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Abstract

Treating causality constraints, this paper studies the opti-
mal syntheses of multirate sampled-data systems with X2 and
7X performance criteria. Explicit solutions to both the 712
and 74, problems are obtained by input-output space exten-
sions (lifting) and frequency-domain techniques.

1 Introduction

Designig digital controllers directly using continuous-time perfor-
mance measures is receiving considerable attention recently; this is
evidenced by work in the 712 framework [6, 17, 3] and 7o4, frame-
work [14, 28, 2, 25, 27, 15]. A general mathematical tool, the lifting
technique, has been developed [28, 31, 2, 4] for attacking problems in
single-rate sampled-data systems.

All work mentioned above is in the single-rate setting. However,
multirate sampled-data systems arise in a more natural way. In gen-
eral, faster A/D and D/A conversions lead to better performance in
digital control systems but also mean higher cost in implementation.
Allowing different speeds for A/D and D/A conversions results in
better trade-offs- between performance and implementation cost.

The concept of multirate sampling was pioneered by Kranc [18].
Recent interests in multirate systems are reflected in the LQG/LQR
designs [5, 1, 19, 7], the parametrization of stabilizing controllers
[20, 23], and among others. While the research on single-rate direct
digital design has been active, little work has been done on multi-
rate systems using the direct design approach. The main obstacle
is perhaps the so-called causality constraint [20, 23], which presents
a unique difficulty for synthesizing the feedthrough term in lifted
controllers. A similar constraint also arises in discrete-time peri-
odic control; interesting solutions were obtained for the H7, problem
[10, 11, 30] and the 712 problem [30]. In this paper we treat multirate
designs directly from a sampled-data point of view and use matrix
factorization theory to tackle causality constraints.

The organization of this paper is as follows. Section 2 presents
the multirate setup for our study and discusses desirable properties
of multirate controllers. Section 3 extends the lifting idea in [4] to
the multirate case. Section 4 formulates and solves explictly the
multirate 74-optimal control problem using the lifting presented in
Section 3. Section 5 is devoted to the multirate 'H. control proW
lert We show how to reduce the multirate sampled-data problem
to a dicrete-time X,0 problem with causality constraint. The latter
problem is then solved explicitly using frequency-domain methods.
We refer to [22] for proofs and details.

The notation is quite standard. We use I to denote the space of
sequences, perhaps vector-valued, defined on the time set {0,1 2, }.
The external direct sum of n copies of I is denoted t. The space 12
is a subspace of £ of square-sumrmable sequences. Similarly for the
external direct sum £. If G is a linear time-invariant (LTI) system,
we shall not distinguish G from its transfer function. Finally, for an
operator K and an operator matrix
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the associated linear fractional transformation is denoted

F(P, K) = Pl + P12K(I - P22K)-'P21.
Of course, the domains and co-domains of the operators must be
compatible and the inverse must exist.

2 Setup

The setup of the paper is shown in Figure 1, where G is an analog
plant, Smh an ideal sampler with period mh, Hnh a zero-order hold

Figure 1: A multirate control system

with period nh, and Kd a multirate digital controller which is syn-
chronized with Sih and H,n, by a lock in the sense that K4 takes
in a value of the sampled measurement tb at times t = k(mh), k > 0,
and outputs a value of the control sequence v to the hold device at
t = k(nh), k > 0- We shall assume throughout the paper that m and
n are coprme integers.

This setup is not the most general one as in [20, 23]; in fact,
it has a uniform sampling rate and a uniform hold rate. But since
the ratio o the two rates can be any positive rational number, this
setup captures all the essential features in multirate systems while
maintains some darity in the exposition. Extensions to more general
-setup are possble {8].

We shA consider only the analog G which are TI, causal, and
finite-dimensional. WYhat are the corresponding concepts for the mul-
tirate controler K4? Throughout Kd is regarded as a linear map from
t to t. Since the input and output time sales are not compatible,
the single-rate definitions must be modified.

