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ABSTRACT 

This paper proposes a general linear dual-rate structure 
for multirate signal processing. Such general dual-rate sys- 
tems are implementable at finite cost; in particular, they are 
equivalent to the cascade connections of linear periodically 
time-varying (LPTV) systems and block expanders and dec- 
imators. Using the general building blocks in nonuniform 
multirate filter banks, one can achieve what are otherwise 
impossible, thus paving the way for optimal design of syn- 
thesis systems. 

1. INTRODUCTION 

Traditional multirate building blocks in digital signal pro- 
cessing [13] are decimators, expanders, and LTI filters, with 
possibly some summing junctions. An example is the frac- 
tional sample-rate changer shown in Figure 1, where 1' m is 

F igure  1. A sample-rate  changer .  

the expander by a factor m, -1 n the decimator by n ,  and F 
a suitable LTI filter. The output sample rate is m / n  times 
the input sample rate. 

Such rate changers are not only useful in their own right 
[12], e.g., sample-rate conversion for bandlimited signals, 
they are also fundamental building blocks for multirate filter 
banks with uniform [13] or nonuniform [ lo ,  61 bands. 

The rate changer in Figure 1 is in fact a dual-rate system 
with the input-output property that shifting the input (U) 
by n samples results in shifting the output (y) by m samples. 
Such a property is defined as ( m ,  n)-shift invariance, which 
is a generalization of time invariance for single-rate systems. 

Consider two classes of dual-rate systems: the class asso- 
ciated with the structure in Figure 1, namely, the systems 
which are characterized by  t m, LTI filter F, and J. n,  
and the class of linear, causal, dual-rate systems shown in 
Figure 2 ,  in which G : (m,n)  means that G is (m,n)-shift- 
invariant. Is the latter more general than the former? Or, 

F igure  2. A general  dua l - ra te  system. 
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is it always possible to realize a causal, dual-rate system in 
Figure 2 by the structure in Figure l? The answer is pos- 
itive if the two integers m and n are coprime and negative 
otherwise [ll], in this case m and n have some non-trivial 
common factor. 

The class of dual-rate systems in Figure 2 are more gen- 
eral than the structure in Figure 1 and are especially inter- 
esting when m and n have common factors. In this paper, 
we study such (m,  n)-shift-invariant systems and use them 
as the fundamental building blocks for multirate systems. 
One contribution of this paper is to show that any linear 
( m ,  n)-shift-invariant system is realizable by cascade com- 
bination of a block expander, an LPTV system, and a block 
decimator. 

Advantages of the more general setup have been already 
observed: Khansari and Leon-Garcia [5] and Nayebi et.  al. 
[9] used LPTV filters and block decimators and expanders 
in filter-bank systems; in particular, Khansari and Leon- 
Garcia [5] showed that using general synthesis systems, per- 
fect reconstruction is possible if and only if the analysis fil- 
ters have no common zero (note that this condition is neces- 
sary but not sufficient for perfect reconstruction [14] using 
traditional building blocks); Shenoy [ll] showed that using 
general structures one can achieve what is otherwise impos- 
sible in design of fractional rate changers and also pointed 
out that the structural dependency in designing nonuni- 
form filter banks [6, 11 disappears when general structures 
are used for analysis and synthesis. 

As an application of the general dual-rate systems, con- 
sider the three-channel nonuniform filter bank shown in Fig- 
ure 3 ,  where the analysis and synthesis filters H ,  and F, are 
all LTI and causal. Hoang and Vaidyanathan [4] showed 

Figure  3. A nonuni form filter bank.  

that the decimation integers, {2,3,6}, form an incompat- 
ible set; i.e., it is impossible to achieve alias cancellation 
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by designing the six filters, let alone perfect reconstruction. 
Also, a design difficulty called structural dependency arises 
in this setup [6, 11. 

However, if appropriate dual-rate systems are used for 
analysis and synthesis as shown in Figure 4, the difficulties 
encountered using the structure in Figure 3 no longer exist. 
In this case, optimal design based on model-matching the- 

F igure  4. A filter bank  wi th  general  s t ruc tures .  

ory, which was advocated in [12] for multirate filter design 
and in [2] for uniform filter-bank design, can be accom- 
plished with relative ease. 

2. GENERAL DUAL-RATE SYSTEMS 

In this section we study basic concepts of linear dual-rate 
systems such as shift invariance, causality, and their various 
representations. 

Let C be the space of discrete-time signals defined on the 
set of all integers. A linear system G is regarded as a linear 
transformation mapping C to itself, written y = Gu. It is 
a dual-rate system if the output and input have different 
sample rates - in this paper we shall make the assumption 
that the ratio of the two rates is a rational number, say, 
m/n;  i.e., the output rate is m / n  times the input rate. 

