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Abstract 
This paper studies optimal tracking performance is- 
sues pertaining to finite dimensional, linear, time in- 
variant feedback control systems. The problem un- 
der consideration amounts to determining the mini- 
mal tracking error between the output and input sig- 
nals of a system, attainable by all possible stabilizing 
compensators. An integral square error criterion is 
used as a measure for the tracking error, and explicit 
expressions are derived for this measure with respect 
to step signals. It is shown that plant nonminimum 
phase zeros have a negative effect upon a system's 
ability in reducing the tracking error, and that in a 
multivariable system this effect results in a way de- 
pending upon not only the zero locations, but also 
the zero directions. It is also shown that plant non- 
minimum phase zeros and unstable poles can together 
play a particularly detrimental role to tracking perfor- 
mance, especially when the zeros and poles are nearby 
and their directions are closely aligned. These results 
lead to new insights into the optimal tracking prob- 
lem, and more generally, insights into certain funda- 
mental issues concerning limitations on performance 
achievable via feedback control. 

1 Introduction 
In this paper we study optimal tracking performance 
issues pertaining to finite dimensional, linear, time 
invariant feedback control systems. The problem un- 
der consideration amounts to determining the maxi- 
mal tracking accuracy, or the minimal tracking error 
between the output and input signals of a system, 
attainable by all possible stabilizing compensators. 
Here the tracking error is defined in the 3 t z  sense us- 
ing an integral square error criterion, and the track- 
ing performance is measured by the minimal error in 
tracking certain specific classes of input signals; typ- 
ical signals to be examined are unit step signals. It 
is worth noting that while in classical system analy- 
sis one is mainly concerned with steady state error, 
adoption of an integral square error criterion makes it 
possible to capture transient behavior as well. 

The ability of tracking command input signals is 
a primary criterion used to assess the performance of 
feedback control systems and indeed constitutes a pri- 
mary objective in control system design. As such, op- 
timal tracking problems have over the years received 
a considerable amount of research interest. While in 
many such problems a main objective is to design 
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an optimal compensator to minimize tracking error, 
in this work we are more interested in the intrinsic 
system properties that may limit the trackin perfor- 

lem being pursued here is closely related to a number 
of well-studied issues regardin cheap LQR control 
[8], servomechanism problems fll], and an %t/2 opti- 
mal control problem studied in lo]. Earlier investiga- 

discoveries on tracking performance limitations. It is 
now generally known that perfect tracking, or zero 
tracking error, can be achieved for minimum phase 
systems, and that this desirable property will van- 
ish, however, when the system is nonminimum phase 
[8].  More recently, explicit expressions relating track- 
ing error to the plant nonminimum phase zeros were 
made available in [lo, 11 displaying how the error 

We adopt a frequency domain approach similar to 
that in [lo]. Using this approach, we derive explicit 
formulae for the minimal tracking error with respect 
to step signals; our consideration of step signals is mo- 
tivated by the observation that in classical control de- 
sign it serves as a benchmark testing signal for assess- 
ing transient and steady state performance. Note that 
while the same problem has been previously exam- 
ined in 101 with respect to single-input single-output 

tems. This leads to several new discoveries unique 
to the latter. A particularly interestin observation 
resulting from these formulae indicates -kat in a mul- 
tivariable system the tracking error depend not only 
upon the location of the plant nonminimum phase ze- 
ros, but also upon how the input signal may interact 
with the zeros. This interaction is characterized by 
the principal angles between the input and zero direc- 
tions. It is clear from this result that while for single- 
input single-output systems it is impossible to achieve 
perfect tracking in the presence of plant nonminimum 
phase zeros, it can be accomplished in the multivari- 
able setting for signals that are properly aligned with 
zero directions, specifically when the input and zero 
directions are orthogonal. Additionally, as yet an- 
other interesting feature, our result also shows that for 
plants that are both nonminimum phase and unsta- 
ble, a close coupling between the nonminimum phase 
zeros and unstable poles can be particularly detri- 
mental. Here the coupling is determined not only by 
the closeness of pole and zero locations, but also in 
how the pole and zero directions are aligned. This 
phenomenon was unknown previously with respect to 
tracking performance. 

