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Design of General Multirate Sampled-data 
Control Systems* 

TONGWEN CHENt and LI QIU~t 

A comprehensive treatment o f  mul~rate sampled-data systems based on 
nest operators and nest algebras yields explicit, causal solutions to the 
general ~ and ~(2 control problems.  
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Abstrlet--Direct digital design of general multirate sampled- 
data systems is considered. To tackle causality constraints, a 
new and natural framework is proposed using nest operators 
and nest algebras. Based on this framework explicit solutions 
to the ~ ,  and ~2 multirate control problems are developed 
in the frequency domain. 

1. INTRODUCTION 
THERE ARE SEVERAL reasons to use a multirate 
sampling scheme in digital control systems: 

• In complex, multivariable control systems, 
often it is unrealistic, or sometimes impos- 
sible, to sample all physical signals uniformly 
at one single rate. In such situations, one is 
forced to use multirate sampling. 

• In general one gets better performance if one 
can sample and hold faster. But faster A/D 
and D/A conversions mean higher cost in 
implementation. For signals with different 
bandwidths, better trade-offs between perfor- 
mance and implementation cost can be 
obtained using A/D and D/A converters at 
different rates. 

• Multirate controllers are in general time- 
varying. Thus multirate control system can 
achieve what single-rate systems cannot; for 
example, gain margin improvement (Khar- 
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gonekar et al., 1985; Francis and Georgiou, 
1988), simultaneous stabilization (Khar- 
gonekar et al., 1985; Olbrot, 1987), and 
decentralized control (Anderson and Moore, 
1981; Wang, 1982; Sezer and Siljak, 1990). 
Multirate controllers are normally more 
complex than single-rate ones; but often they 
are finite-dimensional and periodic in a certain 
sense and hence can be implemented on 
microprocessors via difference equations with 
finitely many coefficients. Therefore, like 
single-rate controllers, multirate controllers do 
not violate the finite memory constraint in 
microprocessors. 

The study of multirate systems began in late 
1950s in Kranc (1957), Jury and Mullin (1959), 
and Kalman and Bertram (1959); recent interests 
are reflected in the LQG/LQR designs by Berg 
et al. (1988), AI-Rahmani and Franklin (1990), 
Chen and Francis (1991b), and Meyer (1992), 
the parametrization of all stabilizing controllers 
by Meyer (1990a) and Ravi et al. (1990), and the 
work by Meyer and Burrus (1975), Araki and 
Yamamoto (1986), Hagiwara and Araki (I988), 
Colaneri et al. (1990), and Sezer and Siljak 
(19901. The controller parametrization in Meyer 
(1990a) and Ravi et al. (1990) provides a basis 
for designing optimal multirate systems. How- 
ever, the special structure due to causality in the 
feedthrough terms of lifted controllers presents a 
difficult constraint in design; treating this 
causality constraint is the new feature in 
multirate optimal design. 

Causality constraints also arise in discrete-time 
periodic control (Khargonekar et al., 1985), 
where after lifting, the feedthrough terms in 
controllers must be block lower-triangular. 
Feintuch et al. (1986) and Georgiou and 
Khargonekar (1987) obtained explicit solutions 
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for the one-block ~ problem; Voulgaris et al. 
(1992) extended to the general case, but the 
solution involves a finite-dimensional convex 
search. The method in Voulgaris et al. (1992) is 
also applied to discrete-time multirate systems. 

Our work has been greatly influenced by the 
recent trend in sampled-data research, namely, 
direct digital design based on continuous-time 
performance specs. Related work on single-rate 
sampled-data design has been completed in ~2 
framework in Chen and Francis (1991a), 
Khargonekar and Sivashankar (1992), and 
Bamieh and Pearson (1992b) and in ~ 
framework in Hara and Kabamba (1990), 
Toivonen (1992), Bamieh and Pearson (1992a), 
Tadmor (1991), Sun et al. (1991, 1992), and 
Hayakawa et al. (1992). In Qiu and Chen (1992), 
we performed direct ~2 and ~ designs for a 
multirate system with a uniform sampling rate 
and a uniform hold rate and proposed effective 
ways to tackle the causality constraint. Being the 
simplest to capture the essential issue of 
causality, the setup there also limits the 
applicability of the results. 

Our goal in this paper is to treat general 
multirate systems. In order to do so, a general 
framework for attacking causality constraints is 
developed; this is based on ideas from nest 
operators and nest algebras. Under this frame- 
work, the results on causality in Meyer (1990a) 
and Ravi et al. (1990) become quite transparent; 
moreover, and more importantly, explicit solu- 
tions are obtained for direct multirate designs 
with ~ and ~(2 performance criteria. 

1.1. Setup 
To bring in the multirate sampled-data setup, 

we need to define precisely the two basic 
elements, the periodic sampler S~ and the 
(zero-order) hold H~ (the subscript denotes the 
period): S~ maps a continuous signal to a discrete 
signal and is defined via 

~0 = S~y ¢:~ ~p(k) = y(kr);  

H~ maps discrete to continuous via 

u = H~v ¢~u ( t )  = v ( k ) ,  k r  <- t < (k  + 1)r. 

Note that the sampler and hold are synchronized 
at t =0.  The signals may be vector-valued; in 
this case, for example, ~p = S, y simply means 

• , 

s~ 

which corresponds to grouping m samplers with 
the same rate together. 

The general multirate sampled-data system is 

G 

FIG. 1. The general multirate sampled-data setup. 

shown in Fig. 1. We have used continuous 
arrows for continuous signals and dotted arrows 
for discrete signals. Here, G is the continuous- 
time generalized plant with two inputs, the 
exogenous input w and the control input u, and 
two outputs, the signal z to be controlled and the 
measured signal y. 5¢ and ~ are multirate 
sampling and hold operators and are defined as 
follows: 

- Sm  Ih 1 

J S,,ph 

] H,,,h 

_ l - l n ~  

These correspond to sampling p channels of y 
periodically with periods mih,  i =  1 . . . . .  p ,  
respectively, and holding q channels of v with 
periods njh, j = 1 . . . . .  q, respectively. Here mi 
and n~ are different integers and h is a real 
number referred to as the base period. If we 
partition the signals accordingly 

then 

y = 

v =  

P Iul 
, t / =  : , 

L Vq_.] Uq 

lpi(k) = y i ( k m i h ) ,  i = 1 . . . . .  p ,  

uj(t)  = oj (k) ,  knjh  <- t < (k  + 1)njh, 

j = l  . . . . .  q. 