The sampled-data controller HnhKdS,Sph as a continuous-time op-
erator is in general time-varying. However, note that both Sink
and H,, are penrodic elements, their least common period being
T = mnh; so, by proper choice of K4 it is possible that H,,IKIS,,h is
T-periodic in continuous time. Now let U be the unit time delay on
I and U* the unit time advance. We define Kd to be (m, n)-periodc
if

(U-)mK4Un = Kd,
Then it is not hard to see that HnhKdSS,,,, is T-periodic iff K4 is
(m, n)-periodic.
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This periodicity implies a deeper fact if we lift Kd properly. Define
the discrete lifting operator L4, : I C via v = Lmv:

v(O) v(m) 1

Wv()v (1)^, } s
I v(m-1) v(2m- 1) J

Similarly for Ln. Now define the lifted controller

Kd:= L,,KILjn (1)

This is now single-rate with the underlying period being T. Then K4
is time-invariant iff Kd is (m, n)-periodic.

Next is causality. Again we require that Hn,hKdSmh% be causal
in continuous time. This condition translates to an interesting con-
straint on Kd. To see this more clearly, we look at the lifted controller

Kd. The feedthrough term D in Kd is an m x n block matrix, namely,

* . Dm_l,n-I J

Doo
D==

- Dm-i,O

Now the causality of HnhKdSmh translates exactly to the causality
of Kd and a constraint on D, namely,

Dii = 0, whenever im > in.

This condition on D will be called the (m, n)-causality constraint.
For ease of reference, the set of all f satisfying the (m, n)-causality
constraint is denoted by Q(m, n).

We say Kd is (m, n)-causal if the single-rate K1 is causal and
D satisfies the (m, n)-causality -constraint. It follows then that the
sampled-data controller H,nhKdSmh is causal in continuous time iff
Kd is (m, n)-causal. More general treatment of these concepts can be
found in, e.g., [20, 231.

A similar notion is that of strict causality. We say D satisfies the
strict (m, n) -causality constraint if

Dii = 0, whenever jm > in.

The set of all such D is fW(m, n). It follows that HnhKdSmi, is strictly
causal in continuous time iff Kd is causal and D E Iti(m, n).

Finally, we turn to finite dimensionality of the controller Kd. This
is again best explained in terms of Kd. Assume Kd is (m, n)-periodic
and (m, n)-causal. Then from the previous discussion Kd is LTI and
causal. We furthermore assume Kd is finite-dimensional. Thus Kd
has a state model

A Bo ... Bn 1
= Co Doo ... Do,n- j

Cm-' D,nm-,o ... Dm-l,n-

The corresponding difference equations for Kd (v = Kd4) are

n-1

7(k+1) = An(k)+ZBj3t(nk+j),
j,..o
n-I

u(mkk+i) = Ciq(k)+ ZD3t(nk+ j), i= O, 1'...m- 1.(3)
'j=O

Here i7, the state for K1d, iS updated every T = mnh seconds and
v every nh. seconds. Such difference equations can be implemented
on microprocessors with only finite memory because the vector q is

finite-dimensional.
In summary, in this paper we are interested in the class of mul-

tirate controllers Kd4 which are (m, n)-periodic, (m, n)-causal, and
finite-dimensional; this class-is called the admissible class of Kd and

(2)

can be modeled by the difference equations (2) and (3) with DXi = 0
when jm > in. The corresponding admissible class of Kd is char-
acterized by LTI, causal, and finite-dimensional K4 with the same
constraint on D.

3 Multirate Lifting

The single-rate lifting technique [28, 31, 2, 4] is very powerful in
sampled-data control because it converts a periodic sampled-data
system into an LTI discrete system with infinite-dimensional input
and output spaces. In this section we shall extend this technique to
the multirate case.

In Figure 1, partition G according to its inputs and outputs and
bring in a state model:

0r 21
A B, B2

1. 21 0221
C 0 12 ~.J2 IC2 0 D22J

(4)

Now move Smh and Nnh into the plant to get F(G0,HhdSmh) =
F(G0d, Kd), where

SmhG21 SmhG22Hnh j

With our assumptions on Kd, F(Gd, K4) is T-periodic in continuous
time. So the idea of lifting can be used.

Following [4], let £ be any finite-dimensional Eucidean space, 6"
be the external direct sum of n copies of £, I be £2[°, T), and 42(K)
be the function-valued sequence space [4]. To handle unbounded sig-
nals, we bring in the two extended spaces £2e[O, oo) and 24e(KC) de-
fined in the obvious way. The lifting operator LT, mapping C2[O, no)
to 12,(K) is defined by

= LTYX4 k(t) =y(t+kT), O-< t <T.

