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7 - i ~  -Optimal Design of Multirate Sampled-Data Systems 

Li Qiu and Tongwen Chen 

Abstract- Treating causality constraints, this paper studies optimal 
synthesis of multirate sampled-data systems with an 7fz  performance 
criteria. An explicit solution is obtained by input-output space extensions 
(lifting) and frequency-domain techniques. 

I. INTRODUCTION 
In industry, most control systems are implemented digitally via 

microprocessors. Many digital designs are performed by rules of 
thumb. There are essentially two conventional methods: design an 
analog controller and then implement it digitally, sampling “fast 
enough” or discretize the plant and then design a discrete controller, 
ignoring intersample behavior. 

The recent trend is to perform direct digital design, i.e., design dig- 
ital controllers directly using continuous-time performance measures. 
This should be the preferred approach because most sampled-data 
systems operate in real time and the input and output signals are 
naturally in continuous time. Many pieces of work treating design 
issues have been completed in this direction; they include solutions 
to several R2 sampled-data control problems [7], [18], [4] and 
several solutions to the Xx sampled-data control problem [16], 
[28], [3], [25], [27], [24], [15]. A general mathematical tool, the 
lifting technique, has been developed 1281, [31], 131, 151 for attacking 
problems in single-rate sampled-data systems. 

All work mentioned above is in the single-rate setting. However, 
multirate sampled-data systems arise in a more natural way. In 
general, faster A D  and D/A conversions lead to better performance 
in digital control systems but also mean higher implementation cost. 
Allowing different speeds for AD and D/A conversions results 
in better trade-offs between performance and implementation cost. 
Furthermore, multirate controllers can outperform single-rate linear- 
time invariant (LTI) controllers in certain design situations [19], [12], 
due to their time-varying nature. 

The concept of multirate sampling was pioneered by Kranc [20]. 
Recent interests in multirate systems are reflected in the parametriza- 
tion of stabilizing controllers 1211, [23], the LQGLQR designs 161, 
[ I ] ,  [22], [9], the XHLI  design [30], 1291, the 71, design [29], [8], [30], 
and the I ,  design [lo]. While a lifting technique has been successfully 
used in the analysis of multirate system since the 1950’s [20], the 
research on the optimal design of multirate controllers has lagged 
behind. The main obstacle is perhaps the so-called causality constraint 
1211, [23], which presents a unique difficulty for synthesizing the 
feedthrough terms in lifted controllers. 

In this paper we shall study the direct digital design of multirate 
controller and show how to treat the causality constraint in the ‘7-t~ 
design framework. Instead of treating the general multirate system, 
we consider the dual-rate case where all AD converters operate at one 
rate and all D/A converters at another rate. This setup captures most 
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Fig. 1. A multirate control system 

of the essential features of multirate systems while maintains some 
clarity in exposition. The general multirate 7- l~  design is studied in 
[29]. Our solution is different and more explicit, however, and gives 
closed-form formulas in many steps involved. The extension of some 
results in the paper to more general setup can be done via tools from 
nest algebra [8]. 

Finally, we remark that causality constraints also arise in discrete- 
time periodic control [19], where the feedthrough terms in lifted 
controllers must be block lower-triangular. Tools developed in this 
paper are directly applicable to periodic control problems. 

The organization of this paper is as follows. Section I1 presents 
the multirate sampled-data configuration for our subsequent study; in 
particular, desirable properties of multirate controllers are discussed. 
Section I11 extends the lifting macros in [5] to the multirate case; 
these formulas are useful in converting a sampled-data problem to 
an associated discrete-time one. Section 1V formulates and solves 
explicitly the multirate X H ~  -optimal control problem using frequency 
domain method; matrix projection is used to tackle the causality 
constraint. 

The notation is quite standard. We use I to denote the space of se- 
quences, perhaps vector-valued, defined on the time set (0, 1, 2, . . .}. 
The external direct sum of 71 copies of 1 is denoted I ” .  The space 
(2  is the subspace of I consisting of all square-summable sequences. 
Similarly for the external direct sum 1;. Finally, if G is a LTI system, 
we shall not distinguish G from its transfer function. 

