\mathcal{H}_{∞} Design of General Multirate Sampled-Data Control Systems ${ }^{1}$

Tongwen Chen
Dept. of Elect. \& Comp. Engg.
University of Calgary
Calgary, Alberta
Canada T2N 1N4

Li Qiu
Inst. for Math. \& Its Appl. University of Minnesota
Minneapolis, MN
USA 55455

Abstract

Direct digital design of general multirate sampled-data systems is considered. To tackle causality constraints, a new and natural framework is proposed using nest operators and nest algebras. Based on this framework an explicit solution to the multirate \mathcal{H}_{∞} control problem is developed in the frequency domain.

I. Introduction

There are several reasons to use an MR (multirate) sampling scheme in digital control systems: (1) In complex, multivariable control systems, often it is unrealistic to sample all physical signals uniformly at one single rate. (2) For signals with different bandwidths, better trade-offs between performance and implementation cost can be obtained using A / D and D / A converters at different rates. (3) MR control systems can achieve what single-rate systems cannot; for example, gain margin improvement and simultaneous stabilization [16]. (4) Like single-rate controllers, many MR controllers do not violate the finite memory constraint in microprocessors.

The study of MR systems began in late 1950's [17]; recent interests are reflected in the LQG/LQR designs [1,5,21], the parametrization of all stabilizing controllers [19, 24], and the work in [2, 13]. Based on [19, 24], optimal MR control is potentially possible; but the causality constraint in controllers must be respected in design. This is similar to the case of discrete-time periodic control [$9,11,31]$.

Our work has been influenced by the recent trend in SD (sampled-data) research, namely, direct digital design based on continuous-time performance specs. Related work on singlerate \mathcal{H}_{∞} design has been completed in $[14,29,4,26,28,15,27]$. In [23], we performed direct designs for an MR system with a uniform sampling rate and a uniform hold rate and proposed effective ways to tackle the causality constraint. Our goal in this paper is to treat general MR systems and give explicit solution to the \mathcal{H}_{∞} problem.

Two basic elements in SD systems are S_{τ}, the periodic sampler, and H_{T}, the (zero-order) hold, both with period τ and synchronized at $t=0$. The general MR system is shown in Figure 1. Here, G is the continuous-time generalized plant with two inputs, the exogenous input w and the control input u, and two outputs, the signal z to be controlled and the measured signal $y . S$ and \mathcal{H} are MR sampling and hold operators and are defined as follows:

$$
\mathcal{S}=\left[\begin{array}{lll}
S_{m_{1} h} & & \\
& \ddots & \\
& & S_{m_{p} h}
\end{array}\right], \mathcal{H}=\left[\begin{array}{lll}
H_{n_{1} h} & & \\
& \ddots & \\
& & H_{n_{q} h}
\end{array}\right] .
$$

[^0]

Figure 1: The general MR setup
If we partition the signals conformably

$$
y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{p}
\end{array}\right], \psi=\left[\begin{array}{c}
\psi_{1} \\
\vdots \\
\psi_{p}
\end{array}\right], v=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{q}
\end{array}\right], u=\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{q}
\end{array}\right]
$$

then

$$
\begin{aligned}
\psi_{i}(k) & =y_{i}\left(k m_{i} h\right), i=1, \cdots, p \\
u_{j}(t) & =v_{j}(k), k n_{j} h \leq t<(k+1) n_{j} h, j=1, \cdots, q .
\end{aligned}
$$

K_{d} is the discrete-time MR controller, implemented via a microprocessor; it is synchronized with \mathcal{S} and \mathcal{H} in the sense that it inputs a value from the i-th channel at times $k\left(m_{i} h\right)$ and outputs a value to the j-th channel at $k\left(n_{j} h\right)$.

Introduce a useful notation: Given an operator K and an operator matrix

$$
P=\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right],
$$

the associated linear fractional transformation is denoted

$$
\mathcal{F}(P, K)=P_{11}+P_{12} K\left(I-P_{22} K\right)^{-1} P_{21} .
$$

Here we assume that the domains and co-domains of the operators are compatible and the inverse exists. With this notation, the closed-loop map $w \mapsto z$ in Figure 1 is $\mathcal{F}\left(G, \mathcal{H} K_{d} \mathcal{S}\right)$.

Throughout the paper, G is LTI and finite-dimensional and K_{d} is linear; additional properties of K_{d} will be discussed in Section 3. Our purpose is to solve the following MR \mathcal{H}_{∞} control problem: Design a K_{d} to give closed-loop stability and achieve $\left\|\mathcal{F}\left(G, \mathcal{H} K_{d} \mathcal{S}\right)\right\|<\gamma$ for a give $\gamma>0$; here the norm is \mathcal{L}_{2}-induced and by proper scaling we can take $\gamma=1$.

This paper is organized as follows. In Section 2, we give some concepts and facts on nest operators and nest algebras. Section 3 discusses desirable properties for MR controllers; in particular, causality is characterized using nest operators. Section 4 deals with internal stability of the setup in Figure 1. Section 5 contains the main contribution of this paper, namely, an explicit solution to the MR \mathcal{H}_{∞} control problem.

Throughout the paper, we choose to use λ-transforms instead of z-transforms, where $\lambda=z^{-1}$; in this case, discretetime spaces such as \mathcal{H}_{2} and \mathcal{H}_{∞} are defined on the open unit disk. Finally, \hat{G} denotes the transfer matrix of G.

II. Preliminaries

In this section we address some topics and computation on nests and nest algebras which are useful in the sequel. We shall restrict our attention to finite-dimensional spaces; more general treatment can be found in [3, 7].

Let \mathcal{X} be a finite-dimensional space. A nest in \mathcal{X}, denoted $\left\{X_{i}\right\}$, is a chain of subspaces in X, including $\{0\}$ and X, with the nonincreasing ordering:

$$
\mathcal{X}=\mathcal{X}_{0} \supseteq \mathcal{X}_{1} \supseteq \cdots \supseteq \mathcal{X}_{n-1} \supseteq \boldsymbol{X}_{n}=\{0\}
$$

Let \mathcal{X} and \mathcal{Y} be both finite-dimensional inner-product spaces with nests $\left\{\mathcal{X}_{i}^{\prime}\right\}$ and $\left\{\mathcal{Y}_{i}\right\}$ respectively. Assume the two nests have the same number of subspaces, say, $n+1$ as above. A linear map $T: \mathcal{X} \rightarrow \mathcal{Y}$ is a nest operator if

$$
\begin{equation*}
T \mathcal{X}_{i} \subseteq \mathcal{Y}_{i}, \quad i=0,1, \cdots, n \tag{1}
\end{equation*}
$$

Let $\Pi_{\mathcal{X}_{i}}: \mathcal{X} \rightarrow \boldsymbol{X}_{i}$ and $\Pi y_{i}: \mathcal{Y} \rightarrow \mathcal{Y}_{i}$ be orthogonal projections. Then the condition in (1) is equivalent to

$$
\left(I-\Pi_{y_{i}}\right) T \Pi_{\mathcal{X}_{i}}=0, \quad i=0,1, \cdots, n
$$

The set of all such operators is denoted $\mathcal{N}\left(\left\{\mathcal{X}_{i}\right\},\left\{\mathcal{Y}_{i}\right\}\right)$ and abbreviated $\mathcal{N}\left(\left\{\mathcal{X}_{i}\right\}\right)$ if $\left\{\mathcal{X}_{i}\right\}=\left\{\mathcal{Y}_{i}\right\}$. The following properties are straightforward to verify.

