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Limitations on Maximal Tracking Accuracy, Part 2: 
Tracking Sinusoidal and Ramp Signals * 

Jie Chent Li Qiut Onur Tokers 

Abstract 
This paper continues an earlier work on optimal tracking prob- 
lems with respect to multivariable feedback systems. We examine 
the error between a system’s output response and its command 
input, which is either a sinusoidal or a ramp signal. This error 
is quantified under an integral square criterion, and is adopted 
as a measure of tracking accuracy. For both sinusoidal and ramp 
signals, we derive explicit expressions of the minimal tracking er- 
ror attainable by all possible stabilizing controllers. These results 
show that the tracking accuracy may be fundamentally limited by 
plant nonminimum phase zeros and unstable poles together with 
their spatial properties, in ways dependent upon the command 
input signals. 

1 Introduction 
In an earlier companion paper [2], the authors studied a classical 
tracking problem [5, 6, 71 pertaining to finite dimensional, linear, 
time invariant, multivariable feedback systems. An integral square 
criterion was adopted in our study to quantify the error between 
a system’s output response and its input, which, as a measure 
of tracking accuracy, determines how well the output may track 
the input signal. In the case when the input is a certain gener- 
alized unit step signal, we obtained an explicit expression of the 
minimal tracking error attainzble by all possible stabilizing con- 
trollers. It became clear from this work that a system’s tracking 
performance can be severely limited by plant characteristics such 
as nonminimum phase zeros, unstable poles, and time delays. One 
particularly noteworthy outcome is that in a multivariable system 
the tracking error depends not only upon the locations of the zeros 
and poles, but also on their directions. This phenomenon is most 
interesting, and it points to a distinguishing feature only seen in 
multivariable systems. As an immediate implication, the result 
indicates that while for a single-input single-output nonminimum 
phase plant it is impossible to achieve perfect tracking, it can be 
accomplished for a multivariable nonminimum phase plant when- 
ever the input signal is properly aligned with the zero directions. 

The present paper continues the investigation in [2]. We revisit 
the same tracking problem but consider different classes of input 
signals. The motive here is a simple one. While our previous study 
has yielded important insight toward limitations upon a system’s 
tracking ability in general, we hope a deeper investigation of these 
issues by making use of other different signals will lead to a better 
understanding. This motivation appears to be well-founded, and 
is rooted in the observation that tracking performance generally 
varies with command signals, and that in tracking different types 
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of signals a system may behave in a drastically different way; in- 
deed, classical analysis of steady-state tracking error serves as a 
good example. We shall consider specifically sinusoidal and ramp 
signals. Our consideration of these signals stems from the fact 
that they, like the unit step signal, are among the most frequently 
used signals for assessing transient and steady-state performance. 
We shall derive an explicit formula for the minimal tracking error 
in each case. Similar to their counterparts in [2], these results 
provide explicit characterizations on the intrinsic tracking error 
irreducible via compensator design, and they shed new lights on 
how plant nonminimum phase zeros and unstable poles may fun- 
damentally limit the tracking performance. Specifically, while the 
results obtained herein bear much resemblence to [2], in that the 
minimal tracking error is shown to depend on plant nonminimum 
phase zeros and unstable poles together with their spatial prop- 
erties, it will be seen that in each case the zeros and poles lead 
to performance degradation in rather different a manner. This 
difference is clarified through our study of the problem by use of 
different input signals. 

For any 
complex number z ,  we denote its complex conjugate by Z. For any 
vector U ,  we denote its conjugate transpose by uH. For any signal 
U ( t ) ,  we denote its Laplace transform by G ( s ) .  The conjugate 
transpose of a matrix A is denoted by AH.  All the vectors and 
matrices involved in the sequel are assumed to have compatible 
dimensions, and for simplicity, their dimensions are omitted. We 
denote the open right half plane by (E+ and the imaginary axis 
by (EO. Moreover, let 11 . 11 denote the Euclidean vector norm and 
define, 

We collect below some relevant notations from [2]. 