11. SETUP 
The setup of the paper is shown in Fig. 1. Here we have used 

continuous lines for continuous signals and dotted lines for discrete 
signals. In Fig. I ,  G is an analog plant, Snrlt an ideal sampler with 
period m h ,  H,h a zero-order hold with period 11 h ,  and l i d  a multirate 
digital controller which is synchronized with S l n h  and H,h by a clock 
in the sense that l i d  takes in a value of the sampled measurement 
dl at times f = k ( m h ) ,  k 2 0, and outputs a value of the control 
sequence I ’  to the hold device at t = k (  72h), k 2 0. We shall assume 
throughout the paper that nr and 7i are coprime integers without loss 
of generality. 

We shall consider only the analog G which are LTI, causal, 
and finite-dimensional. What are the corresponding concepts for the 
multirate controller l i d ?  Throughout I<,/ is regarded as a linear map 
from 1 to 1. Since the input and output time scales are not compatible, 
the single-rate definitions must be modified. 

The sampled-data controller H,,/, I<dS,,, as a continuous-time 
operator is in  general time varying. Note, however, that both s,,,~, 
and H,,,, are periodic elements, their least common period being 
T = 7 ~ t  t t  h ;  so, by proper choice of I<</ it is possible that H,t tLI<ciSr , l~8  
is T-periodic in continuous time. Now let 1- be the unit time delay on 
1 and r* the unit time advance. We define I<,/ to be ( m .  17)-periodic 
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Then it is not hard to See that H n h K d S m h  is T-periodic iff Hh is 
(m, n)-periodic. 

This periodicity implies a deeper fact if we use the standard 
discrete-time lifting procedure. [19] and extend the input and output 
spaces of Kd so as to be compatible with the period T. Define the 
discrete lifting operator L,: 1 -+ I" via 2 = L,v 

{v(O),v( l )  .... .... }. 

Similarly for L,. Now define the lifted controller 

This is now single-rate with the underlying period being 2'. Then & 
is time-invariant iff Kd is (m, n)-periodic [21]. 

Next is causality. Again we require that HnhKdSmh be causal in 
continuous time. This condition translates to an interesting constraint 
on Kd. To see this more clearly, we look at the lifted controller &. 
The feedthrough term Q in & is an m x n block matrix, namely 

where each Dij is a matrix with dimensions compatible to the 
dimensions of $J and v. Now the causality of Hnh KdSmh translates 
exactly to the causality of & and a constraint on ll, namely 

D;j = 0, whenever j m  > in. 

This condition on D will be called the (m, n)-causality constraint. 
For ease of reference, the set of all Q satisfying the (m, n)-causality 
constraint is denoted by C(m, n). 

We say Kd is ( m ,  n)causd  if the single-rate 5 is causal and 
- D satisfies the (m, n)-causality constraint. It follows then that the 
sampled-data controller Hnh KdSmh is causal in continuous time iff 
Kd is (m, n)causal. More general treatment of these concepts can 
be found in [21], [23], [8]. 

A similar notion is that of strict causality. We say Q satisfies the 
strict (m, n)-causality constraint if 

D,, = 0, whenever j m  2 in. 

The set of all such D is Cs(m, n). It follows that H n h h - d S m h  is 
strictly causal in continuous time iff I& is causal and Q E C, (m,  n )  . 

Note that the notation C(m, n)  and C,(m, n), representing sets 
of block triangular matrices and block strictly triangular matrices 
respectively, do not give information on the size of blocks and 
we assume this information can be inferred from the context. With 
compatibility assumption, the following lemma can be easily verified 
using matrix manipulation. 

L4?"a: 

1) If Mi E C ( P ,  n), M2 E C(n ,  T ) ,  then M Z M I  E C ( p ,  T ) .  

2) If MI E C,(P, q), MZ E C(n ,  T )  or MI E C ( p ,  q), M2 E 

3) If M E C(p ,  p )  and M is invertible, then M-' E C ( p ,  p ) .  
4) If M E C,(p ,  p). then I - M is always invertible. 