We shall allow each channel in y and u to be 
vector-valued as well; thus without loss of 
generality we can assume that no two m; are 
equal and neither are two nj. Kd is the 
discrete-time multirate controller, implemented 
via a microprocessor; it is synchronized with S/' 
and ~ in the sense that it inputs a value from the 
ith channel at times k ( m i h )  and outputs a value 
to the jth channel at k(n jh) .  
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Figure 1 gives a compact way of describing 
multirate systems. It is clear that this model 
captures all multirate systems in which the rates 
are rationally related, i.e. the ratio of any two 
rates is rational. Note that any common factor 
among mi and nj can be absorbed into h; thus we 
can assume without loss of generality that the 
greatest common factor among mi and nj is one. 
With this condition, for any multirate system in 
which rates are rationally related, there exists a 
unique base period h and a unique set of integers 
m~ and nj so that the system can be put into the 
framework of Fig. 1. 

Now we introduce a useful notation: Given an 
operator K and an operator matrix 

p,21 
P = LP21 P22J '  

the associated linear fractional transformation is 
denoted 

ff;(e, K) = P1, + P,2K(I - P22K)-'P2,. 

Here we assume that the domains and 
co-domains of the operators are compatible and 
the inverse exists. 

Throughout the paper, G is linear time- 
invariant (LTI) and finite-dimensional and Kd is 
linear; additional properties of Kd will be 
discussed in Section 3. The closed-loop map 
w ~ * z  in Fig. 1 is ~(G,  ~(KdSP). We can now 
state our main synthesis problem: design a Kd tO 
give closed-loop stability (to be made precise in 
Section 4) and achieve the ~= performance 
requirement I[~(G, ~KdSe)l[ < Y, where y > 0 is 
a pre-specified performance level and the norm 
is ~2-induced. Note that the performance 
requirement is defined on the continuous-time 
map and so intersample behaviour is captured in 
the design spec. Such continuous-time specs are 
natural since sampled-data systems operate in a 
continuous-time environment, though controllers 
are digital. Necessary and sufficient conditions 
will be given under which this multirate ~/'= 
control problem is solvable; once solvable, an 
explicit solution will also be given. 

1.2. Organization 
The rest of the paper is organized as follows. 

In Section 2 we present some concepts and facts 
about nest operators and nest algebras. These 
have direct applications in subsequent sections. 

Section 3 discusses desirable properties for 
multirate controllers; they are periodicity, 
causality, and finite-dimensionality. Causality 
constraints are defined using operators between 
appropriate nests. This provides a natural and 
transparent framework for studying causality 
constraints in multirate systems. 

Section 4 deals with internal stability of the 
setup in Fig. 1 and relates it to internal stability 
of some discrete-time system. 

Section 5 contains the main contribution of 
this paper, namely, an explicit solution to the 
multirate ~ control problem. This is achieved 
by first reducing it to a constrained ~= 
model-matching problem and then solving the 
latter problem using results in Section 2. A 
frequency-domain approach is used consistently. 

In Section 6 we briefly consider the ~2-optimal 
design of general multirate systems. The 
techniques developed in this paper also yield an 
explicit solution to the ~2 problem. 

Finally, Section 6 contains some concluding 
remarks. 

The notation is quite standard and will be 
defined when introduced. Throughout the paper, 
we choose to use Z-transforms instead of 
z-transforms, where ~, = z- t ;  in this case, 
discrete-time spaces such as ~2 and ~= are 
defined on the open unit disk. Finally, if G is an 
LTI system, (~ denotes its transfer matrix. 

2. PRELIMINARIES 
In this section we address some topics and 

computation on nests and nest algebras which 
are useful in the sequel. We shall restrict our 
attention to finite-dimensional spaces; more 
general treatment can be found in Arveson 
(1975) and Davidson (1988). 

2.1. Nests, nest operators, and nest algebras 
Let ~ be a finite-dimensional space. A nest in 

~ ,  denoted {~},  is a chain of subspaces in ~ ,  
including {0} and ~ ,  with the nonincreasing 
ordering: 

~ =  ~,,_= ~, _=... _=~._, _=~'. = { 0 } .  

Let ~ and ad be both finite-dimensional 
inner-product spaces with nests {~/} and {~} 
respectively. Assume the two nests have the 
same number of subspaces, say, n + 1 as above. 
A linear map T : ~---~ 0~ is a nest operator if 

T ~  ~_ ~., i = 0 , 1  . . . . .  n. (1) 

This gives n + 1 relations; the first and the last 
are trivially satisfied. We shall allow repetitions 
in {~} and {°3/,.}. Thus redundancy may occur in 
(1) and in the results to follow. However, for 
computation one can eliminate this redundancy 
as follows: if ff'i = ~+1, the ith relation, namely, 
T ~ / ~  °~i, is redundant since adi -~ ~i+1 and 
therefore can be eliminated; similarly, if 
~. = ~+~, we eliminate the (i + 1)st relation. Let 
1-l~:~f---~i and FI~,:°~---~ be orthogonal 
projections. Then the condition in (1) is 
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equivalent to 

(I - II~,,)THa~, = 0, i = 0, 1 . . . . .  n. 

The set of all such operators is denoted 
,N'({~/},{~i}) and abbreviated .N'({~/}) if 
{~.}={~.}.  The following properties are 
straightforward to verify. 

Lemma 1. 
(a) If T , e ~ ( { ~ } ,  {~.}) and T2•X({~.}, 

{~}), then T2T~ • ~c({~/}, {~}). 
(b) ~({o~i}) forms an algebra, called nest 

algebra. 
(c) If T•~({~ , .} )  and T is invertible, then 

T- '  e 3(({~,}). 

2.2. Factorization 
It is a fact that every operator on ~ can be 

factored as the product of a unitary operator and 
an operator in ~({~i}). 

Lemma 2. Let T be an operator on ~f. 
(a) There exist a unitary operator Ut on ~f and 

an operator R~ in ~ ( { ~ } )  such that 
T = U~R~. 