A linear, dual-rate system G can always be represented 
by a kernel function g ( k ,  1): 

1 

Shift  Invariance 
To define shift invariance precisely, let U be the unit time 
delay on 1 with transfer function z - ' .  For a linear, dual-rate 
system G with output and input sample-rate ratio m/n ,  we 
define G to be (m,  n)-shift-invariant if GU" = U m G .  (The 
two integers m and n need not be coprime.) This means 
that shifting the input by n samples results in shifting the 
output by m samples. In terms of the kernel functions, 
(m ,  n)-shift invariance is characterized by the following re- 
lation 

g(k + m, 1 + n)  = g ( k ,  1 ) ,  V k ,  1. 

Figure 2 represents an (m,  n)-shift-invariant G using block 
diagrams. 

This shift invariance guarantees that appropriate block- 
ing of the input and output gives rise to  a multi-input, 
multi-output (MIMO), LTI system [7]. 

For cm integer p > 0 ,  define the pfold blocking oper-utor, 
L,, via g = Lpx (underlining denotes blocking): 

q(k) = [ z ( k p )  x(kp+ 1) . . '  z ( k p + p  - 1) 1' 

L, maps to tp, the external direct sum of p copies of e. 
The inverse Lpl maps tP to e. 

Let G be linear, dual-rate, and SISO (single-input, single- 
output). Block the input and output appropriately to get 
the blocked system C := LmGL, ' ,  which has n inputs and 
m outputs. It is a well-known fact that G is LTI iff G is 
( m ,  n)-shift-invariant. Hence if G is (m,  n)-shift-invariant, 
- G has an m x n transfer matrix: 

1 bm--l ,O(z)  G m - l , l ( z )  ' . .  e m - - l , n - l ( z )  1 
The entries in this maitrix relate to the kernel function g ( k ,  1) 
of G as follows: 

k 

Causali ty 
Causality of a dual-rate system G reflects implementability 
of the system in real time. Let G have input U and output 
y. Because the ratio of the sample rates of y and U is m / n ,  
we can take the sample periods of U and y to be mh and 
nh, respectively, where h is some real number. Assuming 
both U and y are synchronized a t  time t = 0, we have that 
u(k) occurs a t  time t := k ( m h )  and y(k) a t  t = k(nh).  Thus 
G is causal if for any k ,  the output y(k) depends only on 
inputs occurred a t  t 1: k(nh) ,  or on u(1) for all 1 satisfying 
lm 5 kn. Similarly, G! is strictly causalif y(k) depends only 
on n(1) for all 1 such t,hat lm < kn. 

In terms of the kernel function in (l), G is causal iff 

g ( k ,  1 )  = 0 whenever kn < lm, (3) 

and is strictly causal iff 

g ( k ,  1 )  = 0 whenever k n  5 lm 

If the dual-rate system G is both ( m ,  n)-shift-invariant 
and causal, the blocked system G is LTI and causal. More- 
over, the direct feedthrough matrix 

Dol . . .  Do,,-1 
Dl l  . . .  I Dm-:I,o ? Dm-l,l  ' .  

- G(C0) = 

must have a (blockji lower-triangular structure due to 
causality. This is callled causality constraint [3] and can 
be derived from ( 3 )  and (2): 

D,, = 0 whenever in < j m .  

From now on, we ishall restrict our attention to  linear 
dual-rate systems which are shift-invariant, causal, and 
moreover, whose blocked transfer matrices have proper, 

matrices have state-space models. Real-time implementa- 
tion of these dual-rate systems is possible based on differ- 
ence equations related to their state-space models [3]. 

real-rational functions of 4 as thcir entries. All such transfer 
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3. REALIZATION V I A  B L O C K  D E C I M A T I O N  
A linear dual-rate system which is (m,  n)-shift-invariant 
cannot be represented by the structure in Figure 1 for some 
LTI F ,  if m and n have non-trivial common factor [ll]. In 
this case, as we will show, block decimators and expanders, 
and LPTV systems should be used instead. Block decima- 
tion has been studied in multirate filter banks [5, 91. 

Two positive integers p and q characterize the block deci- 
mator shown in Figure 5 ,  where q represents the block size 
and p the decimation ratio. For any integer I C ,  the input- 

:jp-Gx- 
Figure  5 .  T h e  block dec imator .  

output equation is 

y ( k q  + i) = u(kpq + z),  2 = 0, 1, .  ' .  ~ q - 1. 

If one groups the input into blocks of size q (starting from 
time k = 0), this block decimator retains only every p t h  
block. It can be verified that the block decimator is (q ,pq ) -  
shift-invariant and causal; moreover, if q = 1, it reduces to 
the usual decimator: J, ( p ,  I) =J, p .  

The block expanderis the dual system, shown in Figure 6,  
where q again is the block size and p the expansion ratio. 

