 1 , 2 , ,  . . , m, 
k = 0,  +I, .  . . , +n. This can only occur for multivari- 
able systems. The other is over the frequencies: the 
orthogonality over output channels does not occur but 
v and q; are orthogonal due to some special alignment 
of the magnitude and phase of the reference. This can 
happen even for the SISO case. For example, in the 
case when m = 1 and G ( s )  is SISO, if vk happens to 
make A imaginary for all k = 0, z t l , .  . . , fn ,  then 
the performance limit is zero. 

In the case when n = 0, i.e., the reference only has 
a step component, we get 

This is exactly the formula given in [3]. 

formance limit becomes 
I n  the case when the system G(s) is SISO, the per- 

(12) 
where qu,,,i = 1,.  . , ,m, are scalars with unit modulus 
given by (10). 

From Assumption 3.1, it can be seen that  a con- 
troller or a sequence of controllers, independent of U ,  
can be found t o  attain the performance limit Jopt(v) 
(see [15]). Therefore 

Jopt = inf E { J ( v )  : E ( v )  = 0,  E(uv') = I }  (13) 

(14) 
K 

= E{inf J ( v )  : E(v)  = 0, E(uv') = I }  
K 

This immediately leads to the following theorem 
Theorem 3.2 Let G(s) have nonminimum phase ze- 
ros 21, z 2 , .  . . , zm.  Then 
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From Theorem 3.2 it is seen that  the average perfor- 
mance limit has a strikingly simple form; it is the sim- 
ple sum of the contributions of all nonminimum phase 
zeros a t  all frequencies; each.of such Contributions is 
the reciprocal of the distance between a nonminimum 
phase zero and a mode of the reference. 

4 Per fo rmance  L imi t a t ion  for Systems w i t h  
Time Delays 

In this section, we generalize the previous result a 
hit further to systems with time delays. We assume 
that G(s )  admits a factorization of the form 

G ( s )  = L1 (s) . . . Ld(s)Gi (s) . . . G,(s)Go(s). (15) 

Here L; ( s )  is assumed to have the form 

where ci is a real unit vector characterizing the direc- 
tional information of this delay and V, is a real orthogo- 
nal matrix whose first column is <i. G i ( s )  is assumed to 
be a Blaschke factor with zero zi. The last factor Co(s), 
not necessarily rational is assumed to have a coprime 

t factorization NO(s)M; (s) with an outer Nois) .  I t  is 
easy t o  see that a multivariable FDLTI system with in- 
dependent delays in all output channels can be written 
in the form of (15). However, a t  this moment, it is not 
clear what is the general class of transfer matrices that 
admit this type of factorizations. I t  is not even clear 
how wc can write a multivariable system with indepen- 
dent time delays in the input channels in the form of 
(15). It would be interesting to clarify these issues. 

For systems given in the form of (15), we have a 
generalized version of Lemma 2.1 

L e m m a  4.1 Suppose that we are given 2n + 1 differ- 
ent frequencies W I ,  k = 0, f l ,  . . . , i n .  Then there exist 
2n + 1 cascade factofizations 

G(s )  = Lw,~(s)...Lw*d(S)Gw,l(~) ".Guk,n(s)Gu,o(s) 
(161 

w h e r e f o r i = l ,  . . . ,  d 

)C,i L .(.) = I  - c .(I - ,-..(s-?a) 
W I Z  W k t  

and f o r i  = 1 , .  . . ,m 

Now again we consider the setup shown in Figure 
1, with reference signal r ( t )  given in (1) and the per- 
formance limits J,,,(u) and JePt defined in (3) and 
(5). Assume that Assumption 3.1 holds. Before stat- 
ing the result, we note that when 1 = k ,  the fraction 

should be interpreted as re, the limit of 
the fraction as w, goes to W k .  