Cs(q ,  T ) ,  then MZMI E C,(P, T ) .  

; ............ ./g ............. i 
Fig. 2. An equivalent multirate system. 

Finally, we turn to finite dimensionality of the controller Kd. This 
is again best explained in terms of 5. Assume Kd is (m,  n)- 
periodic and (m,  n) -causal. Then from the previous discussion & 
is LTI and causal. We furthermore assume I& is finite-dimensional. 
Thus I& has a state model 

Bo * * a  r A  ! 
Do0 

The corresponding difference equations for h - d  (v = Kd$J) are 

v(mk 

Here r ] ,  the state for I& is  dated every T = mnh seconds and 
v every n h  seconds. Such diffi:rence equations can be implemented 
on microprocessors with only finite memory because the vector r] is 
finite-dimensional. 

In summary, in this paper we are interested in the class of 
multirate Kd which are (m,  n)-penodic, (m,  n)-causd, and finite- 
dimensional; this class is called the admissible class of K d  and can be 
modeled by the difference equations (2) and (3) with D;j = 0 when 
j m  > in. The corresponding admissible class of I& is characterized 
by LTI, causal, and finite-dimensional & with the same constraint 
on 0. 

HI. MULTIRATELIFTING 

In Fig. 1, partition G according to its inputs and outputs and bring 
in a state model 

The zero block in DZI guarantees the proper functioning of the 
sampler when the exogeous input is impulsive. The zero block in 
Dll is necessary for the finiteness of the ' H 2  measure in the next 
section. Now move Smh and Hnh into the plant to get Fig. 2, where 

With our assumptions on Kd, this multirate system is T-periodic in 
continuous time. So the idea of lifting can be used to convert it into 
an LTI discrete system with infinite-dimensional input and output 
spaces. 

Following [5], let E be any finite-dimensional Euclidean space, E" 
be the extemal direct sum of n copies of E, and K: be &[O, T). The 
sequence space l z (K: )  is defined to be 
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Fig. 3. The lifted system. 

The norm for b'lk is the one on K and the norm for 12 (K) is given by 

To handle unbounded signals, we bring in the two extended spaces 
, C z e [ O ,  x) and / l e ( K )  defined in the obvious way. The lifting 
operator L T ,  mapping C2,[0. x) to 1 z e ( K )  is defined by 

2' = LTY + v ' k ( f )  = Y ( f  + k T ) .  O 5 f < T.  

As before, we denote the lifted signal L T ~  by 2. 

Define 
Now we lift the system in Fig. 2 with respect to the period T .  

and again as in (1) to get the lifted system configuration in Fig. 
3. Here the signals are all lifted; e.g., = LTU: and w = L,t+i. 
We saw in Section I1 that li,r is LTI; it is not hard to see that G,d 
too is LTI. So Fig. 3 represents a discrete LTI system. Let TztL, be 
the closed-loop map 11: H I in Fig. 1. Then the closed-loop map 
Tz tL , :  U H 4 in Fig. 3 is the lifted T,,., namely, LTT,,.L,'. The 
usefulness of this relationship is due to the fact that the operators LT 
and L,' preserve norms. 

Now with a state model for G in (4), we can derive a state-space 
representation for &. But first, let us find state models for the four 
blocks of G,d in ( 5 )  as they may be of independent interest. 

Lifting G1 1 

The lifted (211, namely, %:= L ~ . G I I L , ~ ,  maps / z e ( l i )  to 
Z 2 e ( K )  and can be represented by a state model with finite- 
dimensional state space [5]  

%= [*] 
where 

Lifting 5 ,  h GS I 

L7,SmnG21LT1, which maps 1 2 F ( K )  to 1".  

s. Then the state equations for GZI (y  = cr(21w) are 

Now we derive a state model for SlnhG21, namely, 

Write IJ = SmhG21x and let the state for the realization in (4) be 

Integrate (6) from k T  to ( k  + l ) T  and define the sequence < by 
[ ( I ; )  = s(lcT) to get 

E(k + 1) = & < ( I C )  +&ILL. 