I J 
where 

Finally, let X, denote the set of all bounded analytic functions 
defined in the open right half plane and I R X ,  denote the set of 
all rational functions in X,. 
2 Preliminaries 
Consider the finite dimensional linear time-invariant feedback sys- 
tem depicted in Figure 1, where the signals U ,  y,  and e represent 
the command input, the system output, and the error signal be- 
tween y and U .  The transfer function matrices P and K are those 
of the plant model and the compensator, respectively. Let the 
system be at rest initially. Then, For a given input signal U ,  we 
define the tracking error between U and its output response y as 

and we use J as a measure of the system’s tracking ability, specif- 
ically in reference to the signal U .  We will be particularly inter- 
ested in the minimal error attainable by all possible stabilizing 
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Figure 1: The feedback system 

compensators. This quantity provides an intrinsic measure of the 
difficulty in tracking an input signal and is defined below. 

Let the right and left coprime factorizations of P be given by 

where N ,  M ,  N ,  M E IR‘l-lfl, and satisfy the double Bezout iden- 
titv 

for some X ,  Y ,  2, E RX,. It is well-known that the set of 
all stabilizing compensators K can be described via the so-called 
Youla parameterization [3] 

IC := { K  : K = (Y - M Q ) ( N Q  - X)-’,  Q E IR’H,}. (2.3) 

Based upon this characterization, we define the minimal tracking 
error by 

J’ := inf J .  
K E X  

Let the system sensitivity function be denoted by 

S(s) := ( I  + P(s)K(s) ) - l  

It follows that 

and hence 
J*  = inf / ~ S ( s ) t i ( s ) ~ l ~ .  (2.5) K E K  

The latter expression indicates the possibility of a frequency do- 
main approach for finding J’. Such an approach has been previ- 
ously adopted in [6, 21 and will be used in the present paper as 
well. 

Throughout this paper we shall need the following assumption 
in order for the tracking problem to be well-posed. 

Assumpt ion  2.1 T h e  transfer func t ion  ma t r i x  P ( s )  has full  row 
rank f o r  at least one s.  

Stated in words,, this condition implies that the plant transfer 
function is right invertible, which is required to insure that the 
tracking error be finite. 

We now describe an allpass factorization of nonminimum phase 
transfer functions matrices. Let ( A ,  B,  C, D) be a minimal 
realization of P(s) .  Then, a point z E (E+ is called a nonminimum 
phase zero of P if there exist vectors 7 and C such that the relation 

~ 
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holds, where 111711 = 1, and 7 is called the output zero direction 
vector associated with z .  Moreover, a complex number p E a+ 

is said to be an unstable pole of P if it is an eigenvalue of A.  It 
can be readily shown that z E (E+ is a zero of P with an output 
direction vector 77 if and only if v H N ( z )  = 0. Similarly, it can 
be shown that p E (E+ is a pole of P if there exists a vector w 
such that f i (p )w  = 0, where llwll = 1. We shall call w the input 
direction vector of the pole p .  In the sequel, we shall assume that 
the plant transfer function matrix P has only simple nonminimum 
phase zeros and unstable poles and that the set of poles and zeros 
are disjoint. 

Suppose that P(s )  has nonminimum phase zeros at zi E G+, 
i = 1, . . . , k and unstable poles at pi E (E+, i = 1, . . . , 1. Then, 
it is well-known [8, 9, 21 that P(s)  can be factorized in the form 
of 

/ k  \ 

P(s )  = L(s)P,(s) = (2.6) 

where P,(s) represents the minimum phase part of P(s) ,  and the 
allpass factor L(s)  can be constructed as 

k 
2Rez; s vi$. (2.7) 

L ( s )  := J-JLi(S), L;(s)  : = I -  -- 
z; s +2; 

i= l  

Here the unitary vectors qi can be constructed via an iterative 
procedure [9]. Note that when P is stable, then P, will be an 
outer factor,  and (2 .6 )  amounts to an inner-outer factorization of 
P [3]. Under this circumstance, there exists a right inverse of P, 
analytic in (E+. Note also that the right and left coprime factors 
N ( s )  and M ( s )  can be factorized as 

where L is given in (2.6-7), and F is defined accordingly: 