Lemma 1:

(a) If $T_{1} \in \mathcal{N}\left(\left\{\mathcal{X}_{i}\right\},\left\{\mathcal{Y}_{i}\right\}\right)$ and $T_{2} \in \mathcal{N}\left(\left\{\mathcal{Y}_{i}\right\},\left\{\mathcal{Z}_{i}\right\}\right)$, then $T_{2} T_{1} \in \mathcal{N}\left(\left\{\mathcal{X}_{i}\right\},\left\{\mathcal{Z}_{i}\right\}\right)$.
(b) $\mathcal{N}\left(\left\{x_{i}\right\}\right)$ forms an algebra, called nest algebra.
(c) If $T \in \mathcal{N}\left(\left\{\mathcal{X}_{i}\right\}\right)$ and T is invertible, then $T^{-1} \in \mathcal{N}\left(\left\{\mathcal{X}_{i}\right\}\right)$.

It is a useful fact that every operator on \boldsymbol{X} can be factored as the product of a unitary operator and a nest operator.

Lemma 2: Let T be an operator on \boldsymbol{X}.
(a) There exists a unitary operator U_{1} on \boldsymbol{X} and an operator R_{1} in $\mathcal{N}\left(\left\{\mathcal{X}_{i}\right\}\right)$ such that $T=U_{1} R_{1}$.
(b) There exists an operator R_{2} in $\mathcal{N}\left(\left\{\cdot \boldsymbol{l}_{i}\right\}\right)$ and a unitary operator U_{2} on \mathcal{X} such that $T=R_{2} U_{2}$.
Since $\mathcal{X}_{i} \supseteq \mathcal{X}_{i+1}$, we write $\left(\boldsymbol{X}_{i+1}\right)_{\boldsymbol{X}_{i}}$ as the orthogonal complement of \mathcal{X}_{i+1} in \mathcal{X}_{i}. Decompose \mathcal{X} into

$$
\mathcal{X}=\left(\mathcal{X}_{1}\right)^{\frac{1}{\mathcal{X}_{0}}} \oplus\left(\mathcal{X}_{2}\right)_{\mathcal{X}_{1}}^{\frac{1}{1}} \oplus \cdots \oplus\left(\mathcal{X}_{n}\right)_{\mathcal{X}_{n-1}}^{\frac{1}{1}}
$$

It follows that under this decomposition any operator R belongs to $\mathcal{N}\left(\left\{\mathcal{X}_{i}\right\}\right)$ iff its matrix is block lower-triangular, all the diagonal blocks being square. Thus the results in Lemma 2 follow from the well-known QR factorization.

Finally, we look at a distance problem. Let T be a linear operator $\boldsymbol{X} \rightarrow \mathcal{Y}$. We want to find the distance (via induced norms) of T to $\mathcal{N}\left(\left\{\mathcal{X}_{i}\right\},\left\{\mathcal{Y}_{i}\right\}\right)$, abbreviated \mathcal{N} :

$$
\begin{equation*}
\operatorname{dist}(T, \mathcal{N}):=\inf _{Q \in \mathcal{N}}\|T-Q\| \tag{2}
\end{equation*}
$$

Theorem 1:

$$
\operatorname{dist}(T, \mathcal{N})=\max _{i}\left\|\left(I-\Pi_{y_{i}}\right) T \Pi_{\mathcal{X}_{i}}\right\|
$$

This is Corollary 9.2 in [7] specialized to operators on finite-dimensional spaces; it is an extension of a result in [22]
on norm-preserving dilation of operators, which is specialized to matrices below. We denote the Moore-Penrose generalized inverse of a matrix M by M^{\dagger}.

Lemma 3: Assume that A, B, C are fixed matrices of appropriate dimensions. Then

$$
\inf _{X}\left\|\left[\begin{array}{ll}
C & A \\
X & B
\end{array}\right]\right\|=\max \left\{\left\|\left[\begin{array}{ll}
C & A
\end{array}\right]\right\|,\left\|\left[\begin{array}{l}
A \\
B
\end{array}\right]\right\|\right\}:=\alpha
$$

Moreover, a minimizing X is given by

$$
X=-B A^{*}\left(\alpha I-A A^{*}\right)^{\dagger} C
$$

It will be of interest to us how to compute a Q to achieve the infimum in (2); this can be done by sequentially applying Lemma 3:

Step 1 Decompose the spaces \mathcal{X} and \mathcal{Y} :

$$
\begin{aligned}
\boldsymbol{x} & =\left(\mathcal{X}_{1}\right)^{\frac{1}{\mathcal{X}_{0}}} \oplus\left(\mathcal{X}_{2}\right)^{\frac{1}{\mathcal{X}_{1}} \oplus \cdots \oplus\left(\mathcal{X}_{n}\right)_{\mathcal{X}_{n-1}}^{1}} \\
\mathcal{Y} & =\left(\mathcal{Y}_{1}\right) \frac{1}{\mathcal{Y}_{0}} \oplus\left(\mathcal{Y}_{2}\right) \frac{1}{\mathcal{Y}_{1}} \oplus \cdots \oplus\left(\mathcal{Y}_{n}\right)_{\frac{1}{\mathcal{Y}_{n-1}}}
\end{aligned}
$$

We get matrix representations for T and Q, partitioned in the obvious way as $n \times n$ block matrices, with $Q_{i j}=$ $0, j>i$.

Step 2 Define $X_{i j}=T_{i j}-Q_{i j}, i \geq j$, and

$$
P=\left[\begin{array}{cccc}
X_{11} & T_{12} & \cdots & T_{1 n} \\
X_{21} & X_{22} & \cdots & T_{2 n} \\
\vdots & \vdots & & \vdots \\
X_{n 1} & X_{n 2} & \cdots & X_{n n}
\end{array}\right]
$$

The problem reduces to

$$
\min _{X_{i j}}\|P\|
$$

where $T_{i j}$ are fixed. Minimizing $X_{i j}$ can be selected as follows. First, set $X_{11}, \cdots, X_{n 1}$ and $X_{n 2}, \cdots, X_{n n}$ to zero. Second, choose X_{22} by Lemma 3 such that $\left\|\left(I-\Pi_{y_{2}}\right) P \Pi_{X_{1}}\right\|$ is minimized. Fix this X_{22}. Third, choose $\left[\begin{array}{ll}X_{32} & X_{33}\end{array}\right]$ again by Lemma 3 to minimize $\left\|\left(I-\Pi_{\mathcal{y}_{3}}\right) P \Pi_{\mathcal{X}_{2}}\right\|$. In this way, we can find all $X_{i j}$ such that

$$
\min _{X_{i j}}\|P\|=\max _{i}\left\|\left(I-\Pi y_{y_{i}}\right) T \Pi_{x_{i}}\right\| .
$$

This procedure also gives a constructive proof of the theorem.