-%)-. - 1  
+-U&) 

Theorem 4.1 Let G(s )  be a system with factoriza- 
tions satisJying Lemma 4.1. Then 

and 

5 Limi ta t ion  without Full In fo rma t ion  of  the 
Refe rence  

In this section, we discuss the tracking performance 
limitation when only the reference, not the state of the 
reference, is available t o  the controller. Recall the setup 

shown in Figure 2. Again we denote P ( s )  = 

and assume Assumptions 3.1 holds. First we would 
like t o  point out that in this setup Theorem 3.1 and 
Theorem 4.1 can be restated. This can be shown by 
modifying the proof in Section 4 in a rather simple way. 
However, in this. setup, the optimal or near optimal 
controller in general depends on the magnitude and 
phase information of all frequency.components of the 
reference. Consequently, Theorem 3.2 is no longer true 
because the exchange of the infimum and expectation in 
the step from (13) to (14) is no longer valid. In the rest 
of this section, we will study Jopt for the special case 
when G(s )  is the transfer function of a SISO system 
and the reference r ( t )  is a single sinusoid: 

[ 3:', ] 

r ( t )  = f ie- jwt  + eejwt. (19) 

In this case, the magnitude and phase information of 
the reference is given by vector u = [CU 

Theorem 5.1 Let G(s) have nonminimum phase ze- 
ros z , ,  a , .  . . , , zm. Then 

e]'. 

m 1  1 
Jo,t= 2 (__ 

zi - j w  i=l zi + J W  

Notice that when the state of the reference is avail- 
able, we have the following performance limit, as stated 
in Theorem 3.2 

1 
z; + gw 

m 

z; - j w  i=l 

Theorem 5.1 gives an exact picture on how the unavail- 
ability of the reference state affects t he  best tracking 
performance. In this case, the controller attempts t o  
estimate, in effect, the state of the reference first and 
then track the reference based on the estimated infor- 
mation. The cost of tracking is thus duely increased, 
with an extra term devoted t o  estimation. 

Finally, we extend Theorem 5.1 to the case when 
G(s )  contains a time delay. 
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Theorem 5.2 Let C ( s )  = eTSG,(s) where G,(s) is a 
rational trnnsfer function with n.onminimum phase ze- 
ros z l ,  . . . , z,. Then 

6 Conclusion 
In this paper, we have accomplished the following: 

1. A formula is obtained for the best tracking perfor- 
mance when the reference is a given linear combi- 
nation of step and sinusoidal signals in Theorem 
3.1. This formula clearly reveals the role that 
each nonminimum phase zero, as well as its cor- 
responding frequency-dependent directions, plays 
towards the performance limitation. 

2. Theorem 3.2 presents a formula for the average 
tracking performance over all references with the 
same frequency components. 

3. Theorem 4.1 gives the formulas which are ex- 
tended FDLTI systems with time delays. 

4. The tracking performance limitation with a r e  
stricted information availability is studied for the 
case when the reference is a scalar sinusoidal sig- 
nal with a single frequency in Theorem 5.1 and 
5.2. The performance degradation due to  this in- 
formation restriction is clearly shown. 

In our derivation, great emphasis has been placed on 
the simplicity and the elegance of the formulas ob- 
tained. We believe that these results are significant in 
the further understanding of linear system structures 
and their effects on the best achievable performance by 
feedback control. 

We have used 2DOF controllers in our study of 
tracking performance limitations in this paper. Since 
such controllers are most general controllers with given 
plant measurement and reference information, the per- 
formance limits obtained therein are the most funda- 
mental regardless of what controller structure may be 
used. A pleasant consequence of using 2DOF con- 
trollers is that the performance limits only depend on 
the nonminiinum phase zeros, together with their di- 
rectional properties, but not on the poles and other 
zeros. One may also notice that  the tracking perfor- 
mance when using 2DOF controllers depends on only 
one degree of freedom among the two available. In 
other words, the other degree of freedom in the cou- 
troller is completely irrelevant as far as the tracking 
error is concerned. This gives us an opportunity to  
use this extra degree of freedom to achieve other per- 
formance specifications, such as disturbance rejection 
and robustness. We are currently trying to propose 
a meaningful performance specification which requires 
the proper utilization of both degrees of freedom in the 
controller and will then study the limitation in achiev- 
ing such a performance specification. 

We are trying to  extend Theorem 5.1 and Theorem 
5.2 to the case when the plant is an MIMO system 
and/or when multiple frequencies present in the refer- 
ence. The MIMO extension appears to be possible but 
a simple formula in the spirit of (20) for the multiple 
frequency case is out of reach at this moment. 
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