I 
2Rep, s 

F ( s )  := I - p , ( s ) ,  F,(s) := I - -- w,w?. (2.9) 
t=1 P,  s + F %  

Finally, we introduce the following angular measure between 
two subspaces. Given a unitary vector U ,  we call the one di- 
mensional subspace spanned by u the direction of u. The angle 
between the directions of two unitary vectors U ,  w is defined to bc 
the principal angle [l] between the two corresponding subspaces 
spanned by the two vectors. We denote this angle by L(u, w): 

cos L ( u ,  w) := IuHwI. 

We shall say that the two directions are parallel if cos L(u, w )  = 1 
and that they are orthogonal if cos L(u, v )  = 0. 

3 Tracking Sinusoidal Signals 
3.1 Complex Sinusoids 
The complex sinusoidal signals to be considered in this section are 
described by 

where WO is a known frequency, and v is a given unitary vector. 
The Laplace transform of u( t )  is 

G ( S )  = .-%.- 
s - jwo 

It is clear that in order for J to be finite the sensitivity function 
S ( s )  must have a zero at j u ~ ,  which in turn requires that the open 
loop transfer function have a pole at j w ~ .  To prevent unstable 



pole-zero cancelation, the plant transfer function should then have 
no zero at j w o .  Thus, the following assumption will be imposed 
throughout this subsection. 

has full rank. Assumption 3.1 The matrix pc -D 

The minimal tracking error is characterized explicitly as follows. 

Theorem 3.1 Let U be given in (3.1), and suppose that Assump- 
tion 2.1 and Assumption 3.1 hold. Furthermore, let N ( s )  be fac- 
torized as in (2.8). Then, 

1 jwol -A  -B [ 

k 

COS’L(Q~,V) + v ~ H v ,  (3.2) 
J* = 

Izi - j w o P  
i=l 

where 

i # *  

and I[ := { i  : G(p , )v  = 0). 

Much like its counterpart in the step input case [2], Theorem 
3.1 shows that the tracking error depends upon both the locations 
and directions of the plant nonminimum phase zeros and unstable 
poles, and that this dependence is fully captured by the princi- 
pal angles between the input direction and those of the zeros and 
poles. While any nonminimum phase zero will affect the tracking 
error whenever its direction is not orthogonal to that of the in- 
put signal, an unstable pole will do so only when its direction is 
perfectly aligned with that of input, and in particular, when the 
plant is nonminimum phase. It is clear that nonminimum phase 
zeros far away from the imaginary axis have a negligible effect in 
general. On the other hand, zeros close to j w o  can lead to rather 
poor tracking quality. This can be observed by weakening (3.2) 
to the following lower bound 

k 

cos2 [(Vi, V ) .  

i=l 

Moreover, it is worth noting that whenever an unstable pole does 
affect the tracking error, i.e., when its pole direction is parallel 
to that of the input, then it may couple with any nonminimum 
phase zero to lead to a particularly serious consequence. Indeed, 
suppose that the plant has a single nonminimum phase zero z 
with direction vector Q, and a single unstable pole p with direction 
vector U, such that cos L(w,  U) = 1. Then, it can be readily shown 
that 

+ 8 ’ p 1 3  ) cos2 L ( Q , V ) .  
J* = ( (2 2Re(z) - j W O ( 2  Ip - jWOl21P - 212 

As such, J* may become excessively large when the zero and 
pole are close to each other, and when their directions are closely 
aligned. 