III. Multirate Systems

In this section we shall examine the MR controller K_{d} in Figure 1 as a discrete-time linear operator. To be studied are three basic properties: periodicity, causality, and finite dimensionality.

First, we look at periodicity. Let l be the least common multiple of the set of integers $\left\{m_{1}, \cdots, m_{p}, n_{1}, \cdots, n_{q}\right\}$. Thus $\sigma:=l h$ is the least common period for all sampling and hold channels. K_{d} can be chosen so that $\mathcal{H} K_{d} \mathcal{S}$ is σ-periodic in continuous time. For this, we need a few definitions.

Let ℓ be the space of sequences, perhaps vector-valued, defined on the time set $\{0,1,2, \cdots\}$. Let U be the unit time delay on ℓ and U^{*} the unit time advance. Define

$$
\bar{m}_{i}=l / m_{i}, \quad i=1, \cdots, p, \quad \bar{n}_{j}=l / n_{j}, \quad j=1, \cdots, q
$$

We say K_{d} is $\left(m_{i}, n_{j}\right)$-periodic if

$$
\left[\begin{array}{ccc}
\left(U^{*}\right)^{n_{1}} & & \\
& \ddots & \\
& & \left(U^{*}\right)^{n_{4}}
\end{array}\right] K_{d}\left[\begin{array}{lll}
U^{m_{1}} & & \\
& \ddots & \\
& & U^{m_{y}}
\end{array}\right]=K_{d} .
$$

It follows easily that $\mathcal{H} K_{\mathrm{d}} \mathcal{S}$ is σ-periodic in continuous time iff K_{d} is (m_{i}, n_{j})-periodic. Since G is LTI, the SD system in Figure 1 is σ-periodic if K_{d} is (m_{i}, n_{j})-periodic. We shall refer to σ as the system period.

Now we lift K_{d} to get an LTI system. For an integer $m>0$, define the discrete lifting operator L_{m} via $\underline{v}=L_{m} \boldsymbol{v}$,

$$
\{v(0), v(1), \cdots\} \mapsto\left\{\left[\begin{array}{c}
v(0) \\
\vdots \\
v(m-1)
\end{array}\right],\left[\begin{array}{c}
v(m) \\
\vdots \\
v(2 m-1)
\end{array}\right], \cdots\right\}
$$

and the operator matrices

$$
\mathcal{L}_{n}:=\left[\begin{array}{lll}
L_{n_{1}} & & \\
& \ddots & \\
& & L_{n_{q}}
\end{array}\right], \mathcal{L}_{m}:=\left[\begin{array}{lll}
L_{m_{1}} & & \\
& \ddots & \\
& & L_{m p}
\end{array}\right] .
$$

The lifted controller is $K_{d}=\mathcal{L}_{n} K_{d} \mathcal{L}_{m}^{-1}$. It is an easy matter to check, see, e.g., [20], that K_{d} is LTI iff K_{d} is (m_{i}, n_{j})-periodic.

Next is causality. For \bar{K}_{d} to be implementable in real time, $\mathcal{H} K_{d} \mathcal{S}$ must be causal in continuous time. This implies that K_{d}, as a single-rate system, must be causal; and moreover, the feedthrongh term D in K_{d} must satisfy a certain constraint, that is, some blocks in \underline{D} must be zero [19, 24]. Now let us characterize this constraint on \underline{D} using nest operators.

Write $\underline{v}=K_{d} \underline{\psi}$; then $\underline{v}(\mathbf{0})=\underline{D} \underline{\psi}(0)$. Let Σ be the set of sampling or hold instants in the interval $[0, \sigma)$ (modulo the base period h). This is a finite set of, say, $n+1$ integers; order Σ increasingly ($\sigma_{r}<\sigma_{r+1}$):

$$
\Sigma=\left\{\sigma_{r}: r=0,1, \cdots, n\right\} .
$$

Let $\underline{\psi}(0)$ and $\underline{v}(0)$ live in the finite-dimensional spaces \mathcal{X} and y respectively. For $r=0,1, \cdots, n$, define

$$
\begin{aligned}
& \boldsymbol{x}_{r}=\operatorname{span}\left\{\underline{\psi}(0): \psi_{i}(k)=0 \text { if } k m_{i}<\sigma_{r}\right\} \\
& y_{r}=\operatorname{span}\left\{\underline{v}(0): v_{j}(k)=0 \text { if } k n_{j}<\sigma_{r}\right\} .
\end{aligned}
$$

\mathcal{X}_{r} and \mathcal{Y}_{r} correspond to, respectively, the inputs and outputs occurring from time $\sigma_{r} h$ on. It is easily checked that $\left\{\mathcal{X}_{r}\right\}$ and $\left\{\mathcal{Y}_{r}\right\}$ are nests and that the causality condition on \underline{D} (the output at time $\sigma_{r} h$ depends only on inputs up to $\sigma_{r} h$) is exactly

$$
\underline{D} \mathcal{X}_{r} \subseteq \mathcal{Y}_{r}, \quad r=0,1, \cdots, n
$$

Thus we define \underline{D} to be ($\left.m_{i}, n_{j}\right)$-causal if $\underline{D} \in \mathcal{N}\left(\left\{\boldsymbol{X}_{r}\right\},\left\{\mathcal{Y}_{r}\right\}\right)$. For completeness, we define \underline{D} to be (m_{i}, n_{j})-strictly causal if

$$
\underline{D} \mathcal{X}_{r} \subseteq \mathcal{Y}_{r+1}, \quad r=0,1, \cdots, n-1 .
$$

This means that the output at time $\sigma_{r+1} h$ depends only on inputs up to time $\sigma_{r} h$.

The following lemma, which is easy to prove, justifies our use of terminology from a continuous-time viewpoint.

Lemma 4:
(a) $\mathcal{H} K_{d} \mathcal{S}$ is causal in continuous time iff K_{d} is causal and \underline{D} is (m_{i}, n_{j})-causal.
(b) $\mathcal{H} K_{d} \mathcal{S}$ is strictly causal in continnous time iff K_{d} is causal and \underline{D} is (m_{i}, n_{j})-strictly causal.

Some conclusions on causality issues [19] are transparent from Lemmas 1 and 4 under this new formulation.

