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AESTRACT 

Direct digital design of general multirate sampled-data 
systems is considered. To tackle causality constraints, a new 
and natural framework is proposed using nest operators and 
nest algebras. Based on this framework an explicit solution to 
the multirate H, control problem is developed in the frequency 
domain. 

I. INTRODUCTION 

There are several reasons to use an MR (mult,irate) sam- 
pling scheme in digital control systems: (1) In complex, mul- 
t.ivariable control systems, oft.en it is unrealistic to sample all 
physical signals uniformly at one single rate. (2) For signals 
with different bandwidths, better trade-offs between perfor- 
mance and implementation cost can be obtained using A/D 
and D/A converters at different rat,es. (3) MR control systems 
can achieve what single-rate systems cannot; for example, gain 
margin improvement and simult,aneous st.ahilization [16]. (4) 
Like single-rate controllers, many MR contxollers do not violate 
the finite memory constraint. in microprocessors. 

The study of MR systems began in late 1950's [17]; re- 
cent interests are reflected in t.he LQG/I,QR designs [l, 5, 211, 
the parametrization of all stabilizing controllers [19, 241, and 
the work in [a, 131. Based on [19, 241, optimal MR control is 
potentially possible; but the causality constraint in cont,rollers 
must be respected in design. This is similar to the case of 
discrete-time periodic control [9, 11, 311. 

Our work has been influenced by the recent trend in SD 
(sampled-dat.a) research, namely, direct digital design based 
on continuous-time performance specs. Related work on single- 
rate 7& design has been completed in [14,29,4,  26, 28, 15,271. 
In [23], we performed direct designs for an MR system with a 
uniform sampling rate and a uniform hold rate and proposed 
effective ways to tackle the caiisalit,y const,raint. Our goal in 
this paper is to treat general MR syst,ems and give explicit 
solution to the 1-1, problem. 

Two basic elements in SD systems are S,, the periodic 
sampler, and H,, the (zero-order) hold, both with period r 
and synchronized at t = 0. The general MR system is shown 
in Figure 1. Here, G is the continuous-time generalized plant 
with two input.s, the exogenous input U, and the control input U, 

and two output,s, the signal z to be controlled and the measured 
signal 1. S and H are MR sampling and hold operators and 
are defined as follows: 

1-  s= [ e.. I , .=[  ... 
sm, h IJn, h 

sm, h Hn, h 

'The first author was support,ed by NSERC and the second by 
IMA with funds provided by NSF. 

Figure 1: The general MR setup 

If we partition the signals conformably 

I =  

then 

$,(k) = y i ( k m i h ) ,  i = 1 , .  . . ,p  

UJt) = v,(k), kn,h 5 t < (k + l)n,h, j = 1,. . . , q. 

h'd is the discrete-time MR controller, implemented via a mi- 
croprocessor; it is synchronized with S and 31 in the sense that 
it inputs a value from the i-th channel at times k(mih) and 
outputs a value to the j-th channel at k(njh). 

Introduce a useful notation: Given an operator A' and an 
onerator matrix 

the associated linear fractional transformation is denoted 

T(P,h') = A 1  + A2K(Z - Pz2K)-'P21. 

Here we assume that the domains and co-domains of the opera- 
tors are compatible and the inverse exists. With this notation, 
the closed-loop map w I+ P in Figure 1 is F(G,  HKdS). 

Throughout the paper, G is LTI and finite-dimensional 
and h'd is h e a r ;  additional properties of Kd will be discussed 
in Section 3. Our purpose is to solve the following MR 'H, 
control problem: Design a Kd to give closed-loop stability and 
achieve IIT(G,'HKdS)II < y for a give y > 0; here the norm is 
&-induced and by proper scaling we can take y = 1. 

This paper is organized as follows. In Section 2, we give 
some concepts and facts on nest operators and nest algebras. 
Section 3 discusses desirable properties for MR controllers; in 
particular, causality is characterized using nest operators. Sec- 
tion 4 deals with internal stability of the setup in Figure 1. 
Section 5 contains the main contribution of this paper, namely, 
an explicit solution to the M R  'H, control problem. 