By the definition of L,, 

c i ( l i n )  

7, ( k l l +  11 - 1) 

- L l ( k ) =  [ : ] 
where for J = 0, 1.. . . . 71  - 1 

L I ( k ? l  + j )  = c 2 s ( k T + j l n h )  

- - C, e J nz A E (  A.) + 1Jm"c2e(Jmh-T) B 1 g k ( ~ )  dr. 

For notational convenience, define 

* J ( T )  = ~ 1 e ( ~ ~ ~ ~ - ~ ) ~  B1 \[O j m h ) ( T )  (7 )  

for j = 0, 1,. . . , I I  - 1, where \[<, 1) is the characteristic function 
on the interval [a.  b ) .  Then 

7. ' (k72+J)  = C2eJm'"<(k) + * J ( T ) x k ( T ) d T .  P 
Putting things together, we get the state model 

E ( k  + 1) = * . l d E ( k )  + 3 1 1 0 k .  

- a 1 ( I ; )  = C I d < ( k )  + D,,Uk 

or equivalently 

where .ad and B, were given before and 

The lifting formulas for the other two blocks in & can be derived 
similarly; they are summarized below. 

Lifting GI I H,, h 

For 1 = 0. 1: . . . (7n  - l ) ,  define 

@ z  ( t  )=Dl 2 1 [ t  n h ( z +  1 ) I I  h J ( t  ) + c1 e ( ' - T )  " B2 \ [ L E  h ( t +  1) n h )  ( l d T .  1' (8) 
Next define 

Here .Ac, and cl were given before. 
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Lifting S m h G 2 2 H n h  

to I " .  A state model is 

Assumptions 1) and 2) are mild and standard. Assumption 3) ensures 
the well-posedness of the closed-loop system following the lemma 
in Section II. It follows from similar arguments as in [12] that 
under these assumptions h'd internally stabilizes G iff & internally 
stabilizes Q in discrete time. 

We can now state the U2-0ptimal control problem precisely: Given 
G, m, n, and h, design an admissible h'd to provide intemal stability 
and minimize llTzw112 in Fig. 2. This can be recast exactly in the 
lifted spaces: Design an admissible & to internally stabilize 
and minimize llTz112 in Fig. 3. In what follows we shall solve 
explicitly this 7-12 problem using a frequency-domain approach. 

+ f:1)nhC2e("h-rlA B ~ ~ [ ~ , ~ ~ ~ )  d7. are operators. All the operators but all are of finite rank. This fact 

me lifted operator s, G~~ H, : = L,  sm G~~ H ,  ~ ; 1  maps i m  

S m h G z a H n h  = [F] D m d  

where A d ,  B 2 d ,  C 2 d  were already given and 

D 2 2 d :  &" + E", 

[ D Z Z ~ I J I  = D ~ X [ z n h ,  (r+l)nh)(jmh) 
In (9), A d ,  B 2 d 1  C 2 d 1  D Z Z ~  matrices and B1, Bli, 0 1 2 9  0 2 1  

can be exploited: Define the real-rational matrices 
It can be verified that D 2 2 d  satisfies the (n,  m)-causality con- 

straint. Furthermore, D 2 2 d  satisfies the strict (n, m)-causality con- GI1 = [*-], Gl2 = [fi], 
straint if G 2 2  is strictly causal ( 0 2 2  = 0). 

Lifring G s d  

We remark that all the four lifted blocks in Q share the same 
state vector ((k) = z (kT) .  Moreover, their state models fit nicely 
together to form a state model for & which maps Zze(K) @? lm to 
I2e(X)  CB 1" 

IV. 7-12-0" CONTROL 

Now we are ready to treat the synthesis problem: Design an 
admissible K d  to achieve intemal stability and minimize some 
generalized U2 performance measure. 