I 

Figure  6 .  T h e  block expander .  
For any integer I C ,  the block expander is defined via 

This corresponds to inserting p - 1 blocks of zeros if the 
input and output are blocked with size q. The block ex- 
pander is (pq ,  q)-shift-invariant but noncausal. If q = 1, 
it reduces to the usual expander t p. (For the frequency- 
domain input-output relations, see [ 5 ] . )  

Let G be any linear dual-rate system which is (m ,n ) -  
shift-invariant. If m and n are not coprime, we can find the 
largest common factor q and write m = f i q ,  n = nq, so that 
m and fi are coprime. Thus we can state the main result of 
this section: 
Theorem 1 The dual-rate system G as realizable by the 
cascade structure, shown in Figure 7, of the block expander 
t ( f i ,  q ) ,  a single-rate, L P T V  system F wzth period q ,  and 
the block decimator .j. ( 6 , q ) .  

Figure  7. A n  equivalent s t ruc tu re .  
The 

structure in Figure 7 reduces to that in Figure 1 with F LTI; 
and the theorem reduces to a known result. The proof of 
this theorem is omitted due to space limitation; a procedure 
can be given to compute the LPTV F in Figure 7 associated 
with a given dual-rate system G. 

Note that if m and n are coprime, then q = 1. 

4. N O N U N I F O R M  F I L T E R  B A N K S  

In this section we study using the general structures in 
nonuniform filter banks to achieve what are otherwise im- 
possible. 

Consider the three-channel nonuniform filter bank in Fig- 
ure 3, built via traditional blocks. It is shown that this 
system is incompatible [4] and hence alias cancellation is 
impossible using LTI and causal filters, let along perfect 
reconstruction. 

Now we propose to use general dual-rate systems as in 
Figure 4 to replace the analysis and synthesis subsystems; 
note that Ho, HI, FO and Fl in Figure 4 are more general 
because they have common factors in their m and n. Denote 
the system U e y in Figure 4 by T. It is easily verified that 
T is LPTV with period 6; the equivalent blocked system 
(1 = L ~ T L ; ' )  is 

_. -. E H ,  

where and E are both LTI and 6 x 6: &(z)  is the anal- 
ysis matrix- and E ( z )  the synthesis matrix. Note that all 
entries in and are freely designable (no structural de- 
pendency). Hence T can perfectly match any causal, LPTV 
system with period 6; in particular, it can perfectly match 
any time-delay systems by proper choice of the dual-rate 
systems. Therefore, perfect reconstruction for the structure 
in Figure 4 is possible. 

A more interesting scenario is perhaps given in Figure 8 
in which the analysis structure in Figure 3 is combined with 
the synthesis structure in Figure 4. Is perfect reconstruction 
possible in this case? 

U 
FO : ( 6 , 3 )  

Figure  8. A filter bank  w i t h  mixed  s t ruc tures .  

The answer is positive and is illustrated by the simple 
example below. Let the LTI analysis filters in Figure 8 be 

E j o ( z )  = 1, E j l ( Z )  = z-4 + zK5, I j , ( z )  = 2 - 3 ,  

The associated analysis matrix after blocking can be com- 
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puted via procedures in [I]: 

- H ( z )  = 

- 1 0  0 0 0 0 
0 0 1 0 0 0  
0 0 0 0 1 0  
0 2-1 z-1 0 0 0  
0 0 0 0 z-‘ z-1 

- 0 0 0 2-1 0 0  

Define the synthesis matrix after blocking to be 

r 2- i  0 0 0 0 0 1  
0 -2-1 0 

&)= 0 2-1 0 ; : :: 1 
- l o  0 0 0 0 1  (4) 

L : 0 O -z- l  z-l 0 O O 1 0 O I  

It follows that & z ) & ( z )  = z-’I and hence the system 
achieves perfect reconstruction with time delay z - ~ .  The 
synthesis matrix in (4) corresponds to some general dual- 
rate structures in Figure 8. 

The above observation can be generalized to nonuniform 
multirate filter banks with multiple channels and arbitrary 
decimation ratios [IO, 61: 

If the synthesis subsystems are replaced by appropriate 
dual-rate structures, incompatibility [4] and structural 
dependency [6, I] disappear; and perfect reconstruction 
is always possible. 

One advantage of eliminating structural dependency is 
to allow optimal design of synthesis systems; we conclude 
this paper by considering such a design example. We use 
the structure in Figure 8 and pre-select the linear-phase, 
FIR analysis filters: HO (order 40) is lowpass with cutoff 
frequency w = ir/2; H1 (order 30) is bandpass with pass- 
band n/2 5 w < 5 ~ 1 6 ;  H2 (order 14) is highpass with 
cutoff frequency 5ir/6. All three filters are designed using 
MATLAB function f i r 1  with their magnitude Bode plots 
given in Figure 9. The synthesis systems now can be de- 

Figure 9. ll?~l (solid), 1611 (dot ) ,  a n d  Ik;l (dash) i n  
dB versus w / 2 a .  

between the ideal time delay ( z - ~ ’ )  and the filter-bank sys- 
tem, yielding a reconstruction error 0.31% in N, norm. 
This means [8] that the alias and magnitude distortions of 

signed by minimizing the 7tm norm [2] of the error system 

the designed system are both 5 0.31% and the phase dis- 
tortion is 5 sin-’ 0.31% = 0.18’. Of course, the synthesis 
systems designed use t,he general dual-rate structures. 
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