(b) There exist an operator R: in .N'({~fi}) and a 
unitary operator U2 on ~f such that 
T = R2U2. 

Note that R1 and R 2 are invertible if T is 
invertible. We shall give an elementary proof of 
this lemma, for it provides a way to compute 
such factorizations via the well-known QR 
factorization. 

Proof o f  Lemma 2. We shall look at part (a); 
part (b) follows similarly. Since ~ _ ~ + ~ ,  we 
write ( i+~)~r, as the orthogonal complement of 
~,-+1 in ~/. Decompose ~ into 

= (~,)~0 • (&)~, ~ . - .  ~ (&)~o_,. 
It follows that under this decomposition an 
operator R belongs to N({~})  iff its matrix is 
block lower-triangular, all the diagonal blocks 
being square. Thus it suffices to show that for 
any matrix T on ~f we can write T = UIR1 where 
/./1 is orthogonal and R~ is block lower- 
triangular. This follows from a QR type of 
factorization for square matrices: T = U~R1 with 
/./1 orthogonal and R1 lower-triangular; partition 
R~ accordingly to get that RI is also block 
lower-triangular. [] 

2.3. A distance problem 
Finally, we look at a distance problem. Let 

and ~ be finite-dimensional inner-product spaces 
with nests {~} and {~}. Let T be an operator 
~___~0~. We want to find the distance (via 

induced norms) of T to 2¢({~},{~.}), 
abbreviated X: 

dist (T, X ) : =  inf l IT -  QII. (2) QeN 

It is clear that 

dist (T, ~0 - max I1(I  - r l ~ , , ) T r l ~ , l l .  
i 

Theorem 1. 

dist (T, ~r) = max I1(! - rI~,)Tn~r, ll. 
i 

This is Corollary 9.2 in Davidson (1988) 
specialized to operators on finite-dimensional 
spaces; it is an extension of a result in Parrott 
(1978) and Davis et al. (1982) on norm- 
preserving dilation of operators, which is 
specialized to matrices below• We denote the 
Moore-Penrose generalized inverse of a matrix 
M by M*. 

Lemma 3. Assume that A, B, C are fixed 
matrices of appropriate dimensions• Then 

inf [C  A] =max{ll[C A]II, [A]  } :=a t  

Moreover, a minimizing X is given by 

X = - B A * ( t r l  -AA*)+C.  

It will be of interest to us how to compute a Q 
to achieve the infimum in (2); this can be done 
by sequentially applying Lemma 3: 

Step 1. Decompose the spaces ~ and °d/: 

= (~,)~o ~ (&)~., ~ - - -  ~ ( .),~.-,, 
_ _  Z - k  • .. (~.)~._,. 

We get matrix representations for T and Q: 

T =  

Q= 

I 
T .  /',2 " ' "  T~. l 

• ) 

~ 2  " " " 

Q,, o -.- o 1 
• ) 

L6nl Q n 2  " ' '  n 

Q being block lower-triangular. 

Step 2. Define Xij = Tij - Qij, i >-j, and 

[ x , ,  . - .  T,° 1 

L-- . l  X,2 " "  . 
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The problem reduces to 

min IIPII, 
xq 

where T/t, i < j, are fixed. Minimizing Xi~ can be 
selected as follows. First, set Xu,  X 2 1  . . . . .  X n l  

and Xn2 . . . . .  Xnn to zero. Second, choose X22 
by Lemma 3 such that the norm of the matrix 
( I -  H~2)PI-I~, (obtained by retaining the first 
two block rows and the last n - 1 block columns 
in P) is minimized: 

II( l  - H ~ ) P r I ~ , l l  

= max {ll(I - H~,,) TrI. , l l ,  II( l  - H ~ ) T H ~ 2 l l } .  

Fix this X22. Third, choose [Xa2 X33] again by 
Lemma 3 to minimize 

I1(I  - r I ~ ) P n ~ r 2 1 1  

= m a x  { l i f t  - l - I ~ ) T l - I ~ , l l ,  I1(I  - r I ~ ) T r I ~ r ~ l l } .  

In this way, we can find all X 0- such that 

m a x  I I e l l  = m a x  l i f t  - I - I ~ , , ) T r I ~ , l l .  
X o i 

This procedure also gives a constructive proof of 
the theorem. 

3. MULTIRATE SYSTEMS 
In this section we shall examine the multirate 

controller Kd in Fig. 1 as a discrete-time linear 
operator• To be studied are three basic 
properties: periodicity; causality; and finite 
dimensionality. 

3.1. Periodicity 
The sampled-data controller ~(Kd.~ is in 

general time-varying. However, the operation at 
each channel of Ae and ~ is periodic. Let 

1 = LCM {m, . . . . .  rap, nl . . . .  , nq}, 

integers 

l 
rhi = - - ,  i = 1 , 2  . . . . .  p, 

mi 

1 
h i = - - ,  j = l ,  2 . . . . .  q. 

n/ 

We say K d is (mi, n~)-periodic if 

~ g d • 

This means shifting the ith input channel by rhi 
time units (rhimih = o) corresponds to shifting 
the j th  output channel by h~ units (flinch = o). 
Thus ~Kd~,Cf is o-periodic in continuous time iff 
Kd is (mi, nj)-pedodic. Since G is LTI, it follows 
that the sampled-data system in Fig. 1 is 
o-periodic if Kd is (mi, nj)-periodic. We shall 
refer o as the system period. 

Now we lift Kd to get an LTI system. For an 
integer m > 0, define the discrete lifting operator 
Lm via v = Lmv: 

{v(O), 0(1) . . . .  } 

Lm maps te to ~'~, the external direct sum of m 
copies of g. If the underlying period for v is r, 
then the underlying period for v is mr. Now 
extend the input and output spaces of Kd so that 
the underlying period is o; this corresponds to 
lifting the controller Ke in the following way: 

I ] 
hq ..~ L rhp 

It is an easy matter to check, see e.g. Meyer 
(1990b), that the lifted controller K d is LTI iff K d 
is (mi, nj)-periodic. 

where LCM means least common multiple. Thus 
o:=lh is the least common period for all 
sampling and hold channels, i.e. o is the least 
time interval in which the sampling and hold 
schedule repeats itself. Kd can be chosen so that 
~(Kd,,~ is o-periodic in continuous time. For this, 
we need a few definitions. 