Now we lift the system F(G0d, Kd) with respect to the period T.
Define

G- r[LTG11Lj' LTGl2HIfhL;l1U [ LnSnShG2iLj1 LnSmhG22HnhL;' J (5)

and Ki again as in (1) to get the lifted system Y(GS,Kd). We saw
in Section 2 that Kd is LTI; it is not hard to see that G0d too is LTI.
So F(G2d, Kd) represents a discrete LTI system. It is easily verified
that 7(Gd, Kd) = LrF(G, HnKidSmh)Ljt. The usefulness of this
relationship is due to the fact that the operators LT and L-' preserve
norms.

Now with a state model for G in (4), we can derive a state-space
representation for G0d which maps 12,(K) ED C tto C2,(KC) $ P:

Ad Al B2d
Gsd Cl ft1ll D12

C2d ft21 D22d

Here Ad, B1d, C2d, D22d are matrices and the rest are operators as
follows:

Bft: KC-< ,
DI,: K -K C,
f21: K -+ en.

C1: C + ,

DC2: Km-C,

The explicit expressions in terms of the realization of G are given
in [22] an-d are omitted here for space consideration. Note that
D22d E Q(n, m). Furthermore, D22d E fS(n, m) if G22 is strictly
causal (D22 = 0).
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4 X2-Optimal Control

This section treats the first synthesis problem: Design an admissible
Kd to achieve internal stability and minimize some generalized 7H2
performance measure.

First of all, let us look at the performance measure. Recall that
for an admissible Kd, the closed-loop system Y(G, H,hKdSmh) in
Figure 1 is T-periodic. Thus we adopt the generalized XH2 measure
proposed for periodic systems in [17, 3].

Let F be a continuous-time, T-periodic, causal system described
by the following integral operator

(Fu)(t) = jf(t, r)u(r) dr.

We assume that f, the matrix-valued impulse response of F, is locally
square-integrable. The periodicity of F implies f(t + T, r + T) =
f(tyr), and the causality implies that f(t, r) = 0 if r > t. If f is
square-integrable on [0, oo) x [0,7T), we can define a norm for F as
follows [17, 3]:

IIFIlK = {' J J trace [f'(t. r)f(t. r)] dt dT}

Now we lift F to get F := LTFL-1. The lifted system F
12e(K) * t2,(IC) can be described by (y = F u)

Yk

where f., i > 0, map K to KC via

T

(L. U)(t) |f(t + iT, r)u(-r) dr, O t < T.

F is LTI in discrete time; its transfer function is defined as

F(A) = SfLA'.
.=O

The local square-integrability of f(t, r) implies that the operators
f., i > 0, are Hilbert-Schmidt operators [32]. Moreover, the set of
Hilbert-Schmidt operators equipped with the Hilbert-Schmidt norm,
11 IjS7 is a Hilbert space [13]. Thus the transfer function F is a
Hilbert-space vector-valued function on some subset of C. We say
the function F belongs to H2 if

E: _I' HS) 0
i=O

and the left-hand side is defined to be its X12 norm, denoted 11E112
[26]. It follows from [31 that F is in 7X2 iff every element of f is
square-integrable on [0, oo) x [0, T); in this case, *11E112 = IFIYp|.

For internal stability of Figure 1, let the plant state be x and the
controller state be y. Define the continuous-time vector

[x(t)1tad(t):=[ i(k) J fkT < t < (k + 1)T.

The (autonomous) multirate sampled-data systemjs internally stable,
or Kd internally stabilizes G, if for any initial value Xd(to), 0 < to <
T7 ZX.d - 0 asEt - Xo.

We need a few standing assumptions in this section about the
plant G in (4):

1. (A, B2) is stabilizable and (C2, A) is detectable;

2. the period T is non-pathological with respect to G [16, 6];

3. D22 = 0.

Assumptions 1 and 2 are mild and standard. Assumption 3 is for the
well-posedness of the closed-loop system. It follows that Kd internally
stabilizes G iff Kd internally stabilizes G22 in discrete time, where G22
is a standard discrete system.