3.2 Real Sinusoids 
We now examine real sinusoidal signals. This class of signals are 
described by 

(3.3) 
vsinwot t 2 0 

0 t < O  ’ u ( t )  := 

with W O  being a fixed frequency and w a given unitary vector. 
Notine: that 

one immediately realizes that P should not have zeros at j f 
W O .  Since P is real rational, this possibility is ruled out under 
Assumption 3.1. 

composed as a linear combination of complex ones: 
It is a household knowledge that the real sinusoids can be de- 

,jwot - , - jwot  

2.i 
sin w o t  = 

Motivated by this fact, one is tempted to conjecture that the min- 
imal tracking error in response to the former class of signals may 
be the combination of those to the latter signals. A little thought, 
however, indicates that this is not true in general. The observa- 
tion here is a simple one: while the error signals with respect to 
the complex sinusoidal inputs do satisfy the superposition prin- 
ciple, they do not constitute an orthogonal pair. Our following 
result shows that this is indeed not the case. 

Theorem 3.2 Let U be given in (3.3), and suppose that Assump- 
tion 2.1 and Assumption 3.1 hold. Furthermore, let N ( s )  be fac- 
torized as in (2.8). Then, 

where 

ai : = 

pi : = 

@(s) : = 

(3.4) 

; # i  

and I[ := { i : 1c;l(pi)w = o}. 
Theorem 3.1 and Theorem 3.2 serve to demonstrate the com- 

plex behavior of how plant nonminimum phase zeros and unstable 
poles may affect the tracking performance in response to sinusoidal 
signals. A simple observation from this result is that sine waves 
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of a lower frequency are easier to track. This, of course, is con- 
sistent with one's intuition. Note that while Theorem 3.1 and its 
derivation bears much similarity to the case of step signals, the 
statement and derivation of Theorem 3.2 is quite different and it 
exhibits several new aspects not found previously. One notable 
difference here is that the zero effects are entangled in a rather 
complicated manner, unlike in the complex sinusoids case where 
each of the nonminimum phase zeros seemingly exerts its effect in- 
dependently and they together contribute in an additive fashion. 
This makes the analysis of the zero effects rather difficult, and 
it deters a further interpretation of the nature in how the zeros 
and poles may limit the achievable performance. In spite of this 
difficulty, however, it remains possible to gain useful insight by 
examining certain limiting cases. Consider, for example, that the 
plant has only one nonminimum phase zero z with direction q, to- 
gether with only one unstable pole p whose direction is completely 
aligned with the input vector w. In this case, it is not difficult to 
deduce from (3.4) that 

This again shows that zeros and poles lying in proximity will in 
general make tracking performance goal particularly difficult to 
attain. Note also that J" achieves the maximum value at WO = 

4 Tracking Ramp Signals 
Similar to step inputs, the unit ramp signal is typically used for 
analyzing transient and steady state behavior in classical system 
analysis. This signal is described by 

+&. 

v t  t 2 o  { 0 t < O  u(t) := 

and its Laplace transform is 

v 
C ( S )  = - 

52 ' 

Again, we assume that llvll = 1. Note that to warrant a finite 
tracking error J ,  similar assumption must be imposed on the sys- 
tem's behavior at the origin. In the present case, the open loop 
transfer function must be at least of type two. This implies that 
neither P ( s )  nor its derivative P'(s)  can have a zero at the origin. 
An equivalent statement for this assumption can be easily shown 
to be the following 

Assumption 4.1 The matrices [ ] and [ 5 ] have 

full rank. 

The following result gives an explicit expression of J" with re- 
spect to the ramp signal. 

Theorem 4.1 Let U be given in (4.11, and suppose that Assump- 
tion 2.1 and Assumption 4.1 hold. Furthermore, let N ( s )  be fac- 
torized as in (2.8). Then, 

where 

k 

*(s) := I + s vi vi 
i=l 

Furthermore, ai, pi, b,, and I[ are defined as in Theorem 3.2. 