Throughout the paper, we choose to use A-transforms in- 
stead of z-transforms, where X = %-'; in this case, discrete- 
time spaces such as 7-11 and H, are defined on the open unit 
disk. Finally, G denotes the transfer matrix of G. 
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11. PRELIMINARIES 

In this section we address some topics and computation 
on nests and nest algebras which are useful in the sequel. We 
shall rest,rict our attention to finite-dimensional spaces; more 
general treatment can be found io [3, 71. 

Let X be a finite-dimensional space. A nest in X ,  denoted 
{ X i } ,  is a chain of subspaces in S, including {0} and A', with 
the nonincreasing ordering: 

x = xo 2 XI 2 . * .  2 1 X ,  = (0). 

Let X and y be both finitedimensional inner-product 
spaces with nests ( X i }  and { y , }  respectively. Assume the two 
nests have the same number of subspaces, say, n + 1 as above. 
A linear map T : X + y is a nest operator if 

TXi E Yi, i = 0 , 1 , . * * , n .  (1)  

Let I I ,  : X + Xi and IIy, : Y -+ Y ,  be orthogonal projections. 
Then the condition in (1) is eqiiivalent to 

( I  - IIy,)TII,y, = 0 ,  i = 0, I , . . . .  R. 

The set of all such operators is denoted M ( { X i } , { y i } )  and 
abbreviated N ( { X i } )  if { X i }  = {Yi } .  The following properties 
are straightforward to verify. 

Lemma 1: 

( 4  If TI E N ( { X i } ? { Y t } )  and T2 E N ( { Y i } , { Z i } ) ,  then 

(b) n / ( ( X , } )  forms an algebra, called nest algebra. 

(c) If T E N ( { X i } )  and Tis invert.ible, then T-I E N ( { & } ) .  
It is a useful fact that every operator on X can be factored 

T ~ T I  E N ( { X i } j  { Z i } ) .  

as the product of a unitary operator and a nest operator. 

Lemma 2: Let T be an  operator on X. 

(a) There exists a unitary operator U1 on X and an operator 
R I  in N({Xi))  such that T = U1 R I .  

(b) There exists an operator R2 in N({,Vi}) and a unitary 
operator U2 on X such that T = R2U2. 

Since x, _> X i + ] ,  we write (Xi+1);, as the orthogonal 
complement of Xi+] in X , .  Decompose X into 

~ = ( x l ) $ ~  ~ ~ . * . @ ( e ~ n ) i ~ - ~ .  

It. follows that under this decomposition any operator R be- 
longs to N ( { X i ) )  iff its matrix is block lower-triangular, all 
the diagonal blocks being sqiiare. Thus the results in Lemma 2 
follow from the well-known QR factorization. 

Finally, we look at  a dist.ance problem. Let. T be a linear 
operator X - y .  We want to find the distance (via induced 
norms) of T to N ( { X , } ,  {Y i } ) ,  abbreviated N: 

dist (T,M := inf [IT - QII. 
Q€N 

Theorem 1: 

dist (T ,N)  = max ll(I - IIy,)TIIx, 11. 

This is Corollary 9.2 in [7] specialized to operators on 
finite-dimensional spaces; it is an extension of a result in  [22] 

on norm-preserving dilation of operators, which is specialized 
to matrices below. We denote the Moore-Penrose generalized 
inverse of a matrix M by Mt. 

Lemma 9: Assume that A, B, C are fixed matrices of a p  
propriate dimensions. Then 

Moreover, a minimizing X is given by 

x = - B A * ( ~ I  - AA*)+c. 