We adopt the generalized U2 measure proposed for periodic 
systems in [18], [4]. Let F be a T-periodic, causal system mapping 
.Ge to t Z e .  The l i  system E: = L ~ F L ; ' ,  mapping I ~ ~ ( K )  to 
Iz,(lC), is LTI in discrete time. Hence it has a transfer function 

m 

where fi, i 2 0, are Hilbert-Schmidt operators. Denote the 
Hilbert-Schmidt norm by 11 . 11~s. We say the function E belongs 
to U 2  if 

/ m  

< 0 O  

Bring in a special doubly-coprime factorization for the real rational 
transfer matrix G22 

with 

N(O),  "(0)  E Cs(m, n);  M(O),  X(0)  E C(n, n);  

M ( o ) ,  X ( O )  E ~ ( m ,  m); Y ( O )  = Y(o)  = 0. 

Since D 2 2 d  E C,(n, m), the standard procedure in [11] generates 
such a factorization. It then follows from [21], [23] that the set of 
admissible h'd which intemally stabilize G is parameterized by 

- h'd = (Y - MQ)(X - NQ)-' ,  Q E RU-, Q(0) E C(m7 n) .  

With this controller applied, the closed-loop map in Fig. 3 is 

where TI , T2, T3 are given by 
and the left-hand side is defined to be 7-12 norm of E, denoted 11'112. 

By a slight abuse of notation, we define IlFllz = llF112. For more 
details on this U2 norm and its stochastic interpretation, see M. 

T~ = oll + [c, -12 D ](r;' :]+c12MYG21)[B1]1 
4221 

.. 

Now we turn to internal stability of Fig. 1. Define the continuous- T2 = [C, & ]GizM, 

The (autonomous) multirate sampled-data system is internally stable, 
or h'd internally stabilizes G, if for any initial value Z , d ( t O ) ,  0 5 

Constrained z2 model-matcing Problem 

inf 112'1 - TzQT3112. (11) 
t o  < T, X s d  + 0 as t + 00. QERXcc, Q ( O ) € C  

We need a few standing assumptions in this section about the plant 

1) ( A ,  B2) is stabilizable and (CZ, A) is detectable; 
2) the period T is nonpathological with respect to G [171, [7]; 
3) D 2 2  = 0. assumption: 

Here we used to simplify notation. Note that 
2'1, T 2 ,  T3 are all operator-valued. For an operator-valued transfer 
function T(X), denote the transfer function of the adjoint system 
by T"(X): = T*( l /X) .  To proceed further, we need one additional 

for C(m, G in (4): 
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4) For every X on the unit circle, T.L(X) and T:F(X) are both 
injective. 

Note that TTT2 and TJT< are both 
constant matrices €12 and E21 satisfying 

E ; ~ E I ~  = [" ] [C, 0; 2 

matrix-valued. Bring in 

0 1 2  I. 

GI 1 
to get 

TFTL = (€12C-;123I)"(E12Cl~-~I). 

T J ;  = (~ir:21E21)(-ir~21~2i 1". 

It follows that T;TL and TjTq are both parasymmetric real- 
rational matrices and have full ranks on the unit circle [Assumption 
41. So we can perform spectral factorizations TFTl = TF0T2, 
and T37-F = Tj,-oTG.o with Tzu. Xcl .  lj,.,. T:;: E R X H ,  and 
Tl,(0) E C ( T J I .  T J I ) ,  T3co(0) E C ( u .  n ) .  Note that the extracondition 
on T2,,(0) and Ty,.,(O) can be always achieved by performing some 
QR factorizations. An inner-outer factorization TL = T2LT2u and 
a co-inner-outer factorization T3 = T:jroTjcr can be obtained by 
defining 

TL, = T2Z.I = [C1 012]:12J[Tc,~ 

Define the constant matrix 

and the real-rational matrix in C2 

Denote the constant term of R11 by Rllo. (Since R11 is in gen- 
eral noncausal, it follows that in general Rllu # R11(0)). Let 
n . ~ ~ :  C.L + 7 - l ~  and I I H 1 :  Cp + 7-l: be the orthogonal pro- 
jections. Also let IIc and d , . ~  be the orthogonal projections from 
the space of matrices of appropriate dimensions to C( m .  11 ) and 
C( t i ] .  respectively. We are now set up to state the main result 
of this paper. 