At the outset, one notes that 

v sin wot u(t) = lim -, 
WO+O WO 

or equivalently, 
1 vwo 

&(s) = lim -- 

This suggests that the ramp signal can be considered as a lim- 
iting case of the real sinusoid, averaged over frequency. As a 
consequence, the error signal in response to the former input can 
be considered as the limit of that to the latter. The implication 
then is that the same relationship may exist between the mini- 
mal tracking errors in the two cases. While a direct justification 
of this observation resorting to a limiting procedure requires cer- 
tain subtle technical details and can be provided, a comparison 
of Theorem 3.2 and Theorem 4.1 indicates that the minimal er- 
ror expression in (4.2) is indeed the limit of that in (3.4). More 
specifically, let J,* and J,* denote the minimal tracking errors in 
response to the real sinusoidal and the ramp signals, respectively. 
Then, 

J,* J,* = lim - 
WO'O WO". 

WO'O WO s2 +WO". 

This is clear by observing that 

= *(s). 

Here the equality follows from the well-known L'Hopital rule. 

5 Average Tracking 
As a final contribution, we now formulate and solve a related 
problem, which amounts to an averaged version of the tracking 
problems considered thus far. We shall first need to generalize 
several concepts concerning norms and spaces. We collect these 
generalizations below. 

0 Frobenius norm of matrices: 

IlFll: := Tr (F"F)  . 

The Hilbert space Cz: 

La := F : F ( s )  measurable in CO, { 

These notions are now standard and are known to possess the 
same properties as those defined for vector functions. 

While in our preceding development the tracking error is mea- 
sured in terms of input signals lying in certain specific directions, 
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it is of interest to know a priori to what extent tracking perfor- 
mance may be achieved independently of input directions. This 
motivates our study of the minimization problem 

As a result, we have 

(5.3) 

which quantifies the minimal error in a spatially uniform fashion, 
and hence may considered as a uniform measure of the tracking 
performance. Note also that the problem may be viewed as an 
extension to an 3 t z  optimal control problem formulated in [6]. It is 
clear that S ( s )  must have a blocking zero at the origin, for which 
Assumption 3.1 constitutes a necessary condition. We provide 
below the solution to this problem. 

Theorem 5.1 Suppose that Assumption 2.1 and Assumption 3.1 
hold. Let N ( s )  and M ( s )  be factorized as an (2.8), together with 
F ( s )  and F’(s) given by (2.9). Then, 

where 

For stable plants, the error quantity alluded to above may be 
interpreted in the following sense as an average of the system’s 
tracking errors in response to signals from different directions. 
Let m be the number of the system’s outputs. In addition, let ej 
be the j t h  Euclidean coordinate of the m-dimensional Euclidean 
space. Then, 

= 5 1 1 F e j 1 1 2 .  
j=1 

Since for a stable plant P its right and left coprime factors can be 
selected as N = fi = P ,  M = M = I ,  which leads to X = 3 = I ,  
Y = ? = 0. It follows that 

It is clear that 

On the other hand, 

It follows immediately from [2] that 

Note that ej can be replaced by any orthonormal basis of the m- 
dimensional Euclidean space, and as such j *  may be interpreted as 
a quantity resulted from averaging the tracking errors in response 
to all orthogonal input signals. Note also that this property in 
general does not hold for unstable plants. Indeed, while for stable 
plants the optimal Q is independent of input directions, it is not 
so when the plant is unstable. 
6 Conclusion 
In this paper we have derived explicit formulas for the minimal 
tracking error in response to sinusoidal and ramp signals. On the 
one hand these results share much in common with our earlier 
work [2], showing that tracking performance in general depends 
on both the locations and directions of plant nonminimum phase 
zeros and unstable poles. On the other hand, they help display 
new features useful for clarifying the rather intricate behavior in 
how nonminimum phase zeros and unstable poles may lead to 
poor performance in tracking different input signals. Overall, the 
following general statements can be made from this work and [2]. 

0 Nonminimum phase zeros will limit the tracking performance 
to a significant extent only when they are close to the imag- 
inary axis. The effect of nonminimum phase zeros is com- 
pletely determined by zero locations and the principal angles 
between zero and input directions. 

0 Unstable poles will affect the tracking performance only when 
the plant is also nonminimum phase, and when the input and 
certain pole directions are completely aligned. When this is 
the case, approximate unstable pole-zero cancelation can lead 
to particularly poor tracking performance. 
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