Lemma 5:
(a) If \underline{D}_{1} is (m_{i}, p_{k})-causal and \underline{D}_{2} is (p_{k}, n_{j})-causal, then $\underline{D}_{2} \underline{D}_{1}$ is $\left(m_{i}, n_{j}\right)$-causal; furthermore, if \underline{D}_{1} or \underline{D}_{2} is strictly causal, then $\underline{D}_{2} \underline{D}_{1}$ is also strictly causal.
(b) If \underline{D} is (m_{i}, m_{i})-causal and invertible, then \underline{D}^{-1} is (m_{i}, m_{i})-causal.
(c) If \underline{D} is $\left(m_{i}, m_{i}\right)$-strictly causal, then ($\left.I-\underline{D}\right)^{-1}$ exists and is (m_{i}, m_{i})-causal.
We assume K_{d} is (m_{i}, n_{j})-periodic and -causal. Then K_{d} is LTI and causal. To get finite-dimensional difference equations for K_{d}, we further assume K_{d} is finite-dimensional. Thus K_{d} has state space equations

$$
\begin{aligned}
\eta(k+1) & =A \eta(k)+\sum_{i=1}^{p} B_{i} \underline{\psi}_{i}(k), \\
\underline{v}_{j}(k) & =C_{j} \eta(k)+\sum_{i=1}^{p} D_{j i} \underline{\psi}_{i}(k), \quad j=1,2, \cdots, q .
\end{aligned}
$$

Note that $\psi_{i}=L_{m_{i}} \psi_{i}$ and $\underline{v}_{j}=L_{n_{j}} v_{j}$. Partitioning the matrices accordingly

$$
\begin{aligned}
B_{i} & =\left[\begin{array}{lll}
\left(B_{i}\right)_{0} & \cdots & \left(B_{i}\right)_{m_{i}-1}
\end{array}\right], \quad C_{j}=\left[\begin{array}{c}
\left(C_{j}\right)_{0} \\
\vdots \\
\left(C_{j}\right)_{n_{j}-1}
\end{array}\right], \\
D_{j i} & =\left[\begin{array}{ccc}
\left(D_{j i}\right)_{00} & \cdots & \left(D_{j i}\right)_{0, m_{i}-1} \\
\vdots & & \vdots \\
\left(D_{j i}\right)_{n_{j}-1,0} & \cdots & \left(D_{j i}\right)_{n_{j}-1, m_{i}-1}
\end{array}\right]
\end{aligned}
$$

(certain blocks in $D_{j i}$ must be zero for the causality constraint), we get the difference equations for $K_{d}\left(v=K_{d} \psi\right)$:

$$
\begin{aligned}
\eta(k+1) & =A \eta(k)+\sum_{i=1}^{p} \sum_{i=0}^{m_{i}-1}\left(B_{i}\right), \psi_{i}\left(k \bar{m}_{i}+s\right) \\
v_{j}\left(k \tilde{n}_{j}+r\right) & =\left(C_{j}\right)_{r} \eta(k)+\sum_{i=1}^{p} \sum_{j=0}^{m_{i}-1}\left(D_{j i}\right)_{r} \psi_{i}\left(k \bar{m}_{i}+s\right),
\end{aligned}
$$

where the indices in (4) go as follows: $j=1,2, \cdots, q$ and $r=$ $0,1, \cdots, \bar{n}_{j}-1$. These are the equations for implementing K_{d} on computers and they require only finite memory. Note that the state vector η for K_{d} is updated every system period σ.

In summary, the admissible class of K_{d} is characterized by LTI, causal, and finite-dimensional $\underline{K_{d}}$ with $\underline{D}\left(m_{i}, n_{j}\right)$-causal.

IV. Internal Stability

In this section we look at stability of Figure 1. We assume the continuous G has a state model:

$$
\hat{G}=\left[\begin{array}{cc}
\hat{G}_{11} & \hat{G}_{12} \tag{3}\\
\hat{G}_{21} & \hat{G}_{22}
\end{array}\right]=\left[\begin{array}{c|cc}
A & B_{1} & B_{2} \\
\hline C_{1} & D_{11} & D_{12} \\
C_{2} & D_{21} & 0
\end{array}\right] .
$$

Let the plant state be x and the controller state be η (K_{d} is admissible). Note that the system in Figure 1 is σ-periodic. Define the continuous-time vector

$$
x_{s d}(t):=\left[\begin{array}{l}
x(t) \\
\eta(k)
\end{array}\right], \quad k \sigma \leq t<(k+1) \sigma .
$$

The (autonomous) system in Figure 1 is internally stable, or K_{d} internally stabilizes G, if for any initial value $x_{s d}\left(t_{0}\right), 0 \leq$ $t_{0}<\sigma, x_{s d}(t) \rightarrow 0$ as $t \rightarrow \infty$.

Introduce $G_{22 d}=S G_{22} \mathcal{H}$, the MR discretization of G_{22}. Now lift K_{d} as before and $G_{22 d}$ by $G_{22 d}=\mathcal{L}_{m} G_{22 d} \mathcal{L}_{n}^{-1}$. Because G_{22} is LTI and strictly causal, $\boldsymbol{G}_{22 d}$ is ($\boldsymbol{n}_{\boldsymbol{j}}, \boldsymbol{m}_{\mathrm{i}}$)-periodic and -strictly causal. Thus $\underline{G}_{22 d}$ is LTI and causal with $\underline{D}_{22 d}$ (n_{j}, m_{i})-strictly causal. In fact, a state model for $\underline{G}_{22 d}$ can be obtained (Lemma 6 below).

Theorem 2: K_{d} internally stabilizes G iff K_{d} internally stabilizes $\underline{G_{22 d}}$.

The proof is contained in [6]. Sufficient conditions for the internal stability to be achievable are that (A, B_{2}) and (C_{2}, A) are stabilizable and detectable respectively and that the system period σ is non-pathological in a certain sense, see, e.g., [18, 23].

$$
\text { V. } \mathcal{H}_{\infty} \text {-Optimal Control }
$$

With reference to Figure 1, we now study the \mathcal{H}_{∞} synthesis problem: Design an admissible K_{d} that internally stabilizes G and achieves $\left\|\mathcal{F}\left(G, \mathcal{H} K_{d} \mathcal{S}\right)\right\|<1$.

The general idea in the solution is to reduce the MR problem to a discrete \mathcal{H}_{∞} model-matching problem with the causality constraint and then solve the constrained problem explicitly using techniques presented in Section 2 on nest operators and nest algebras. A special case of the reduction process was reported in [23].

We start with a state model for G in (5) with $D_{11}=0$ and $D_{21}=0$. We shall assume that (A, B_{2}) is stabilizable and (C_{2}, A) is detectable.

\mathcal{H}_{∞} Discretization

The original problem is posed in continuous time; so the first step is to recast it as a discrete-time problem with timevarying control. The reduction is based on recent advances in \mathcal{H}_{∞} SD control in the single-rate setting.