It will be of interest to us how to compute a Q to achieve 
the infimum in (2); this can be done by sequentially applying 
Lemma 3: 

Step 1 Decompose the spaces X and y :  

x = ( X l ) &  @(X2)i1 @*..@(xn,in-] 

Y = ( ~ 1 ) ; ~  @ ( Y Z ) $ ,  @ . - * e  (Yn);n-l* 

We get matrix representations for T and Q ,  partitioned 
in the obvious way as n x n block matrices, with Qij = 
0 , j  > a .  

Step 2 Define Xi j  = T i j  - Qi j ,  i 2 j ,  and 

... 

... 

... 

The problem reduces to 

where Ti, are fixed. Minimizing Xi ,  can be selected 
as follows. First, set X11, . . . , Xnl and Xn2, . . . , Xnn 
to zero. Second, choose Xzz by Lemma 3 such that 
ll(I - ll ,)PIIxlll is minimized. Fix this X Z Z .  Third, 
choose r X 3 2  X33 ] again by Lemma 3 to minimize 
ll(I - IIy,)PIIx,ll. In this way, we can find all Xi ,  such 
that 

min llPll = mqx Il(1- IIy,)TIIx,(l.  

This procedure also gives a constructive proof of the the- 
X*j  

orem. 

111. MULTIRATE SYSTEMS 

In this section we shall examine the MR controller h'd in 
Figure 1 as a discrete-time linear operator. To be studied are 
three basic properties: periodicity, causality, and finite dimen- 
sionali ty. 

First, we look at  periodicity. Let I be the least common 
multiple of the set of integers { m l , .  . . , mp, nl ,. * * , np}. Thus 
U := lh is the least common period for all sampling and hold 
channels. h'd can be chosen so that ?ih'ds is a-periodic in 
continuous time. For this, we need a few definitions. 

Let t be the space of sequences, perhaps vector-valued, 
defined on the time set {0,1,2,-- .} .  Let U be the unit time 
delay on t and U' the unit time advance. Define 
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w e  say K d  is (mi, n, )-periodic if 

(U *)nl Uml ] ,<d[ '.. ] = K d .  [ (U')"* Um* 

It follows easily that ' H K d s  b +periodic in continuous time 
iff K d  is (mi,nj)-p&odic. Since C LTI, the SD system in 
Figure 1 is a-periodic if K d  is (mi, nj)-periodic. w e  shall refer 
to U as the syrtem period. 

Now we lift K d  to get an LTI system. For an integer 
m > 0, define the discrete lifting operator L, via 2 = Lmu, 

u(m - u(2m - 
and the operator matrices 

[ Lnl 1. .  1, Cm:= [ Lml e . .  1. 
An, Lm, 

The lifted controller is 5 = Ln h'dc;'. It is an easy matter to 
check, see, e.g., [20], that & is LTI iff K d  is (mi, n,)-periodic. 

Next is causality. For K d  to be implemrntable in real time, 
H K d s  must be causal in continuous time. This implies that 
5, as a single-rate system, must be causal; and moreover, the 
feedthrough term in J& must satisfy a certain constraint, 
that is, some blocks in Q must be zero [19, 241. Now let us 
characterize this constraint on 

Write 2 = &&; then ~ ( 0 )  = &(O). Let C be the set 
of sampling or hold instants in the interval [O,u) (modulo the 
base period h). This is a finite set of, say, n + 1 integers; order 
C increasingly (ur c ur+l): 

using nest operators. 

C = {ur : r = 0,1, -. - , n). 

Let k(0) and ~ ( 0 )  live in the finitedimensional spaces X and 
y respectively. For T = 0,1, 

= 
= 

a ,  n, define 

span (g(0) : $,(A) = 0 if Ami < 0,) 

span {g(O) : w,(A) = O if kn, < ur]. 
Xr 
yr 

X, and yr correspond to, respectively, the inputs and outputs 
occurring from time arh on. It is easily checked that { X r }  
and {Yr) are nests and that the causality condition on Q (the 
output a t  time a,h depends only on inputs up to urh) is exactly 

Ox, yr, T = O,l,* .* ,n.  