Let ( be the space of sequences, perhaps 
vector-valued, defined on the time set 
{0, 1, 2 . . . .  }. Let U be the unit time delay on t ° 
and U* the unit time advance. Define the 

3.2. Causality 
Figure 1 is a real-time system• So for g d to the 

implementable, ~(Kd.~ must be causal in 
continuous time. This implies that Kd, as a 
single-rate system, must be causal; and more- 
over, the feedthrough term _D in K__~d must satisfy 
a certain constraint, that is, some blocks in _D 
must be zero (Meyer, 1990a; Ravi et al., 1990). 
Now let us characterize this constraint on _D 
using nest operators. 

Write _v = K__gd~; then v ( 0 ) =  _D~,(0), where by 
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definitions 

= . 

L,~,, lpp J /  

= E 0 , ( 0 ) '  • • • - 1 ) '  • • .  

• . .  - 1 ) ' ] ' .  

Note that q'i(k) is sampled at t=kmih. 
Similarly, 

"~J(0) = [ ' U I ( 0 ) ' " " "  ~ J l ( h l  - -  1 ) ' " " "  / J q ( 0 ) '  

• ' ' ~ J q ( h q  - -  1)']' 

and vj(k) occurs at t = knjh. Let X be the set of 
sampling and hold instants in the interval [0, a)  
(modulo the base period h), i.e. 

X:=([7) {O, mi, 2m i . . . . .  l -m~})  

U ( ?  {0, nj, 2nj . . . . .  l - n j } ) .  

This is a finite set of, say, n + 1 elements (not 
counting repetitions); order X increasingly 
(O r < Or+l): 

Z,= {o,:r =0 ,  1 . . . . .  n}. 

Let ~(0)  and V(0) live in the finite-dimensional 
spaces ~F and @ repectively. For r = 0, 1 . . . .  , n, 
define 

gfr = span {9(0) :  lPi(k ) = 0 if kmi < or}, 

@r = span {V(0):vj(k) = 0 if knj < at}. 

°~r and 02r correspond to, respectively, the inputs 
and outputs occurring after and including time 
a,h. It is easily checked that {~r} and {@,} are 
nests and that the causality condition on _D (the 
output at time arh depends only on inputs up to 
arh) is exactly 

-D~r~__~r, r = 0 , 1  . . . . .  n. 

Thus we define _D to be (mi, nj)-causal if 
_D e N({~r},  {~r})- This is the same causality 
constraint as in Meyer (1990a) and Ravi et al. 
(1990) defined in terms of the elements of _D. 

For later benefit, we define _/9 to be 
(m~, nj)-strictly causal if 

O ~ f f r C Z O ~ J r + l ,  r = 0 ,  1 . . . . .  n - 1 .  

This means that the output at time a,+~h 
depends only on inputs up to time o~h. 

The following lemma, which is straightforward 
to prove, justifies our use of terminology from a 
continuous-time viewpoint. 

Lemma 4. 
(a)  ~ K d ~  is causal in continuous time iff K__~a is 

causal and _D is (mr, nj)-causal. 

(b) ~Kd 3~ is strictly causal in continuous time iff 
K_~a is causal and _D is (mi, nj)-strictly causal. 

Some conclusions on causality issues (Meyer, 
1990a) are transparent under this new 
formulation. 

Lemma 5. 
(a) If -D~ is (mi, pk)-causal and -/92 is (Pk, nj)- 

causal, then _D2_Dx is (mi, nj)-causai; further- 
more,  if _Dr or -/)2 is strictly causal, then 
_D2_D~ is also strictly causal. 

(b) If -D is (mi, mi)-causal and invertible, then 
D -l  is (mi, mi)-causai. 

(c) If -D is (mi, mi)-strictly causal, then (1 - D) -I 
exists and is (mr, mi)-causal. 

Proof. Part (a) follows immediately from 
Lemma 4: 

_D1, _DE are causal 
~_Dlfe, ~_D2~ are causal 
in continuous time 
~ D 2 _ D I ~  = ~_DEo.O~a_Dl,~ i s  c a u s a l  

in continuous time 
-D2_D1 is causal. 

Part (a) also follows from Lemma l(a) by some 
renumbering of the indices. Part (b) follows 
directly from Lemma l(c). For part (c), note 
that under appropriate decomposition, O is 
strictly block lower-triangular; so (I-_D) -~ 
exists and is (mi, mi)-causal [part (b)]. [] 

Let us define Kd to be (m,, nj)-causal if K__~a is 
causal and 0 is (mi, nj)-causal. 

3.3. Finite dimensionality 
We assume Kd is (m,-, ni)-periodic and -causal. 

Then K__.gd is LTI and causal. To get finite- 
dimensional difference equations for gd, we 
further assume __g d is finite-dimensional. Thus K_.ad 
has a state model 

c ,  D , ,  . . .  D. , ,  
- -  : • . • 

Let the state for K d be r/. The corresponding 
equations for K__4d (v = K____~ ~)  are 

P 

r/(k + I) = Arl(k ) + ~, B,~,(k), 
i=l 

P 

_,#(k) = G , f f k )  + Oj, V, , (k) ,  
i = l  

j = l ,  2 . . . . .  q. 

Note that ~i = L,~,~ and _v~ = L~yj. Partitioning 
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the matrices accordingly 

B, = [(B,)o " "  (Bi),~,-d, 

Cj = k ( C j i . , - , J  

or, . - .  

(certain blocks in D# must be zero for the 
causality constraint), we get the difference 
equations for Kd (v = Kaap): 

p thi--1 
rl(k+l)=Arl(k)+~ ~2~ (B,) ,~(k~+s) (3) 

i=1 s~O 

vj(kh/+ r) 

( C / ) r ~ ( k )  + ~ g ' - '  = ~, (O#),~Vd,(kFa,+s), (4) 
i=l s=O 

where the indices in (4) go as follows: 
j = l ,  2 . . . . .  q and r = 0 , 1  . . . .  , h i - 1 .  These 
are the equations for implementing Kd on 
microprocessors and they require only finite 
memory. Note that the state vector T/ for Kd is 
updated every system period o. 