Introduce the discrete sampling operator $S_{m}: \ell \rightarrow \ell$ defined via

$$
\psi=S_{m} \phi \Longleftrightarrow \psi(k)=\phi(k m)
$$

and the discrete hold operator $H_{n}: \ell \rightarrow \ell$ via

$$
v=H_{n} \phi \Longleftrightarrow v(k n+r)=\phi(k), \quad r=0,1, \cdots, n-1 .
$$

It is easily checked that $S_{m_{i} h}=S_{m_{i}} S_{h}$ and $H_{n_{j} h}=H_{h} H_{n_{j}}$. So the MR sampling and hold operators \mathcal{S} and \mathcal{H} can be factored as $\mathcal{S}=S_{m} S_{h}$ and $\mathcal{H}=H_{h} \mathcal{H}_{n}$, where

$$
\mathcal{S}_{\mathbf{m}}=\left[\begin{array}{lll}
S_{m_{1}} & & \\
& \ddots & \\
& & S_{m_{\boldsymbol{p}}}
\end{array}\right], \quad \mathcal{H}_{n}=\left[\begin{array}{lll}
H_{n_{1}} & & \\
& \ddots & \\
& & H_{n_{q}}
\end{array}\right] .
$$

Defining $K_{d 1}=\mathcal{H}_{n} K_{d} \mathcal{S}_{m}$, we can view the MR system $\mathcal{F}\left(G, \mathcal{H} K_{d} \mathcal{S}\right)$ as a fictitious single-rate system $\mathcal{F}\left(G, S_{h} K_{d 1} H_{h}\right)$. Now the results in, e.g., [4] are applicable.

Let $\underline{D}_{11 h}: \mathcal{L}_{2}[0, h) \rightarrow \mathcal{L}_{2}[0, h)$ be defined by

$$
\left(\underline{D}_{11 h} w\right)(t)=C_{1} \int_{0}^{t} \mathrm{e}^{(t-\tau) A} B_{1} w(\tau) d \tau
$$

and assume $\left\|\underline{D}_{11 h}\right\|<1$. Since $\underline{D}_{11 h}$ is the restriction of $\mathcal{F}\left(G, \mathcal{H} K_{d} \mathcal{S}\right)$ on $\mathcal{L}_{2}[0, h)$, this condition is necessary for $\left\|\mathcal{F}\left(G, \mathcal{H} K_{d} \mathcal{S}\right)\right\|<1$; how to verify this condition was studied in [4]. For the $\mathrm{MR} \boldsymbol{H}_{\infty}$ problem, invoke the single-rate results to get the equivalent discrete-time problem: Design $K_{d 1}$
to give internal stability and achieve $\left\|\mathcal{F}\left(G_{d}, K_{d 1}\right)\right\|<1$, where the norm now is ℓ_{2}-induced and the \mathcal{H}_{∞} discretization G_{d} (for $\gamma=1$) has a state model

$$
\hat{G}_{d}=\left[\begin{array}{cc}
\hat{G}_{11 d} & \hat{G}_{12 d} \\
\hat{G}_{21 d} & \hat{G}_{22 d}
\end{array}\right]=\left[\begin{array}{c|cc}
A_{d} & B_{1 d} & B_{2 d} \\
\hline C_{1 d} & D_{11 d} & D_{12 d} \\
C_{2 d} & 0 & 0
\end{array}\right] .
$$

The computation of the matrices in \hat{G}_{d} is given in, e.g., [4]. In this way, we arrive at an equivalent discrete \mathcal{H}_{∞} problem; however, $K_{d 1}$ is constrained to be of the form $K_{d 1}=\mathcal{H}_{n} K_{d} S_{m}$ with K_{d} admissible.

Discrete Lifting

The system $\mathcal{F}\left(G_{d}, K_{d 1}\right)$ is single-rate with period h. The next step is to lift to get an LTI system with period σ. Define K_{d} as before and

$$
\underline{G_{d}}=\left[\begin{array}{cc}
L_{l} & 0 \\
0 & \mathcal{L}_{m} \mathcal{S}_{m}
\end{array}\right] G_{d}\left[\begin{array}{cc}
L_{l}^{-1} & 0 \\
0 & \mathcal{H}_{n} \mathcal{L}_{n}^{-1}
\end{array}\right]
$$

to get the lifted system $\mathcal{F}\left(G_{d}, \underline{K_{d}}\right)$. Since G_{d} is LTI, causal, and finite-dimensional with $\overline{G_{22 d}}$ strictly causal, we can show that G_{d} is LTI, causal, and finite-dimensional. Moreover, the feedthrough term $\underline{D}_{22 d}$ of $\underline{G}_{22 d}$ is (n_{j}, m_{i})-strictly causal. In fact, a state model for \underline{G}_{d} can be obtained using the lemma below.

Let P be a discrete-time system with state ξ and the corresponding realization (A, B, C, D). Let $m, n, \bar{m}, \bar{n}, l$ be positive integers such that $m \bar{m}=n \bar{n}=l$. Define

$$
\underline{P}:=L_{m} S_{m} P H_{n} L_{n}^{-1}
$$

and the characteristic function on integers

$$
\chi_{[p, q)}(r)= \begin{cases}1, & p \leq r<q \\ 0, & \text { else } .\end{cases}
$$

Lemma 6: A state model for \underline{P} is

where

$$
D_{i j}=D \chi_{[j,(j+1) n)}(i m)+\sum_{r=j n}^{(j+1) n-1} C A^{i m-1-r} B \chi_{[0, i m)}(r) .
$$

The corresponding state vector is $\underline{\xi}=S_{l} \xi$.
The lemma can be proven by manipulating the inputoutput equations for P. Note that the transfer matrices for all blocks in \underline{G}_{d} can be obtained from this lemma.

From the definitions of K_{d} and G_{d}, we get after some algebra that $\mathcal{F}\left(G_{d}, K_{d}\right)=L_{l} \mathcal{F}\left(G_{d}, K_{d 1}\right) L_{l}^{-1}$. So $\left\|\mathcal{F}\left(\underline{G_{d}}, K_{d}\right)\right\|=$ $\left\|\mathcal{F}\left(G_{d}, K_{d 1}\right)\right\|$ since L_{l} is norm-preserving. Thus the equivalent LTI problem is now: Design an admissible K_{d} that internally stabilizes $\underline{G_{d}}$ and achieves $\left\|\mathcal{F}\left(\underline{\hat{G}_{d}}, \hat{K}_{d}\right)\right\|_{\infty}<1$. Notice that the feedthrough term $\hat{K}_{d}(0)$ must be $\left(m_{i}, n_{j}\right)$-causal; so this is a constrained \mathcal{H}_{∞} control problem in discrete time.