We can now state the 712-oPtimal control problem precisely: Given
G, m, n, and h, design an admissible K,d to provide internal stabil-
ity and minimize j.F(G, H,hKdSnh)llp, . By the above discussion,
we can recast the problem exactly in the lifted spaces: Design an
admissible K,d to internally stabilize G22 and minimize the 712 norm
of .(G,d, Kd). This I12 problem wil be solved using a frequency-
domain approach. The problem is harder than the single-rate one
[17, 3] due to the facts that D21 is nonzero and that Kd must satisfy
the causality constraint.

Now bring in a doubly-coprime factorization for the real rational
transfer matrix C22:

£22 = NM-' = M-12

[cX Y][M Y

with M(0) = I and M(0) = I. It follows from [20, 23] that the set of
admissible Kd which internally stabilize G is parametrized by

Kd = (Y - MQ)(X- NQ)-1, Q E 7R?o7, Q(O) E Q(m,n).
With this controller applied, the closed-loop map is

F(Gq,d,Kd) = T- T2QT3,
where TI, T2, T3 are given by

Ti = !2ii + G12Mf!2'2,
T2 = G12M,
T3 = MG_1.

Therefore, the multirate 712 problem is equivalent to the following
constrained XH2 model-matching problem

inrf lnT' - T2QT3112.QE'R7too,Q(o)EO
(6)

Here we used Q for f(m, n) to simplify notation. Note that T1, T2, 73
are all operator-valued. For an operator-valued transfer function
T(A), denote the transfer function of the adjoint system by T(A)
T*(1/A). To proceed further, we need one additional assumption:

4. For every A on the unit circle, T2(A) and Tj'(A) are both injec-
tive.

Note that T7ZT2 and T3Tj) are both matrix-valued. It follows that
T77T2 and T3T2) are both para-symmetric real-rational matrices and
have ful ranks on the unit circle (Assumption 4). So we can perform
spectral factorizations Tj T2 = T7ZT2, and T3T2 = T&3,7T7 with T2,
T71, T377, T775 e ?RH. An inner-outer factorization 72 = T2iT2o
and a co-inner-outer factorization T3 = T3w7T36 can be obtained by
defining

T2, = T2T71 T3,i = T'oTs.
Define the real-rational matrix in C2

Rl =~~T,T;TZ<
and denote the constant term of RI, by Rllo. Let IN2 : £2 - 2
and llpL : £2 -. 71 be the orthogonal projections. We are now set
up to state the main result of this section.
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Theorem I The optimal Q in (6) is given by

Qopt = Qo + AT2o' { llxt [A\-I(Rl1 - T20QoT3o)] } Ti,-!o
where the constant matrix Qo is the optimal Q(0) solving

min IIR1o - T2j0()Q(0)T3n,(0)112. (7)
Q(O)Efl

Now we look at how to use matrix factorization theory to find Qo
solving (7). For square and nonsingular matrices T20(0) and T3o(0),
bring in factorizations

T2O(O) = U2R2, T3,,(0) =R3U3
where U2, R2, U3, R3 are all square, U2, U3 are orthogonal (U2U2 =
I, UU3 = I), and P2,R3 are lower-triangular. The existence and

computation of such factorizations follow analogously from those of
the well-known QR factorization. Recall that the 2-norm for matrices
is induced by the inner product:

(A, B) := trace (A'B).

Thus the subspace Q has its orthogonal complement fl-L in the space
of matrices of appropriate dimensions. Let 1n and ll.L be the or-
thogonal projections to Q and f'- respectively. It follows then that
IIn amounts to simply retaining the blocks corresponding to the un-
constrained blocks in Q and zeroing the other blocks.

Lemma I The optimal Q(O) solving (7) is

Qo = Rj'1En[U2Ri10oU3R'3l-

Finally, we refer to [22] for the proofs of the results and for an
explicit and detailed procedure for computation.

5 Hoo-Optimal Control

In this section we shaUl study the multirate H4, control problem:
Design an admissible Kd to provide internal stability and achieve a
pre-specified level of 74, performance, i.e., INF(G, HnACKdSnA)Il < 7,
where 'y is positive and the norm is £2-induced. By proper scaling,
we can always take 7 = 1.