In summary, in this paper we are interested in 
the class of multirate Kd which are (mi, hi)- 
periodic and -causal and finite dimensional; this 
class is called the admissible class of Kd and can 
be modeled by difference equations (3) and (4) 
with _D(mi, nj)-causal. The corresponding admis- 
sible class of K___4 is characterized by LTI, causal, 
and finite-dimensional Kd with the same 
constraint on _D. 

The causality constraint, namely, that _D must 
be a nest operator, is the new feature in lifted 
multirate systems, which is the main concern in 
the subsequent designs. A seemingly easy way 
out would be to take _D = 0, which corresponds 
to delay the control input u by a system period 
o. However, we would like to argue that this 
would result in serious performance degradation 
since for complex multirate systems, the system 
periods are usually appreciably large. 

4. INTERNAL STABILITY 

In this section we look at stability of Fig. 1. 
We assume the continuous G is LTI, causal, and 
finite-dimensional; partition G as follows: 

[;]:ro,, o, I 
LG21 G22] [ u~]" 

G has a state model (assuming further that G22 is 

I 
FIG. 2. For stability analysis. 

strictly causal) 

[I ] A Bt B2 
G(s)= Cl Dn D12 • 

CE De1 0 

Let the plant state be x and the controller state 
be 7/ (Kd is admissible). Note that the system in 
Fig. 1 is o-periodic. Define the continuous-time 
vector 

=IX(t)] 
X s d ( t ) :  Lr/(k)] '  ko<-t<(k + l)°" 

The (autonomous) system in Fig. 1 is internally 
stable, or Ka internally stabilizes G, if for any 
initial value Xsd(to), 0--<t0<o, Xsa(t)-'~O as 
t----> 00. 

In the definition, w = 0; so Fig. 1 reduces to 
Fig. 2, where we assume (722 has the same state 
as G. Moving 5e and ~ around the loop and 
defining G22d = 0°G22~, the multirate discretiza- 
tion of G22 , w e  arrive at a multirate discrete-time 
system. Now lift Kd as before and G22d by 

] ] G22 d =  " • • G22d " • • 

L~ L = I nq 

to get the lifted system in Fig. 3. Because (322 is 
LTI and strictly causal, 622 d is (nj, mi)-periodic 
and -strictly causal. Thus G22 d is LTI and causal 
with _D22d (nj, m/)-strictly causal. So Fig. 3 gives 
an LTI discrete system. In fact, a state model for 
G22d can be obtained (Meyer, 1990b; also via 
Lemma 7 below); its state being ~:=Sox, or 

=x(ko) .  
Let us see that Fig. 3 is well-posed, i.e. the 

matrix I -  _Dz2d_D is invertible, where _D is the 
feedthrough term of Kd. This follows from 
Lemrna 5: _Dzzd_D is (m,m;)-strictly causal 
[_Lemma 5(a)] and so 1-_Dzzd_D is invertible 

FIG. 3. The lifted system for stability. 

AUTO 30-7-E 
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[Lemma 5(c)]. This also implies that the 
multirate system of Fig. 1 is well-posed. 

The system in Fig. 3 is internally stable, or K____dd 
internally stabilizes G22d if for any initial states 
~(0) and r/(0), 

[ ~(k)]---~O as k--~oo. ,7(k)J 

It is clear that Fig. 3 is internally stable if Fig. 1 
is. 

Theorem 2. Kd internally stabilizes G iff K_gd 
internally stabilizes G22 d. 

Proof. Suppose Kd internally stabilizes G22a. It 
suffices to show that x(t)---~O as t - --~.  Internal 
stability of Fig. 3 implies that v(k)---~O as k---~ o0 
in Fig. 3 and hence u(t)---~O as t---,oo in Fig. 2. 
Now since for kcr <- t < (k + 1)or, 

l' x(t) =e~'-~°~(k) + e"-~mB~u(r) dr, 
~'ko 

it follows that x(t)---->O as t----> o0. [] 

Sufficient conditions for internal stability to be 
achievable are that (A, B2) and (C2, A) are 
stabilizable and detectable respectively, and that 
the system period e is non-pathological in a 
certain sense, see e.g. Francis and Georgiou 
(1988), Longhi (1992), and Qiu and Chen 
(1992). 

5. ~-OPTIMAL CONTROL 
With reference to Fig. 1, we now study the 

main synthesis problem: design an admissible Ka 
that internally stabilizes G and achieves the 
continuous-time ~ performance requirement 
II~(G, ~R'Kd,~)II < Y, where y is pre-specified 
and positive. By proper scaling, we can always 
take ~ = 1. 

The general idea in the solution is to reduce 
the multirate sampled-data problem to a discrete 
~® model-matching problem with the causality 
constraint and then solve the constrained 
problem explicitly using techniques presented in 
Section 2 on nest operators and nest algebras. A 
special case of the reduction process was 
reported in Qiu and Chen (1992) where a 
uniform sampling rate and a uniform hold rate 
are assumed. The solution process is complex 
enough to require several distinct steps. 
Appropriate  connections to some recent work on 
~ control are made in each step. 

We start with a state model for G: 

J 
A B1 B2 

(~(s ) - -  C1 0 D~2 . 

C2 0 0 

As we saw in the preceding section, the zero 
block in/)22 guarantees the well-posedness of the 
closed-loop multirate system in Fig. 1. For 
II~:(G, ~Kd~)l l  to be finite, we must have 
D21 = 0. The zero block in D11 is for a technical 
simplification, as in the single-rate case in, e.g. 
Bamieh and Pearson (1992a) and Hayakawa et 
al. (1992). We shall assume that (A, B2) is 
stabilizable and (C2, A) is detectable. 

5.1. ~f~ discretization 
The original problem is posed in continuous 

time; so the first step is to recast it as a 
discrete-time problem with time-varying control. 
The reduction is based on recent advances in ~ 
sampled-data control in the single-rate setting. 

Introduce the discrete sampling operator 
S,,, : ~--~ ( defined via 

lp = S,,cp ¢~ lp(k ) = c#(km) 

and the discrete hold operator H,  : ~e---~ ,e via 

v = H, cpCr~v(kn + r) = cp(k), 

r = 0 , 1  . . . . .  n - 1 .  