For any complex number z ,  we denote its complex 
conjugate by F. For any vector U,  we denote its conju- 
gate transpose by uH.  For any signal u(t) ,  we denote 
its Laplace transform by i i ( s ) .  The conjugate trans- 
pose of a matrix A is denoted by AH. All the vectors 
and matrices involved in the sequel are assumed to 
have compatible dimensions, and for simplicity, their 
dimensions are omitted. We denote the open right 

mance achievable via feedback. In this vein, t f e prob- 

tion into these problems has le 6 to several important 

may be negatively affecte k by the zero locations. 

stable p \ ants, we consider multivariable unstable sys- 
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Figure 1: The feedback system 

half plane by C+ and the imaginary axis by CO. More- 
over, let 11 . 1 1  denote the Euclidean vector norm and 
define, 

f : f(s) measurable in CO, l l f l l a  < cc 

where 

Finally, let 3-1, denote the set of all bounded ana- 
lytic functions defined in the open right half plane 
and IRX, denote the set of all rational functions in 
Xm. 

2 Preliminaries 
We consider the finite dimensional linear time- 
invariant feedback system depicted in Figure 1. In 
this setup, P denotes the plant model and K the com- 
pensator, whose transfer function matrices are P ( s )  
and K ( s ) ,  respectively'. The signals U ,  y, and e rep- 
resent respectively the command input, the system 
output, and the error signal between y and U .  We 
shall assume throughout the paper that the system 
is initially at rest. For a given input signal U ,  the 
tracking error of the system is defined as 

This quantity constitutes an important criterion in 
3-12 optimal control, and more generally, serves as a 
useful measure for assessing a system's performance. 
An important objective in feedback control design is 
to achieve internal stability of the system and to min- 
imize the tracking error. 

It is well-known that, any stabilizing compensator 
K can be described via the so-called Youla parameter- 
ization [6]. Specifically, let the right and left coprime 
factorizations of P be given by 

p = NM-l  = M-lfi, (2.1) 

where N ,  M ,  fi, M E IR3-1, and satisfy the double 
Bezout identity 

for some X ,  Y ,  2, 
stabilizing compensators K is characterized by 

E R3-1,. Then, the set of all 

Note in particular that when P is stable, then one can 
select N = N = P, X = M = I ,  x = M = I ,  Y = 0, 
and = 0. As a result, the parameterization (2.3) 
reduces to 

K = { K  : K = Q(I - PQ)-', Q E R3-1,). (2.4) 

In this paper we are interested in finding the min- 
imal tracking error attainable with respect to certain 
specific classes of signals. This problem amounts to 
determining 

J* := inf J. 

Define the system sensitivity function by 
K E K  

S(s) := ( I  + P(s)K(s))-l  

It follows from the well-known 

A standin assumption throughout this paper requires 

ible, by which we mean 
Assumption 2.1 The transfer function matrix P(s)  
has full row rank f o r  at least one s. 

This assumption is standard, and has proven to be 
crucial in optimal tracking problems, as evidenced 
by the previous work (see, e.g., [8, 111). Additional 
assumptions to be imposed will vary with the com- 
mand signals to be considered, and will be made sub- 
sequently. 

In our later development we shall be particularly in- 
terested in the behavior of nonminimum phase plants, 
by which we mean that P(s )  has zeros in the open 
right half plane. Here the notion of zeros of a mul- 
tivariable system is that of the transmission zeros, 
which are often defined via the Smith-McMillan form 
(see e.g., [9]) and can be characterized using state 
space representations [12]. Let ( A ,  B,  C, D) be a 
minimal realization of P s). Then, a point z E C+ 
is called a nonminimum p 6 ase zero of P if there exist 
vectors z and w such that the relation 

that the p P ant transfer function matrix be right invert- 

z I - A  -B [ -C - D ] [ Z ] = o  

holds, where llwll = 1, and tu is called the input zero 
direction vector associated with z .  Analogously, a 
zero z of P satisfies the relation 

where < and 77 are some vectors with 17 being unitary, 
11y11 = 1. The vector 77 is called the output zero direc- 
tion vector associated with z .  It can be readily shown 
that z E 6+ is a nonminimum phase zero of P with an 
input direction vector w if and only if N(z)w = 0, and 
that it is a nonminimum Dhase zero of P with an out- 
put direction vector if And only if q H N ( z )  = 0. A 
complex number p E %+ is an unstable pole of P with 
a right pole direction vector w'if M(p)w = 0, where 
llwll = 1. Similarly, p i s  an unstable pole of P with left 

transfer 

IC := { K  : K = (Y - M Q ) ( N Q  - X ) - ' ,  Q E RR,}. 
(2.3) 

direction vector 7, 
out this paper, we 

lIn the sequel, we shall use a same symbol to denote a system 
and its transfer function, and whenever convenient, to omit the 
dependence upon the frequency variable s. 
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function P has only simple nonminimum phase zeros 
and unstable poles and that the set of poles and zeros 
are disjoint. 