In principle, the multirate lifting procedure in Section 3 could
be employed to reduce the problem to a discrete-time X,X problem
with causality constraint. However, in this section we shall present a
simpler reduction process which is based on recent single-rate results
[2, 15] and the discrete lifting. Then the constrained discrete 7c,
problem is solved explicitly.

With the state model of G in (4), Assumptions 1-3 made in Sec-
tion 4 are in force in this section. Let fhlh £210,h) - L2[0,h) be
defined by

(Dllhw)(t) = Cl e(tr)AB.w(r)dr.

An additional assumption is needed:

4'. IIQ1I11 < 1.

This is a necessary condition for II;F(G, H.AKKdSma)II < 1; its com-
putation was studied in [2].

Corresponding to the two integers m and n, introduce the discrete
sampling operator S,, : - t defined via

t = Sm S*+(k) = 0(mk)
and the discrete hold operator HII tI-- I via

t=H= kH * (kn+ j)=4(k), j= 0,1,-,n-1.

Now we bring in a discrete LTI system

rAd Bld B2d
Gd:= Cld Dild Dl2d .

C2d 0 0
(8)

Here Gd is an eqUivalent system for the single-rate 7s, asmpled-data
problem with sampling period h; several sets of realization matrices
were given in several recent papers, e.g., [2, 15]. Define the lifted
discrete system Kd as in Section 2 and

[Lmn 0 ][L?1 a]
Gd- 0 LnSm Jd 0 HnL -

It is not hard to check that Gd is LTI, causal, and finite-dimensional.
The following result establishes the connection between the multirate
7, problem and a discrete 7£,, problem.

Theorem 2 Under Assumptions 1-3 and 4', we have

(i) Kd internally stabilizes G iff Kd internally stabilizes Gd;

(ii) IIY(G,HnhKdSmh)ll C 1 iff jY(Gd! IKd)jj- < 1.
A different reduction process was recently reported in [29]. This

theorem also implies that the multirate XO,,O problem can be recast as
a constrained 74,,c model-matching problem. To see this, we note that
the (2,2) block in Gd, a22d, is (n, m)-strictly causal. Parametrize all
the stabilizing and admissible controllers Kd for G2d as in Section 4
to get

Y(Gd, =d)- T1 - T2QT3,
where T1,T2,T3 are real-rational matrices in 74,O and can be found
from Gd. Then the multirate O,,O problem is equivalent to the dis-
crete 74, model-matching problem of finding a Q E 7Z74 with the
constraint Q(0) E fl(m, n) such that

lIT1 - T2QT311,,, < 1. (9)

If such a Q exists, we-say the multirate 71,,, problem is solvable.
From now on we shall focus on this constrained £,,, problem.

For regularity, we need -an assumption similar to Assumption 4 in
Section 4:

5'. For every A on the unit circle, T2(A) and T7 (A) are both injec-
tive.

Under this assumption, perform an inner-outer factorization T2 =
T2iT20 and an co-inner-outer factorization T3 = TseoT3,i, where T20
and T3,, are both invertible over R7?74. Apply unitary transforma-
tions to T, - T2QT3 and define

R = [1 T , [T1[ 3I 1- T,Z-,iT3> ]i

We~shall consider the causality constraint at a later stage; let us now
drop this constraint on Q(0) and look at the unconstrained problem.
This allows us to use the powerful result in [12] to parametrize all Q
in RX74, achieving (9). The unconstrained problem in (9) is solvable
iff

r

(10)

Moreover, if (10) is satisfied, then there exists an 7Z74, matrix

[K21, K22]
with K721,K;I' EIRXiZ, and IIKI2211o < 1 such that all Q E RZ?iw
satisfying (9) are characterized by

Q = F(K,Qi), QieERH., IQillk < 1. (11)
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We refer to [12] for the details of checking inequality (10) and the
expression of K. Hereafter, we shall assume that (10) is true.

By (11), Q(0) depends on QI(O) in a linear fractional manner.
To simplify this, introduce another linear fractional transformation
Qi = F(V, Q2), where V, partitioned as usual, is a constant unitary
matrix:

=r K22(0)
L[I- K22(0)K' )]1/

[I - K' (0)K22(0)]"l2 1

-K22(0) J

It follows that the mapping Qi2 Qi is bijective from the open
unit ball of Rhi,,,, onto itself [24]. Thus all Q satisfying (9) can be
re-parametrized by

Q = F[K,7(TM Q2)]
= 7(L,Q2), Q2 E'Ri,,, IfQ211Io <1.