It is easily checked that S,,~=Sm,Sh and 
H,~ = HnH, c So the multirate sampling and hold 
operators ~' and ~ can be factored as 

1 5e-- ".. &, 
S,.,_] 

Defining 

j 
H.~ Stop 

(5) 
we can view Fig. 1 as a fictitious single-rate 
system but with a time-varying controller Kal as 
in Fig. 4. Now the single-rate results in, e.g. 
Bamieh and Pearson (1992a), are applicable. 

z I o I: 
II u l 

FIG. 4. An equivalent single-rate system. 
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FIG.  5. fft°~ d i s c r e t i z e d  s y s t e m .  

Let _Dish :~2[0, h)----~ LP2[0, h) be defined by 

~Ie(,~,ABtw- (_D,,hW)(t) = C, (~) d~ 

and assume 

II-D,,hll < 1. 

Since _Dt th is the restriction of ~;(G, ~ K a ~ )  on 
Le2[0, h), this condition is necessary for 
I[~(G, ~KaS~)ll < 1; how to verify this condition 
was studied in Bamieh and Pearson (1992a). 

For the multirate sampled-data ~ problem, 
invoke the single-rate results to get the 
equivalent discrete-time system (with finite- 
dimensional input and output spaces) shown in 
Fig. 5 and the equivalent discrete-time problem: 
design Ka~ to give internal stability and achieve 
II~(Ga, ga011<l, where the norm now is 
f2-induced. The ~ discretization Gd (for 1, = 1) 
is LTI and causal and has a state model 

O~(,t) = c,d 
Lc2~ DO . 

The computation of the matrices in (~d is given 
in, e.g. Bamieh and Pearson (1992a) and 
Hayakawa et al. (1992). 

In this way, we arrive at an equivalent discrete 
~ problem; however, Kdl is constrained to be 
of the form in (5) with Kd admissible. 

5.2. Discrete lifting 
The system of Fig. 5 is single-rate with the 

underlying period being h. The next step is to lift 
to get an LTI configuration with underlying 
period o. Partition Gd as usual: 

Gd = kG~ld g2~J" 

FIG. 6. The lifted system. 

Define Kd as before and [L, ] 
G___d_d = L,~,Sm, . . 

Le~,Sm, 

Gd~ nn,c=~,' . 

to get the lifted system of Fig. 6, where ~ -- Leo 
and _~=Lt~. Since Gd is LTI, causal, and 
finite-dimensional with G2~ strictly causal, it is 
an easy exercise to verify the following 
properties of Ga. 

Lemma 6. Ga is LTI, causal, and finite- 
dimensional. Moreover, the feedthrough term 
~)22d of 622 d is (nj, mi)-strictly causal. 

In fact, a state model for Gd can be obtained 
using the lemma below. 

Let P be a discrete-time system with state 
and transfer matrix 

A B 

Let m, n, r~, h, I be positive integers such that 

mth = nh = l. 

Define 

_P := L,~S,,PHnL~ l 

and the characteristic function on integers 

1, p < - r < q  
) ~ l P ' q ) ( r ) =  O,  else. 

Lemma 7. A state model for _P is 

[ , (~ )  = 

A I 

C 

CA m 

- c m l  - m 

n - - I  
At - I - rB  

r = 0  

2n--1 
A I - I - ' B  

r n 
. . .  ~" At - l -~B 

r = l ~ n  

B o o  

D~o 

Oa,-1,o 

Dol 
Dn 

O t h - l , l  

. ° ° 

° ° ° 

D 0 , h - 1  

D l , h - I  

D r ~ - l , ~ - I  
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where 

D u = Dxt,.,.o+,,.,(im) + 
(j+l)n--I 

E C A i m - l - r B  . " " Zl,,,,,,,I.r ). 
r =in 

The corresponding state vector is _~ = S~. 

The lemma can be proven by manipulating the 
input-output equations for P. Note that the 
transfer matrices for all blocks in Gd can be 
obtained from this lemma; for example, for the 
(1, 1) block, namely, G~d = LtG~mLi -~, we take 
m = n = l  a n d r h = h = l i n t h e l e m m a t o g e t  

O , ,,O. ) = C 
C l d A d  

C~dA~d -~ 

A~a-~B~d At-2B~d • • • B~d ] 

0 . . -  1 
DI1 d • . . ~ . 

• i C l d A l d - 3 B l a  " ' '  D ~d 

Dlld 
C~aBId 

C~dAta-2B~d 

This realization is also given in Khargonekar et 
al. (1985). 

From the definitions of Kd and Gd,  w e  get 
after some algebra that the closed-loop map 
~ ( G d ,  Ka) in Fig. 6 equals Lt~;(Gd, Kdl)LI 1. So 
II (ad, gd)ll = II (ad, gd011 since Lt is norm- 
preserving. Thus the equivalent LTI problem is 
now: Design an admissible Kd that internally 
stabilizes Gd and achieves-H-~:(Oa,/~a)ll~<l. 
Notice that the feedthrough term/~a(0) must be 
(mi, nj)-causal; so this is a constrained ~ 
control problem in discrete time. 

5.3. Constrained model-matching problem 
Now we use the controller parametrization in 

Meyer (1990a) and Ravi et al. (1990) to reduce 
the problem further to a model-matching 
problem• In order to internally stabilize Ga, it 
suffices to internally stabilize G22d. 

Bring in a doubly-coprime factorization for 
022d: 

with the conditions: 

M(O) -- = 1, 

R(0)  = = 

X(O)=I ,  X(O)=I ,  

? ( 0 )  = f ' ( 0 )  = 0 .  

The standard procedure in Francis (1987) yields 
such a factorization. Since _D22d is (n~, m;)-strictly 
causal, it follows from Meyer (1990a) and Ravi 
et al. (1990) that the set of admissible Ka which 
provide internal stability is parametrized by 

= ( ?  - M Q ) ( 2  - 

O_ • ~ ,  0_(0) (mi, n~)-causal. 

Note that the causality constraint on /~a 
translates exactly to the same constraint on 

Q(0). Now define the three ~ matrices as in 
Francis (1987) 

7"1 = 011d "1- al2dMffrG21d 

to get the closed-loop transfer matrix of Fig. 6 

Recall in Section 3 that 0(0) is (m,  nj)-causal 
iff 0 ( 0 ) •  N({~,}, {~,}), abbreviated N, where 
the nests {~,} and {~,} were defined in Section 
3. In this way we arrive at the constrained ~® 
model-matching problem: Find 0 ~ ~ with 
0(0) ~ N such that 

If such a Q exists, we say the multirate ~'® 
problem is solvable. 