Thus we define 
For completeness, we define 

to be (mi,n,)-causalif & E N({Xr}, {Yr}). 
to be (m,, n,)-strictly causal if 

Some conclusions on causality issues [19] are transparent 

Lemma 5: 

from Lemmas 1 and 4 under this new formulation. 

(a) If e, is (mi,pk)-caud and b (pk,nj)-caud, then 
&Ql is (mi,nj)-causrl; furthermore, if Qi or & is 
strictly c a d ,  then 

(b) If Q is (mi,mi)-causal and invertible, then Q-' is 

(c) If Qis (mi, mi)-strictly causal, then (1-DJ-l exists and 

is also strictly causal. 

(mi, mi)-causal. 

is (mi,mi)-causal. 

We ansume K d  is (mi, nj)-periodic and -causal. Then & 
is LTI and causal. To get finitedimensional difference equa- 
tions for K d ,  we further aesume 5 is finite-dimensional. Thus 
h'd has state space equations - 

P 

9(k + 1) = A v ( ~ )  + Bi&(t), 
i m l  
P 

gj(k) = Cjv(L) + x D j i % ( k ) ,  j= 1,2, .**,9.* 
is1 

Note that +.+ = Lmi$i and 2, = Lnjuj. Partitioning the ma- 
trices accordingly 

[ (C,i,-i 1 3  

(C; 10 

Bi = [ (Bi)o (Bi)mi-i 3 9  Cj= 

4 (Dji)oo (Dji)O,m,-l 

[ :  (Dji)n,-l,o * - *  (Dji)nj-l,m,-I 

D,i = 

(certain blocks in Dji must be zero for the causality constraint), 
we get the difference equations for K d  (w = &+')E 

p mi-i 

9(k + 1) = A ~ ( L )  + (Bi).+i(tfii + s) 
i d  # S O '  

p mi-1 

Vj(kfij -k r) = (cj)r9(k) + (Dji)ra$i(kfii + s)i 
i l l  a m 0  

where the indices in (4) go as follows: j = 1,2, e - .  , q and T = 
O,l, .  - . , ii, - 1. These are the equations for implementing K d  

on computers and they require only finite memory. Note that 
the state vector 9,for K d  is updated every system period U. 

In summary, the admirsibleclass of & is characterized by 
LTI, causal, and finite-dimensional with Q (mi, nj)-causal. 

IV. INTERNAL STABILITY - DXr CYr+l,  t = O , l , * * * , n - l .  
In this section we look at  stability of Figure 1. We assume 

model: This means that the output a t  time U r + l h  depends only on the continuous has a 
inputs up to  time a r k  

use of terminology from a continuous-time viewpoint. c= [ g:; $1; ] = [*I. (3) 
The following lemma, which is easy to prove, justifies our 

Lemma 4: 
D21 

Let the plant state be z and the controller state be ( K d  is 
admissible). Note tha t  the system in Figure 1 is a-periodic. 
Define the continuous-time vector 

(a) 'Hh'ds is causal in continuous time iff & is causal and - D is (mi,nj)-cansal. 

(b)  Hh'& is strictly causal in contiunons time iff & is 
Z r d ( l )  := [ ] , k0 5 1 < (k + 1)U. causal and is (mi, nj)-strictly causal. 
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The (autonomous) system in Figure 1 is internally stable, or 
h'd internally stobilizes G, if for any initial value Z s d ( l O ) ,  O < 

Introduce G 2 2 d  = S G 2 2 ' H ,  the MR discretization of G 2 2 .  

NOW lift h'd as before and G 2 2 d  by % = L m G 2 2 d L n ' .  Be- 
cause G 2 2  is LTI and strictly causa), G 2 2 d  is (n,, mi)-periodic 
and -strictly causal. Thus % is LTI and causal with D22d 
(n,, m,)-strictly causal. In fact, a state model for can be 
obt.ained (Lemma 6 below). 

to < U ,  Z . d ( t )  * 0 a8 t + 00. 