Constrained Model-Matching Problem

Parametrizing the stabilizing controllers for $\underline{G}_{\boldsymbol{d}}$ as in [10], we get

$$
\mathcal{F}\left(\underline{\hat{G}_{d}}, \underline{\hat{K}_{d}}\right)=\hat{T}_{1}-\hat{T}_{2} \hat{Q} \hat{T}_{3}
$$

The causality constraint on $\hat{K}_{d}(0)$ translates exactly to $\hat{Q}(0)$ [19, 24]. In this way we arrive at the constrained \mathcal{H}_{∞} model-matching problem: Find $\hat{Q} \in \mathcal{R} \mathcal{H}_{\infty}$ with $\hat{Q}(0) \in$ $\mathcal{N}\left(\left\{\mathcal{X}_{r}\right\},\left\{\mathcal{Y}_{r}\right\}\right)$ (the nests $\left\{\mathcal{X}_{r}\right\}$ and $\left\{\mathcal{Y}_{r}\right\}$ were defined in Section 3) such that

$$
\left\|\hat{T}_{1}-\hat{T}_{2} \hat{Q} \hat{T}_{3}\right\|_{\infty}<1
$$

If such a \hat{Q} exists, we say the $\mathrm{MR} \mathcal{H}_{\infty}$ problem is solvable.
We note here that a different procedure was reported which converts an MR \mathcal{H}_{∞} problem into a discrete modelmatching problem [30].

An Explicit Solution

We write $\hat{T}^{\sim}(\lambda)$ for $\hat{T}\left(\lambda^{-1}\right)^{\prime}$. For regularity, we need the following assumption:

For each $|\lambda|=1, \hat{T}_{2}(\lambda)$ and $\hat{T}_{3}^{\sim}(\lambda)$ are both injective.
Under this assumption, there exists an inner-outer factorization $\hat{T}_{2}=\hat{T}_{2 i} \dot{T}_{20}$ and an co-inner-outer factorization $\hat{T}_{3}=\hat{T}_{3 c o} \dot{T}_{3 c i}$, where \hat{T}_{20} and $\hat{T}_{3 c o}$ are both invertible over $\boldsymbol{\mathcal { R }} \boldsymbol{H}_{\infty}$. Furthermore, these factorizations can be performed in such a way that $\hat{T}_{20}(0) \in \mathcal{N}\left(\left\{\mathcal{Y}_{r}\right\}\right)$ and $\hat{T}_{3 c o}(0) \in \mathcal{N}\left(\left\{\mathcal{X}_{r}\right\}\right)$. To see this, let us assume that an inner-outer factorization $\hat{T}_{2}=\hat{T}_{2} ; \hat{T}_{20}$ is obtained with $\hat{T}_{20}(0) \notin \mathcal{N}\left(\left\{\mathcal{Y}_{r}\right\}\right)$. By Lemma 2 , we have factorization $\hat{T}_{2 \circ}(0)=U_{1} R_{1}$ where U_{1} is orthogonal and $R_{1} \in$ $\mathcal{N}\left(\left\{\mathcal{Y}_{r}\right\}\right)$. Then a new inner-outer factorization of \hat{T}_{20} is given by $\hat{T}_{2}=\left(\hat{T}_{2 i} U_{1}\right)\left(U_{1}^{\prime} \hat{T}_{2 o}\right)$ with $\left(U_{1}^{\prime} \hat{T}_{2 o}\right)(0)=R_{1} \in \mathcal{N}\left(\left\{\mathcal{Y}_{r}\right\}\right)$. A similar argument applies to the co-inner-outer factorization of $\hat{\mathrm{T}}_{\text {3co }}$.

Now bring in an inner-onter factorization $\hat{T}_{2}=\hat{T}_{2 i} \hat{T}_{20}$ and a co-inner-outer factorization $\hat{T}_{3}=\hat{T}_{3 c o} \hat{T}_{3 c i}$ with $\hat{T}_{20}(0) \in$ $\mathcal{N}\left(\left\{\mathcal{Y}_{r}\right\}\right)$ and $\hat{T}_{3 c o}(0) \in \mathcal{N}\left(\left\{, \lambda_{r}\right\}\right)$. Apply unitary transformations to $\hat{T}_{1}-\hat{T}_{2} \hat{Q} \hat{T}_{3}$ and define $\hat{Q}_{1}=\hat{T}_{2 o} \hat{Q} \hat{T}_{3 c o}$ and \hat{R} via

$$
\left[\begin{array}{ll}
\hat{R}_{11} & \hat{R}_{12} \\
\hat{R}_{21} & \hat{R}_{22}
\end{array}\right]=\left[\begin{array}{c}
\hat{T}_{2 i}^{\tilde{}} \\
I-\hat{T}_{2 i} \dot{T}_{2 i}
\end{array}\right] \hat{T}_{1}\left[\begin{array}{ll}
\hat{T}_{3 c i} & I-\hat{T}_{3 c i} \hat{T}_{3 c i}
\end{array}\right] .
$$

The constrained model-matching problem is equivalent to the following four-block problem of finding a $\hat{Q}_{1} \in \boldsymbol{R} \boldsymbol{H}_{\infty}$ with $\hat{Q}_{1}(0) \in \mathcal{N}\left(\left\{\mathcal{X}_{r}\right\},\left\{\mathcal{Y}_{r}\right\}\right)$ such that

$$
\left\|\left[\begin{array}{cc}
\hat{R}_{11}-\hat{Q}_{1} & \hat{R}_{12} \tag{4}\\
\hat{R}_{21} & \hat{R}_{22}
\end{array}\right]\right\|_{\infty}<1
$$

Dropping the causality constraint on $\hat{Q}_{1}(0)$ temporarily allows us to parametrize all \hat{Q}_{1} in $\mathcal{R} \mathcal{H}_{\infty}$ achieving (6). We know from [8] that there exists a $\hat{Q}_{1} \in \mathcal{R} \mathcal{H}_{\infty}$ such that (6) holds iff

$$
\left\|\left.\left[\begin{array}{cc}
\Pi_{\mathcal{H}_{2}} & 0 \tag{5}\\
0 & I
\end{array}\right] \hat{R}\right|_{\mathcal{H}_{2} \oplus \mathcal{C}_{2}}\right\|<1
$$

If (7) is satisfied, then a procedure in [12] allows us to find an $\boldsymbol{\mathcal { R H }} \boldsymbol{H}_{\infty}$ matrix

$$
\hat{K}=\left[\begin{array}{ll}
\hat{K}_{11} & \hat{K}_{12} \\
\hat{K}_{21} & \hat{K}_{22}
\end{array}\right]
$$

with $\hat{K}_{12}^{-1}, \hat{K}_{21}^{-1} \in \mathcal{R} \mathcal{H}_{\infty}$ and $\left\|\hat{K}_{22}\right\|_{\infty}<1$ such that all $\hat{Q}_{1} \in$ $\boldsymbol{\mathcal { R }} \boldsymbol{H}_{\infty}$ satisfying (6) are characterized by

$$
\begin{equation*}
\hat{Q}_{1}=\mathcal{F}\left(\hat{K}, \hat{Q}_{2}\right), \quad \hat{Q}_{2} \in \mathcal{R} \mathcal{H}_{\infty}, \quad\left\|\hat{Q}_{2}\right\|_{\infty}<1 \tag{6}
\end{equation*}
$$

We refer to [12] for the details of checking inequality (7) and the expression of \hat{K}. Hereafter, we shall assume that (7) is true. This is also necessary for the solvability of the MR \mathcal{H}_{∞} problem.