We note here that Voulgaris and Bamieh 
(1993) reported a different procedure which 
converts a multirate ~ problem into a discrete 
model-matching problem. 

5.4. An explicit solution 
Let us focus on the constrained ~ model- 

matching problem• We write i"-(3.) for i"(3.-1) '. 
For regularity, we need the following 
assumption: 

for every ~ on the unit circle, ~(3.) and T3(3.) 
are both injective. 

This assumption guarantees existence of an 
inner-outer factorization i " 2 = ~  and a 
co-inner-outer factorization T3 = ~coi"~ with 
7"2o and T3co both invertible over 9 ~ .  We claim 
that these factorizations can be performed in 
such a way that T2o(0)•N({~,}) and ~3¢o(0)• 
N({~'r}). TO see this, start with ~2 = T2i1"2o with 
T2o(0) not necessarily in N({~r}). By Lemma 2, 
we can write T2o(0)=U1R1, where /-/1 is 
orthogonal and R1 • N({~,}). Then redefine the 
inner factor to be ~;UI and the outer factor to 
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be U;~2o to get T2 = (T2,Ut)(U;7"2o), which gives 
the desired conclusion: (U[7"2o)(0) = Rt 6 
,At({@,}). A similar argument applies to the 
co-inner-outer factorization of ~ o ,  where a 
dual factorization T3,o(0) = R202 should be used. 

The computation of the required matrix 
factorizations follows from the proof of Lemma 
2: First, change coordinates in ~ and @ so that 

a o = (aol)l.o • ~- (~2)~, e - - .  • " (a°.)~._, 
O~ .1. .1. d- (0~l)a~t 0 e (0~/2)~ ~ "  " " = ~ (~,)~,._,. 

This corresponds to permuting the components 
in ~ and @ according to the order of times when 
they occur. Second, do standard QR type 
factorizations to get the matrices under the new 
coordinates, see the proof of Lemma 2. Finally, 
change coordinates back via permutations to get 
the desired matrices. 

Now bring in an inner-outer factorization 
~2 = ~'2~'2o and a co-inner-outer factorization 
T3 = T3~o7"~ with ~.~1, ~.~c~o • ~ ,  1"2o(0) • 
~({aa,}), and T3,o(0)•Ar({~,}). Apply unitary 
transformations to ~ - T207"~ and define 

n=.l -m- 
L/~21 R22] 

:= [1 -f'~,2 ] ^ ^ (6) 

The constrained model-matching problem is 
equivalent to the following four-block problem 
of finding a 0 • ~ =  with 0(0)  • X such that 

/~21 /~22-111~ < 1. 

Define 01 = i"2o0J"3co. Then Q, e ~ iff 
0 • ~ ®  and 01(0) • X iff 0(0)  • X (Lemma 1). 
Therefore, the above four-block problem further 
simplifies to a problem of finding a 01 • ~ 
with 01(0) e AC such that 

[m,,-0, n,qll 
R21 /~22 j IL < 1. (7) 

Dropping the causality constraint on 01(0) 
temporarily allows us to parametrize all 01 in 
9~X°® achieving (7). We know from Feintuch and 
Francis (1985) that there exists a 01 e ~X°® such 
that (7) holds iff 

[no' (8, 
where/~ is regarded as a multiplication operator 
mapping ~2 ~ ~2 to itself and /~l~e~e~ is the 
restriction of/~ to the domain ~2 ~ ~2. If (8) is 
satisfied, then a procedure in Glover et al. (1991) 

allows us to find an ~ matrix 

e,q 
LRzl R=3 

with /¢{~, /~211 • ~ffl~z and 11/¢2211~< 1 such that 
all 01 • ~ satisfying (7) are characterized by 

01 = .~(R, 0 9 ,  Q2 • ~ ,  110211~ < 1. 

We refer to Glover et al. (1991) for the details of 
checking inequality (8) and the expression of/¢. 
Hereafter, we shall assume that (8) is true. This 
is also necessary for the solvability of the 
multirate X°~ problem. 

In general /~22(0)~/:0, SO 01(0) depends on 
02(0) in a linear fractional manner. However, it 
is possible to simplify this relation by introducing 
another linear fractional transformation (Qiu 
and Chen, 1992); 

05 = ~(v, 0~). 
Here V, partitioned as usual, is a constant 
unitary matrix with V12, V2, nonsingular. It 
follows that the mapping 0 3 ~  02 is bijective 
from the open unit ball of ~ onto itself 
(Redheffer, 1960). Thus all 01 satisfying (7) can 
be re-parametrized by 

01 = ~ [ g ,  ~(V, 03)1 

=o*(L, 03), 0 3 • ~ ,  110sll~<l, 

where L, partitioned as usual, can be written in 
terms of K and V: 

L = [g,1 + k,~v11(t - g=vl , ) - lk~,  
v21(i - R= v ,o - '  g2, 

/~12(]-  Vllg22)-lv12 V22 1 . j  
V21(I -- K22 Vll)-l R22 V12 + 

For L22(0)= 0, we choose the unitary matrix V 
to be 

v = [[t gh(0)  
- t~=(0)kh(0)] 1~ 

[ t -  g;2(p)e=(0)l,~l 
-K=(0)  J" 

It can be checked that L12(0) and L2t(0) are still 
nonsingular. 

To recap, the set of all 01 • ~X°~ achieving (7) 
is parametrized by 

0 1 =  ~ ( L ,  03),  03 • ~ : . ,  H0311~< 1. 

Here £ has the desirable properties that 
/-.22(0) =0,  L12(0) and /-.21(0) are nonsingular. 
Thus 

01(0) = LI,(0) + L,2(0)03(0)L21(0). (9) 

This is now an affine function 03(0)"--> 01(0). 
Now we bring in the causality constraint on 
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01(0). Our goal is to find a 0 3 e : ~  with 
110311~<1 such that Qff0) in (9) lies in 
N({~} ,  {~r}). Since 0~(0) depends only on 
03(0) and in general 110311~-->1103(0)11, the 
equivalent problem is to find a constant matrix 
03(0) with 1103(0)11 < 1 such that 0~(0) e At. 