Theorem 2: K d  internally stabilizes G iff & internally 
stabilizes k. 

The proof is contained in [6]. Sufficient conditions for the 
internal stability to  be achievable are that (A,  B 2 )  and ( C 2 ,  A )  
are stabilizable and detectable respectively and that the system 
period U is non-pathological in a certain sense, see, e.g., [18,23]. 

V. N,-OPTIMAL CONTROL 

to  give internal stability and achieve 1 1 F ( c d ,  h'di)II < 1, where 
the norm now is &-induced and the 31, discretization G d  (for 
7 = 1) has a state model 

The computation of the matrices in G d  is given in, e.g., [4]. 
In this way, we arrive at an equivalent discrete 'H, problem; 
however, h'dl is constrained t o  be of the form h'di = ' H n K d S m  

with h'd admissible. 

Discrete Lifting 

The system F ( G d ,  h'&) is single-rate with period h. The 
next step is to  lift to  get an LTI system with period U .  Define 
h'd as before and - 

L1 0 
0 CmSm - G d =  [ With reference to Figure 1, we now study the 'H, synthe- 

sis problem: Design an admissible h'd that internally stabilizes 
G and achieves 11?(G, 'Hh'ds)II < 1. 

The general idea in the solution is to reduce the MR prob- 
lem t.o a discrete 'H, model-matching problem with the causal- 
it,y constraint and then solve the constrained problem explicitly 
using techniqnes presented in Section 2 on nest operators and 
nest algebras. A special case of the reduction process was re- 
ported in [23]. 

We start with a state model for G in ( 5 )  with D I I  = 0 
and D 2 1  = 0. We shall assume that ( A ,  B 2 )  is stabilixable and 
( C 2 ,  A) is detectable. 

'H, Discretization 

The original problem is posed in continuous time; so the 
first step is to  recast it as a discrete-time problem with time- 
varying control. The reduction is based on recent advances in 
7-1, SD cont.rol in the single-rate setting. 

Introduce the discrete sampling operator Sm : C -, C de- 
fined via 

10 = Smd M +(k) = d(km) 
and t.he discrete hold operator H n  : C + P via 

v = H , , ~ M  u(kn+r)  = # ( A * ) ,  r = 0,1 , . . . ,n  - 1. 

It is easily checked that S m , h  = Sm, sh and I l n , h  = H h l l n j .  so 
the MR sampling and hold operators S and 3.1 can be factored 
as s = s m s h  and 'H = IIh'Hn, where 

Sm 1 Hn I 

s m =  [ ... 1, %n= [ * e .  1. 
sm, Hn, 

Defining K d l  = ' H n l ( d s m ,  we can view the MR system 
F(C, ' H h ' d s )  as a fictitious single-rate system F(G, S h  h'dl a h ) .  

Now the resiilts in, e.g., [4] are applicable. 
Let E,, ,  : & [ O ,  h) + Lz[O, h) be defined by 

to  get the lifted system F ( G d , h ' d ) .  Since G d  is LTI, causal, 
and finite-dimensional with G 2 2 d  strictly causal, we can show 
that C& is LTI, causal, and finite-dimensional. Moreover, the 
fcedtlirougli term &22d of % is (n,,mi)-strictly causal. In 
fact, a state model for & can be obtained using the lemma 
below. 

Let P be a discrete-time system with state E and the corre- 
sponding realization (A, B, C, D ) .  Let m,  n, fi, i i ,  I be positive 
integers such that m m  = nii = 1. Define 

- P := LmSm PHnL,' 

and the characteristic function on integers 

Lemma 6: A state model for is 

- p =  , 

D m - 1 . 0  e . *  Dm-1,n-1 

where 

( J t 1 ) n - I  

Di, = D ~ [ j n , ( j + l ) n ) ( i m )  + C A " - ' - r B X [ o , i m , ( r ) .  
r=jn 

The corresponding state vector is - < = S&. 