It is well-known that a nonminimum phase, right 
invertible transfer function admits a factorization con- 
sisting of a minimum phase part and an allpass factor. 
While such a factorization is not unique, a specific fac- 
torization can be explicitly constructed as follows, by 
a repeated use of a formula given in [la]. Let z ,  E C+, 
i = 1, . . . , I C ,  be the nonminimum phase zeros of P ( s ) .  
Define 

B(0) : rz B ,  
B(4 : = B('-l) - 2(Rezz)Cz7f, 

where 7, is a unitary vector (Ilq,Il = 1) and it,  together 
with Cz, satisfies the relation 

where L is given in (2.6-7). 
In closing, we introduce the following angular mea- 

sure between two subspaces. Given a unitary vector 
U ,  we call the one dimensional subspace spanned by U 
the direction of U .  The angle between the directions 
of two unitary vectors U ,  U is'defined to be the princi- 
pal angle [l] between the two corresponding subspaces 
spanned by the two vectors. We denote this angle by 
L(u,  U): 

cosL(u, v) := (U H 211. 

We shall say that the two directions are parallel if 
cosL(u,  U) = 1, and that they are orthogonal if 
cosL(u, w) = 0. As discussed in [l], the principal 
angle between two subspaces serves as a distance mea- 
sure and it quantifies how well the two subspaces are 
aligned. 

3 Main results 
In this paper we consider the problem of tracking a 
constant signal of the form Additionally, define 

k 
and 

L(s)  := n L,(s). 
z= 1 

Then, as shown in [14], the transfer function P(s)  can 
be factorized in the form of 

/ I C  \ 

where Pm(s) represents the minimum phase part of 
P ( s ) ,  and L(s)  the all pass factor. Note that the uni- 
tary vector q, in (2.6) need not be the zero direction 
vector of P(s)  associated with z,, it is a zero direc- 
tion vector of &(s) ... Lk(s)P,(s) associated with zi. 
For ease of reference, however, we shall refer to qz as 
a zero direction vector from this point onward. Note 
also that L,(s) can be alternatively written as 

where U, is a matrix whose columns, together with 
Q,, form an orthonormal basis of the corresponding 
Euclidean space, i.e., q,rf  + UzU," = I .  It is imme- 
diately clear from (2.9) that L,(s)  is indeed all pass, 

and (2.8) amounts to  an inner-outer factorization of 
P [6]. Under this circumstance, there exists a right 
inverse of P, analytic in C+. 

Suppose now that in addition to the nonminimum 
phase zeros z ,  E @+, i = 1, ..., k, P also has un- 
stable poles a t  pz E C+, i = 1, ..., I .  Let the co- 
prime factorizations of P be given by (2.1). Since N 
is right invertible and the nonminimum phase zeros 
of N coincide with those of P it follows that N can 
be factorized as 

and that L , ( O  = I It is useful to point out that 
when P is sta b le, then P, will be an outer factor, 

N ( s )  L(s )Nm(s)  (2.10) 

where .U is a constant unitary vector: llvll = 1. This 
signal may be viewed as a generalized unit step signal, 
whose Laplace transform is given by 

n .  

7qs) = y .  
S 

In light of (2.5), it is clear that in order for J to  be 
finite, the sensitivity function S(s) must have a zero at 
the origin. This implies that integral control action 
is needed, and that the open loop transfer function 
must be of at least type one. Since there should be 
no unstable pole-zero cancellation in the system, the 
following condition is necessary for the problem to be 
well-posed. 

Assumption 3.1 [ 
Stated in words, P should have no zero, and hence no 
pole-zero cancellation will occur, at the origin. 

] has full rank. 