It can be checked that L22(0) = 0 and L12(0), L21(0) are still nonsin-
gular. Thus

Q(0) = L11(0) + L12(0)Q2(0)L21(0). (12)
Now we bring in the causality constraint on Q(0). Our goal is

to find the necessary and sufficient condition for the existence of a
Q2 E Rhs with lQ211Q < 1 such that Q(0) in (12) lies in f(vr,n).
Since Q(0) depends only on Q2(0) and in general iIQ211k > IIQ2(0)11,
the problem is the same as searching a constant matrix Q2(0) with
IIQ2(O)I < 1 such that Q(0) E Q(m, n), the norm being the largest
singular value of Q2(0).

As in Section 4, introduce matrix factorizations

L12(0) = R1U1, L21(0) = -U2R2,

where RI, R2, U1, U2 are all square, R1, R2 are lower-triangular, and
U1, U2 are orthogonal. Substitute the factorizations into (12) and
pre- and post-multiply by Rj1 and R'1 respectively to get

R-'Q(0)RI' = Rlril(O)R4' - U1Q2(0)U2.
Define

Define
W:= Rr'Lln(0)R1-, P := U1Q2(0)U2.

It follows that IIQ2(0)I1 < 1 iff IIPII < 1 and Q(O) E QZ(m,n) iff
R'1 Q(0)Ri1 e f2(m, n) [20]. Therefore, we arrive at the following
equivalent matrix problem: Given W, find P with IPII c< 1 such that
W - P e (m, n).

Partition W and P as required in Q(m,n). Apparently, P must
cancel the fl'-part of W. The solution is somewhat complicated.
First, let us distinguish two cases: The fixed blocks in P, or the zero
blocks in fl(m, n), take the (block) row-echelon form if m < n and the
(block) colnmn-echelon form if n < m. Next, we need to locate all
the maximum Jfied submatrices of P, namely, the submatrices which
consist of only the fixed blocks and have maximum sizes. To do this,
denote the integer part of a positive real number x by LzJ. If m C n,
let I = m and for k = 0,1,. .,1- 1, define

MsW = k + 1 blocksMa ~)I..

m blocks

r 0 1 )
Nk = ;blocks

If n < m, define I =n - 1 and for k =0,1. 1-1, define

Ma=[I *.. o]}1+v~~k+rimblockcs

m blocks

Nk= K n blocks

n - 1- k blocks

Then it can be checked that MkWNk, k = 0,1, .. .,- 1, are exactly
those maximum fixed submatrices of P. Define

,s:=max{I1.MkWNkjI: k=0,1,...,1 -1}.

Theorem 3 Under Assumptions 1-3 and 4'-St the multirate 4,,
problem is solvable, i.e., there exists a matrix P with DIPII < 1 such
that W - PE fl(m, n), iffp < 1.

The proof is based on a result on norm preserving dilations from
operator theory [21, 9], which also provides a constructive procedure
to determine the free blocks in P to get IIPII = i; for details, see [22].

To summarize, let us list the solvability conditions for the multi-
rate X, control problem I1|(G, H,,hKdSmh,)I| < 1:

(a), IIDll-ll < l;

(b) II 2 Rfl RIn,2c,II < 1;

(c) A < 1.

Condition (a) was studied in detail in [2]. Condition (b) is the solv-
ability condition for a standard 'o,, problem. When conditions (a-
b) hold, a necessary and sufficient test for condition (c) is given in
Theorem 3; it amounts to computing the norms of several constant
matrices.

6 Concluding Remarks
In this paper we have addressed causality constraints in direct designs
of multirate sampled-data control systems using X2 and X4,, perfor-
mance measures. Explicit solutions are given for the X2-optimal con-
troller and the 4,X-suboptimal controllers which achieve the perfor-
mance requirement 11F(G, H,ahKdSmn)I1 < 1. 74O controllers which
are arbitrarily dose to optimality can be computed based on the solv-
ability conditions (a-c) (with proper scaling) and a standard bisection
search. Finally, we mention that extensions to the more general setup
have been made using operators between appropriate nests [8].
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