The lemma can be proven by manipulating the input- 
output equations for P. Note that the transfer matrices for 
all blocks in & can be obtained from this lemma. 

From t.he definitions of I& and &, we get after some al- 

gebra that F ( G d ,  K d )  = LiF(Gd, K d l ) L I I .  SO llF(Gd, K d ) l l  = 
1 1 F ( G d ,  h;li)II since LI is norm-preserving. Thus the equivalent 
LTI problem is now: Design an admissible & that internally 
stabilizes and achieves I I F ( c d ,  k d ) l [ . X  < 1. Notice that the 
feedthrough term &(O) must be (mi,n,)-causal; so this is a 
constrained 1-1, control problem in discrete time. 

( & l , h w ) ( t )  = C, e('-r)AB1ru(r) d r  4' 
and asstlme ~~~,,,J < 1. Since E,,, is the restriction 
of T(G, H J ~ J S )  on t2[0, h) ,  this condit,ion is necessary for 
1 1 F ( G , ' H K d S ) I I  < 1; how to verify this condition was stitdied 
in [4]. For the MR 'H, problem, invoke the single-rate re- 
sults t.0 get. the equivalent discrete-time problem: Design h'dl 
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Construined ModeEMatching Problem 

Parametrizing the stabilizing controllers for as in [lo], 

The causality constraint on &(O) translates exactly to Q(0) 
[19, 241. In this way we arrive at the constrain? 'H, 
model-matching problem: Find Q E an, with Q(0)  E 
N({Xr}, {yr}) (the nests {Xr} and {yr} were defined in Sec- 
tion 3) such that 

IITi - ~ ~ Q T ~ I ~ o o  < 1. 

If such a Q exists, we say the MR. 'H, problem is solvable. 
We note here that a different procedure was reported 

which converts an MR 'H, problem into a discrete model- 
matching problem [30]. 

An Ezplicit Solution 

following assumption: 
We write f w ( X )  for f ( A - ' ) ' .  For regularity, we need the 

For each 1x1 = 1, f 2 ( X )  and f:(X) are both injective. 

Under this assamption, there exists an inner-outer factorization 
f~ = f 2 j f z 0  and-an co-inner-outer factorization f'3 = f3cof3c,, 

where T2, and TJcO are both invertible over R'H,. Further- 
more, these factorizationsacan be performed in such a way that 
Tzo(0) E N({yr}) and T3c0(0) E N({Xr}) .  To see this, let 
us assume th t t  an inner-outer factorization T2 = f" j f20  is ob- 
tained with Tz,(O) Q N({Yr)). By Lemma 2, we have fac- 
toriaation fzO(O) = UlR1 where U1 is orthogonal and R1 E 
N( (Yr}). Then a new inner-outer factorization off;, is given 
by T 2  e: (TziU1)(U[fzo) with ( U [ f b ) ( O )  = RI E N({Yr}). A 
sjmilar argument applies to the co-inner-outer factorization of 

Now bring in an inner-onter factofization T; = T z i T z o  

and a co-inner-outer factorization ?3 = T3cof~ci  with fzO(O) E 
N({Yr}) and f;,,(O) E N({Xr}). Apply unitary transforma- 
tions to  f1 - f 2 Q f 3  and define 01 = f20@&eo and 

%CO* - . .  

via 

The constrained model-matching problem is-equivalent to the 
following four-block problem of finding a Q1 E R'H, with 
Oi(0) E N({Xr}, {Yr}) such that 

Dropping the causality constraint on Ql(0) temporarily 
allows us to  parametrize all Q1 in 'R'H, achieving (6). We 
know from [8] that there exists a Q 1  E R.7.1, such that (6) 
holds iff 

II [ ; ] iilna@Lall < 1. (5) 

If (7) is satisfied, then a procedure in [12] allows us  to  find an 

with kG1,kG1 E R'H, and 111?221/m < 1 such that all Q1 E 
R'H, satisfying (6) are characterized by 

41 = 7(k,42), 4 2  E ~ ' H o o ,  llQzlloc < 1. (6) 

We refer to  [12] for the details of checking inequality (7) and 
the expression of hi. Hereafter, we shall assume that (7) is 
true. This is also necessary for the solvability of the MR 'H, 
problem. 