Theorem: The optimal C) in ( I  1)  is given by 

4<,pt = TC1 [n H~ R I I  - n , L  R I  l~]T;.t (13) 

Prooj? Apply unitary transformations to Ti - T14T3 and define 

(simple calculation shows that this R I I  is exactly the one given in 
(12)) to get 

IITI - TzQT311; 

The last three terms are independent of Q. Define Q1 = T2,QT3,,. 
From the lemma in Section 11, we see that Q1 E RE, iff Q E R X H ,  
and Q l ( 0 )  E C ( m .  7 1 )  iff Q ( 0 )  E C ( m .  n ) .  It follows then 

= l /II%tRii  11: + Ilnc.iRiiolli. 

The optimal QI is given by the sum of IIcRllo and the strictly 
causal part of RI I ,  or equivalently, by the causal part of RI I minus 
n , ~  RI  I O  

4 1 , o p t  = IJx2R11 - & ~ R l l o .  

This proves (13). 
The optimal cost is given by 

llT~ - &QT.<11; = llR1lll; - ~ ~ Q ~ . o p t ~ ~ ~  + llR1211; 

+ llR21Il; + IlR22II; 

which is clearly equal to the right-hand side of (14). 0 
The computation in the above theorem involves only real-rational 

matrices and constant matrices except TI, which is an operator-valued 
function. Its norm, required in (14), can be computed with relative 
ease 

Here we used the fact that Cl1 and 9 are strictly proper. The 
Hilbert-Schmidt norm of Oll follows from that of a general integral 
operator [ 131 

llDII Ilks = t r a c e l '  1' B;r,('-r).4' Ci C1 e('-r)'4 Bl d r  dt. 

Finally, we conclude this section by presenting the explicit formu- 
las for El  I ,  E12, and Eal. To this end, we need to find several matrix 
blocks formed by compositions of operators such as C;Q, BT. With 
the functions 9, and defined in (7) and (8), these blocks can be 
found to be 
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@ L - l ( T ) I  dT, 

@O (7) 

D21D;I = I T  [ ; (r)]l*b(l) - - .  P;-,(~)]dr. 
@“-l 

With the two symmetric matrices E:2E1z and E21Eh1 computed, 
there are many choices for El2 and E21; for example, we can take 
them as the square roots or Cholesky factors of the two symmetric 
matrices respectively. 
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An Exact Solution to General SISO Mixed 
‘Ha/’H, Problems via Convex Optimization 

Mario Sznaier 

Absftact-The mixed ‘Ha/‘Hm control problem can be motivated as 
a nominal LQG optimal control problem, subject to robust stability 
constraints, expressed in the form of an ‘H, norm bound. A related 
m d e d  problem consisting on ’ ’ lg an upper bound of the 
‘H2 cost subject to H, constraints was introduced in [l]. Althwgh 
there presently exist ef6ci-t metbeds to solve this modilied problem, 
the original problem “pins, to a large extent, still open. In this 
paper we propose a method for solving general discretetime SISO 
‘H2/’H, problems. This method involves solving a sequence of problems, 
each one consisting of a Mtedimensional convex optimization and an 
unconstrained Nehari approximation problem. 

* * 

I. INTRODUCT~ON 
During the last decade, a large research effort has been devoted to 

the problem of designing robust controllers capable of guaranteeing 
stability in the face of plant uncertainty. As a result, a powerful 
Hm framework has been developed, addressing the issue of robust 
stability in the presence of norm-bounded plant perturbations. Since 
its introduction, the original formulation of Zames [2] has been 
substantially simplified, resulting in efficient computational schemes 
for finding solutions. Of particular importance is [3] where a state- 
space approach is developed and an efficient procedure is given to 
compute suboptimal ‘H, controllers. Since these controllers are not 
unique, the extra degrees of freedom available can then be used to 
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