In general $\hat{K}_{22}(0) \neq 0$, so $\hat{Q}_{1}(0)$ depends on $\hat{Q}_{2}(0)$ in a linear fractional manner. However, it is possible to simplify this relation by introducing another linear fractional transformation [23]:

$$
\hat{Q}_{2}=\mathcal{F}\left(V, \hat{Q}_{3}\right)
$$

Here V, partitioned as usual, is a constant unitary matrix. It follows that the mapping $\hat{Q}_{3} \mapsto \hat{Q}_{2}$ is bijective from the open unit ball of $\boldsymbol{R} \mathcal{H}_{\infty}$ onto itself [25]. Thus all \hat{Q}_{1} satisfying (6) can be re-parametrized by

$$
\begin{aligned}
\hat{Q}_{1} & =\mathcal{F}\left[\hat{K}, \mathcal{F}\left(V, \hat{Q}_{3}\right)\right] \\
& =\mathcal{F}\left(\hat{L}, \hat{Q}_{3}\right), \quad \hat{Q}_{3} \in \boldsymbol{R} \mathcal{H}_{\infty},\left\|\hat{Q}_{3}\right\|_{\infty}<1 .
\end{aligned}
$$

For $\hat{L}_{22}(0)=0$, we choose the unitary matrix V to be

$$
V=\left[\begin{array}{cc}
\hat{K}_{22}^{\prime}(0) & {\left[I-\hat{K}_{22}^{\prime}(0) \hat{K}_{22}(0)\right]^{1 / 2}} \\
{\left[I-\hat{K}_{22}(0) \hat{K}_{22}^{\prime}(0)\right]^{1 / 2}} & -\hat{K}_{22}(0)
\end{array}\right]
$$

\hat{L} can be obtained from \hat{K} and V. It can be checked that $\hat{L}_{12}(0)$ and $\hat{L}_{21}(0)$ are still nonsingular.

To recap, the set of all $Q_{1} \in \mathcal{R} \boldsymbol{H}_{\infty}$ achieving (6) is parametrized by

$$
\hat{Q}_{1}=\mathcal{F}\left(\hat{L}, \hat{Q}_{3}\right), \quad \hat{Q}_{3} \in \boldsymbol{\mathcal { R }} \mathcal{H}_{\infty}, \quad\left\|\hat{Q}_{3}\right\|_{\infty}<1
$$

Here \hat{L} has the desirable properties that $\hat{L}_{22}(0)=0, \hat{L}_{12}(0)$ and $\hat{L}_{21}(0)$ are nonsingular. Thus

$$
\begin{equation*}
\hat{Q}_{1}(0)=\hat{L}_{11}(0)+\hat{L}_{12}(0) \hat{Q}_{3}(0) \hat{L}_{21}(0) \tag{7}
\end{equation*}
$$

This is an affine function $\hat{Q}_{3}(0) \mapsto \hat{Q}_{1}(0)$.
Now we bring in the causality constraint on $\hat{Q}_{1}(0)$. Our goal is to find a $\dot{Q}_{3} \in \mathcal{R} \mathcal{H}_{\infty}$ with $\left\|\hat{Q}_{3}\right\|_{\infty}<1$ such that $\hat{Q}_{1}(0)$ in (9) lies in $\mathcal{N}\left(\left\{\mathcal{X}_{r}\right\},\left\{\mathcal{Y}_{r}\right\}\right)$. Since $\hat{Q}_{1}(0)$ depends only on $\hat{Q}_{3}(0)$ and in general $\left\|\hat{Q}_{3}\right\|_{\infty} \geq\left\|\hat{Q}_{3}(0)\right\|$, the equivalent problem is to find a constant matrix $\hat{Q}_{3}(0)$ with $\left\|\hat{Q}_{3}(0)\right\|<1$ such that $\hat{Q}_{1}(0) \in \mathcal{N}$.

Now we use Lemma 2 to reduce the problem to a distance problem. Introduce matrix factorizations (Lemma 2)

$$
L_{12}(0)=R_{1} U_{1}, \quad L_{21}(0)=-U_{2} R_{2}
$$

where $R_{1}, R_{2}, U_{1}, U_{2}$ are all invertible, U_{1}, U_{2} are orthogonal, and R_{1}, R_{2} belongs to the nest algebras $\mathcal{N}\left(\left\{\mathcal{Y}_{r}\right\}\right), \mathcal{N}\left(\left\{\mathcal{X}_{r}\right\}\right)$ respectively.

Substitute the factorizations into (9) and pre- and postmultiply by R_{1}^{-1} and R_{2}^{-1} respectively to get

$$
R_{1}^{-1} \hat{Q}_{1}(0) R_{2}^{-1}=R_{1}^{-1} \hat{L}_{11}(0) R_{2}^{-1}-U_{1} \hat{Q}_{3}(0) U_{2}
$$

Define

$$
W=R_{1}^{-1} \hat{Q}_{1}(0) R_{2}^{-1}, \quad T=R_{1}^{-1} \hat{L}_{11}(0) R_{2}^{-1}, \quad P=U_{1} \hat{Q}_{3}(0) U_{2}
$$

It follows that $\hat{Q}_{1}(0) \in \mathcal{N}\left(\left\{\mathcal{X}_{r}\right\},\left\{\mathcal{Y}_{r}\right\}\right)$ iff $W \in \mathcal{N}\left(\left\{\mathcal{X}_{r}\right\},\left\{\mathcal{Y}_{r}\right\}\right)$ (Lemma 1) and $\left\|\hat{Q}_{3}(0)\right\|<1$ iff $\|P\|<1$. Therefore, we arrive at the following equivalent matrix problem: Given T, find P with $\|P\|<1$ such that $W=T-P \in \mathcal{N}$; or equivalently, find
$W \in \mathcal{N}$ such that $\|T-W\|<1$. This can be solved via the distance problem studied in Theorem 1:

$$
\operatorname{dist}(T, \mathcal{N})=\max _{r}\left\{\left\|\left(I-\Pi_{y_{r}}\right) T \Pi_{\mathcal{X}_{r}}\right\|\right\}=: \mu .
$$

Let $W_{\text {opt }} \in \mathcal{N}$ achieve the distance, i.e., $\left\|T-W_{\text {opt }}\right\|=\mu$. The following result summarizes what we have derived.

Theorem 3: The matrix problem is solvable, i.e., there exists a matrix P with $\|P\|<1$ such that $T-P \in \mathcal{N}$, iff $\mu<1$. Moreover, if $\mu<1, P:=T-W_{\text {opt }}$ solves the problem with $\|P\|=\mu$.

How to compute μ and $W_{\text {opt }}$ were discussed in the procedure given at the end of section 2.