In general k 2 2 ( 0 )  # 0, 80 $1(0) depends on &(O) in a 
linear fractional manner. However, it is porsible to simplify this 
relation by introducing another linear fractional transformation 
[23]: 

s z  = F(V, Q3). 

Here V, partitioned as usu$, is a-constant unitary matrix. I t  
follows that the mapping 9 3  I+ Qz is bijective from the open 
unit ball of R'H, onto itself [25]. Thus all Q1 satisfying (6) 
can be re-parametriaed by 

For L z z ( 0 )  = 0, we choose the unitary matrix V to be 

1 .  [ I  - k ; 2 ( 0 ) h i 2 2 ( 0 ) ]  l'z V =  [ &2(0) 

[ I  - k z z  (0)&2 (O)] - K z z  (0) 

2 can be obtained from k and V. It  can be checked that Llz(0) 
and ezl(0) are still nonsingular. 

To recap, the set of all Q1 E 231, achieving (6) is 
parametrized by 

Here e has the desirable properties that  2 2 z ( O )  = 0 ,  1 1 2 ( 0 )  

and E z l ( 0 )  are nonsingular. Thus 

This is an affine function &(O) w &(O). 
Now we bring in the causality constraint on Ol(0). Our 

goal is to find a 43 E 727.1, with II&ll, < 1 such that ol(0) in 
(9) lies in N({Xr},  {Yr}). Since Q1(0) depends only on &(O) 
and in general 11&11, 1 11O3(O)ll, the equivalent problem is 
tp find a constant matrix &(O) with 11Q3(0))1 < 1 such that 
Qi(0) E N. 

Now we use Lemma 2 to  reduce the problem to a distance 
problem. Introduce matrix factorizations (Lemma 2) 

where R I ,  Rz,  171, U2 are all invertible, U1, U2 are orthogonal, 
and R I ,  R 2  belongs to the nest algebras N({Yr}),N({Xr}) re- 
spectively. 

Substitute the factorizations into (9) and pre- and pt- 
multiply by R,' and 4-l respectively to get 

Define 

It  follows that &(O) E N({Xr}, {Yr}) iff W E N({Xr}, {Yr}) 
(Lemma I )  and llQa(O)11 < 1 iff llPll < 1. Therefore, we arrive 
at  the following equivalent matrix problem: Given T ,  find P 
with llPll < 1 such that W = T - P E N; or equivalently, find 
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W E Af such that llT - Wll < 1. This can be solved via the 
distance problem studied in Theorem 1: 

dist (T,A!) = mfx(ll(1- lly,)Tll~,II) =: p.  

Let W,t E A! achieve the distance, i.e., llT - W,tll = p. The 
following result summarizes what we have derived. 

Theomm 3: The matrix problem is solvable, i.e., there ex- 
ists a matrix P with IIPII < 1 such t.liat T - P € Af, iff p < 1. 
Moreover, if 11 < 1, P := T - W,t solves the problem with 
IlPll = P* 

How to compute p and W,, were discussed in the proce- 

To summarize, let us list the solvability conditions for the 
dure given a t  the end of section 2. 

MR H, control problem ( (F(G,  ‘HKdS)(( < 1: 

( 4  IlDllhll < 1; 

(c) c < 1- 

Condition (a) was studied in det.ai1 in [4] and would usually 
be satisfied for a reasonable design. Condition (b) is the solv- 
ability condition for a standard four-block ‘H, problem, see, 
e.g., [12] for checking this condition. When conditions (a-b) 
hold, condition (c) amounts to computing t.he norms of several 
constant mat.rices. 

Finally, we remark that. an MR ‘&-optimal control prob- 
lem is also solved explicitly in the full paper [6]. 
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