Now we use Lemma 2 to reduce the problem 
to a distance problem. Introduce matrix 
factorizations (Lemma 2) 

L,2(0) = R, U,, £2,(0) = -U2R2, 

where R~, R2, U~, U2 are all invertible, U~, U2 
are orthogonal, and R~, R E belongs to the nest 
algebras 2¢'({~}), )¢'({~f,}) respectively. Substi- 
tute the factorizations into (9) and pre- and 
post-multiply by Ri -~ and R2 ~ respectively to get 

R I - I Q I ( O ) R 2  -I  = RT'L,,(O)R2' - U, 0d0)U2. 

Define 

W:=R?IOt(O)R~ ', T:=R{~LI,(O)R21, 

P := u,G(o)u . 
It follows that 01(0) eAr({&e~), {~})  iff W e  
X ( ( ~ } ,  {~})  (Lemma 1) and IIQ3(0)II <1  iff 
IIPII < 1. Therefore, we arrive at the following 
equivalent matrix problem: 

Given T, find P with IIPII <1 such that 
W = T - P e ~ .  

This is equivalent to the problem of finding 
W e d ¢  such that I I T - W I I < I ,  which can be 
solved via the distance problem studied in 
Theorem 1: 

Theorem 3. The matrix problem is solvable, i.e. 
there exists a matrix P with IIPII < 1 such that 
T - P e ~ ,  iff the quantity 

# :=dist (T, .E) = max {11(I - rI~,)Tn~,ll}. (10) 
r 

is less than one. 

Let Wop, e )¢" achieve the distance, i.e. 
IIT-Wo~,,II=#. If # < 1 ,  then P : = T - W o , ,  
solves the matrix problem with Ilell --/~. 

How to compute # and Wop, were discussed in 
the procedure given at the end of Section 2: 
After a change of coordinates in • and ~ ,  which 
corresponds to permuting their components 
chronologically, # can be found via computing 
the spectral norms of several matrices and Wop, 
via sequentially applying Lemma 3. If # < 1, we 
can backtrack to get 

P = T -  Wop, 

3 ~ = U I P U 2 ,  

0 ^ ^ - '  = Q 3 )  T3co. 

This 0 solves the multirate ~ control problem. 
To summarize, let us list the solvability 

conditions for the multirate ~ control problem 

II~(G, ~KaAe)ll < 1: 

(a) II_DHhll < 1; 

(b) -~ R I ~-,e~-, < 1; 
I 

(c) # < 1 .  

Condition (a) was studied in detail in Bamieh 
and Pearson (1992a) and would usually be 
satisfied for a reasonable design since normally 
the base period h is much smaller than the 
system period o. Condition (b) is the solvability 
condition for a standard four-block ~ problem, 
see e.g. Glover et al. (1991) for checking this 
condition. When Conditions (a) and (b) hold, 
Condition (c) amounts to computing the norms 
of several constant matrices. 

Finally, we remark that multirate ~ 
controllers which are arbitrarily close to 
optimality can be computed based on the 
solvability Conditions (a)-(c) (with proper scaling) 
and a standard bisection search. 

6. ~2-OPTIMAL CONTROL 
In this section we use the techniques 

developed to solve explicity a general multirate 
~2-optimal model-matching problem. The 
model-matching problem arises in multirate 
control problems from either a sampled-data 
point of view (Voulgaris and Bamieh, 1993; Qiu 
and Chen, 1992) or from a discrete-time LQG 
point of view (Meyer, 1992). 

The problem is as follows: design a 0 e ~ 
with 0(0) being (mi, nj)-causal such that the 
~2-norm of the transfer matrix J ' l -  ~0T3 is 
minimized, i.e., 

mi.n 11~ -- ~'207"3112, (11) 

where ~ are all in ~ .  Here we shall make the 
same regularity assumption as in Section 5: 

For every 3, on the unit circle, ~(3,) and T3(3,) 
are injective. 

As in Section 5, we bring in an inner-outer 
factorization T2 = T2ii"2o and a co-inner-outer 
factorization Ts = ~co~c, with i"7_o ~, J'~Jo e ~ ,  
T2o(0) e Ar({~}), and ~Vo(0) e 2¢'({~,}). Defin- 
ing/~ as in (6), we get 

] 

2 

= 121 R22Jl12 

= I1,~,, - T2o0Tacoll 2 + 11/~,2112 

+ 11/~2,11~ + 11,~2211~. 
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The last three terms are independent of Q; so 
the problem in (11) reduces to minimizing only 
the first term. Define ~ = Peo0P3~o- We have 
O t ~  iff 0 ~  and 0 ~ ( 0 ) ~  iff 
0 (0) ~ ~ .  It follows then 

inf t l /~ , , -  ~o0t3~o112~ 

= inf I1,~,, - 0,11~ 

= IIrI~_~/~.ll~ + IIrIx~RI~..IIL 

where Rti0 is the constant term in /~t~ and 
FIx~RHo is the projection of the matrix Rno to 
the subspace .N "±. (The set of matrices in N can 
be regarded as a subspace in the space of 
matrices mapping ~ to ~ ;  thus with the inner 
product defined as 

(A, B ) := trace (A'B), 

N has an orthogonal complement NJ'.) The 
optimal 0.~ is given by the sum of IIxRno and 
the strictly causal part o f /~n ,  i.e. 

0~,op, = n ~ R t t o  + x n ~ ( x - t / ~ t t ) .  

On summarizing, we have derived the 
following result. 

Theorem 4. The optimal Q in (11) is given by 

0_o,,, = P ~ l [ r I x R . o  + 

and the optimal model matching error by 

min I l L -  t20t3ll~ 

= IIrI~/~.l l l~ + IIrIx~R.oll~ 

+ 11/~,211~ + 11/~2~112 + 11/~2211~. 

7. CONCLUSIONS 
In this paper we introduced a new framework 

based on nest operators for handling causality 
constraints in multirate systems. This framework 
allows us to develop explicit solutions to 
syntheses of general multirate control systems 
with ~2 and ~ performance criteria. 

The results in this paper are presented in an 
operator setting; for example, the solution 
techniques in Sections 5 and 6 are developed in 
the frequency domain. For computational 
efficiency, it would be useful to develop a 
time-domain approach via state-space methods; 
this would make a good project for future 
research. 
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