To summarize, let us list the solvability conditions for the MR \mathcal{H}_{∞} control problem $\left\|\mathcal{F}\left(G, \mathcal{H} K_{d} \mathcal{S}\right)\right\|<1$:
(a) $\left\|\underline{D}_{11 h}\right\|<1$;
(b) $\left\|\left.\left[\begin{array}{cc}P_{\mathcal{H}_{\frac{1}{2}}} & 0 \\ 0 & I\end{array}\right] \hat{R}\right|_{\mathcal{H}_{2} \oplus \mathcal{C}_{2}}\right\|<1$;
(c) $\mu<1$.

Condition (a) was studied in detail in [4] and would usually be satisfied for a reasonable design. Condition (b) is the solvability condition for a standard four-block \mathcal{H}_{∞} problem, see, e.g., [12] for checking this condition. When conditions (a-b) hold, condition (c) amounts to computing the norms of several constant matrices.

Finally, we remark that an MR \mathcal{H}_{2}-optimal control problem is also solved explicitly in the full paper [6].

References

[1] H. Al-Rahmani and G. F. Franklin, "A new optimal multirate control of linear periodic and time-varying systems," IEEE Trans. Automat. Contr., vol. 35, pp. 406-415, 1990.
[2] M. Araki and K. Yamamoto, "Multivariable multirate sampled-data systems: state-space description, transfer characteristics, and Nyquist criterion," IEEE Trans. Automat. Contr., vol. 30, pp. 145-154, 1986.
[3] W. Arveson, "Interpolation problems in nest algebras," J. Func. Anal., vol. 20, pp. 208-233, 1975.
[4] B. Bamieh and J. B. Pearson, "A general framework for linear periodic systems with application to \mathcal{H}_{∞} sampleddata control," IEEE Trans. Automat. Contr., vol. 37, pp. 418-435, 1992.
[5] T. Chen and B. A. Francis, "Linear time-varying \boldsymbol{H}_{2} optimal control of sampled-data systems," Automatica, vol. 27, No. 6, pp. 963-974, 1991.
[6] T. Chen and L. Qiu, " \mathcal{H}_{∞} design of general multirate sampled-data control systems," IMA Preprint Series \# 1090, 1992 (to appear in Automatica).
[7] K. R. Davidson, Nest Algebras, Longman Scientific \& Technical, Essex, UK, 1988.
[8] A. Feintuch and B. A. Francis, "Uniformly optimal control of linear feedback systems" Automatica, vol. 21, pp. 563574, 1985.
[9] A. Feintuch, P. P. Khargonekar, and A. Tannenbaum, "On the sensitivity minimization problem for linear timevarying periodic systems," SIAM J. Contr. Opt., vol. 24, pp. 1076-1085, 1986.
[10] B. A. Francis, A Course in \mathcal{H}_{∞} Control Theory, SpringerVerlag, New York, 1987.
[11] T. T. Georgiou and P. P. Khargonekar, "A constructive algorithm for sensitivity optimization of periodic systems," SIA M J. Contr. Opt., vol. 25, pp. 334-340, 1987.
[12] K. Glover, D. J. N. Limebeer, J. C. Doyle, E. M. Kasenally, and M. G. Safonov, "A characterization of all solution to the four block general distance problem," SIAM J. Contr. Opt., vol. 29, pp. 283-324, 1991.
[13] T. Hagiwara and M. Araki, "Design of a stable feedback controller based on the multirate sampling of the plant output," IEEE Trans. Automat. Contr., vol. 33, pp. 812819, 1988.
[14] S. Hara and P. T. Kabamba, "Worst case analysis and design of sampled-data control systems," Proc. CDC, 1990.
[15] Y. Hayakawa, Y. Yamamoto, and S. Hara, " \mathcal{H}_{∞} type problem for sampled-data control system - a solution via minimum energy characterization," Proc. $C D C, 1992$.
[16] P. P. Khargonekar, K. Poolla, and A. Tannenbaum, "Robust control of linear time-invariant plants using periodic compensation," IEEE Trans. Automat. Contr., vol. 30, pp. 1088-1096, 1985.
[17] G. M. Kranc, "Input-output analysis of multirate feedback systems," IRE Trans. Automat. Contr., vol. 3, pp. 21-28, 1957.
[18] S. Longhi, "Necessary and sufficient conditions for the complete reachability and observability of multirate sampled-data systems," Proc. CDC, 1992.
[19] D. G. Meyer, "A parametrization of stabilizing controllers for multirate sampled-data systems," IEEE Trans. Automat. Contr., vol. 35, pp. 233-236, 1990.
[20] D. G. Meyer, "A new class of shift-varying operators, their shift-invariant equivalents, and multirate digital systems," IEEE Trans. Automat. Contr., vol. 35, pp. 429-433, 1990.
[21] D. G. Meyer, "Cost translation and a lifting approach to the multirate LQG problem," IEEE Trans. Automat. Contr., vol. 37, pp. 1411-1415, 1992.
[22] S. Parrott, "On a quotient norm and the Sz.-Nagy-Foias lifting theorem", J. Func. Anal., vol. 30, pp. 311-328, 1978.
[23] L. Qiu and T. Chen, " \mathcal{H}_{2} and \mathcal{H}_{∞} designs of multirate sampled-data systems," Proc. ACC, 1993.
[24] R. Ravi, P. P. Khargonekar, K. D. Minto, and C. N. Nett, "Controller parametrization for time-varying multirate plants," IEEE Trans. Automat. Contr., vol. 35, pp. 1259-1262, 1990.
[25] R. M. Redheffer, "On a certain linear fractional transformation," J. Math. Phys., vol. 39, pp. 269-286, 1960.
[26] W. Sun, K. M. Nagpal, and P. P. Khargonekar, " \mathcal{H}_{∞} control and filtering with sampled measurements," Proc. ACC, 1991.
[27] W. Sun, K. M. Nagpal, P. P. Khargonekar, and K. R. Poolla, "Digital control systems: \mathcal{H}_{∞} controller design with a zero-order hold function," Proc. CDC, 1992.
[28] G. Tadmor, "Optimal \mathcal{H}_{∞} sampled-data control in continuous time systems," Proc. $A C C, 1991$.
[29] H. T. Toivonen, "Sampled-data control of continuous-time systems with an \mathcal{H}_{∞} optimality criterion," Automatica, vol. 28, No. 1, pp. 45-54, 1992.
[30] P. G. Voulgaris and B. Bamieh, "Optimal \mathcal{H}_{∞} and \mathcal{H}_{2} control of hybrid multirate systems," Syst. Contr. Lett., vol. 20, pp. 249-261, 1993.
[31] P. G. Voulgaris, M. A. Dahleh, and L. S. Valavani, " \mathcal{H}_{∞} and \mathcal{H}_{2} optimal controllers for periodic and multi-rate systems," To appear in Automatica.

[^0]: ${ }^{1}$ The first author was supported by NSERC and the second by IMA with funds provided by NSF.