3.1 Stable Plants 
We shall examine first stable plants, for which the 
parameterization (2.4) results in S = I - PQ, and 
hence the minimal tracking error can be expressed as 

Our following result gives an explicit expression of J* . 
Theorem 3.1 Let U be given in (3.1), and suppose 
that P ( s )  is  stable. Also, suppose that Assumption 2.1 
and Assumption 3.1 hold, and that P(s )  is  factorized 
as in (2.8). Then, 

Theorem 3.1 is similar to its counterpart pertain- 
ing to single-input single-output systems, which shows 
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that one generally cannot achieve perfect tracking 
with respect to  nonminmum phase plants. A dis- 
tinguishing feature about this result, however, shows 
that the tracking accuracy depends upon not only the 
zero locations, but also the zero and input directions, 
and that this dependence is fully captured by the prin- 
cipal angles between the zero and input directions. To 
further illustrate, consider the case that P has only 
one right half plane zero z with a zero direction vector 
q,  to which (3.3) reduces to  

J’ = a R c o c o s 2  L(q, w). 
1Zl2 

It is clear from this expression that perfect tracking 
is still possible, provided that the input direction is 
orthogonal to the zero direction. Spatial properties of 
this kind have no analog in single-input single-output 
systems. It is worth noting that while zeros far away 
from the imaginary axis may have a negligible effect 
in general, those close to  the imaginary axis, when 
they are com lex, do not necessarily play a dominant 

parts also. Indeed, one can clearly observe that any 
complex nonminimum phase zero will have only a lim- 
ited effect when it is far away from the origin, despite 
that it may be very close to the imaginary axis. This 
appears to be a phenomenon unique to the optimal 
tracking problem, contrary to certain other circum- 
stances where nonminimum phase zeros close to  the 
imaginary axis do pose a formidable difficulty regard- 
less of their imaginary parts [5 ,  41. 

As a related issue, it is useful to examine the largest 
and smallest value of J* achievable among all possible 
w. This amounts to determining 

role; their e fp  ect on J* depends upon the imaginary 

J;;lax := max J*, 
II4I=l 

J$in := min J*, 
IIvII=l 

which can be readily characterized as follows. Note 
first that J* can be alternatively written as 

This suggests that 

and that the least and the most desirable input signals 
coincide with the respective eigenvectors. It is not dif- 
ficult to see that J* depends on the principal angles 
between the zero %%ctions. On the other hand, JGin 
will depend on the angles only when IC 1 dim(w), oth- 
erwise Jkin = 0, which attests to the fact that perfect 
tracking is possible. To further illustrate, consider the 
case k = dim(w) = 2. A simple calculation reveals 
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Rezl Re22 +- Jkin - - - 
k1I2 1.212 

which exhibit an explicit dependence of J&ax and 
J&, on the principal angle between the two zero di- 
rections. 

3.2 Unstable Plants 
We now consider unstable plants. Our main result 
in this subsection shows that to  ether with nonmin- 

severe negative effect on the achievable optimal track- 
ing performance. Unlike Theorem 3.1, both the state- 
ment and derivation of this result differ considerably 
from the previous work [lo, 111. 

Theorem 3.2 Let U be given in (3.1), and suppose 
that Assumption 2.1 and Assumption 3.1 hold. Sup- 
pose that P(s )  has unstable poles at pl,  ...,pt. Then, 

imum phase zeros plant unstab k e poles may have a 

2Re(zi) k J*=C-- cos2 L ( v ~ , w )  + v ~ H w ,  (3.4) 
i= l  (ziI2 

where 

bi := 
f f  

and H := { i : M(pi)v = 0 is the index set of poles 
of P(s)  whose pole direction vectors are parallel to U .  

It is clear from Theorem 3.2 that for an unsta- 
ble, nonminimum phase plant, its unstable oles will 
in general worsen the optimal trackin per P ormance. 

an important discovery previously unknown: in the 
presence of plant unstable poles, the tracking error 
depends not only on the nonminimum phase zeros, 
but also on the unstable poles. From a conceptual 
standpoint, the present result appears to bear a close 
similarity to [5 ,  3, 41; the latter works studied perfor- 
mance limitation issues based upon the classical Bode 
and Poisson type integrals and lead to the conclu- 
sion that unstable plant poles will indeed impose lim- 
itations upon the achievable performance, especially 
when nonminimum phase zeros are also present in the 
plant transfer function. 

While plant unstable poles may indeed limit the 
achievable trackin performance, it is interesting to 

intricate way. First, such poles wi 1 have an effect on 
J* only when the plant is also nonminimum phase. 
Indeed, if the plant is minimun phase, then H = 0, 
for in this case L = I .  Secondly, even for a non- 
minimum phase plant, they will have an effect only 
when the input vector v lies in certain pole directions. 
The latter property appears rather intri uin , and 

between multivariable and single-input single-output 

The significance of this result lies in t fl at it leads to 

s note that they a 2 ect the trackin error in a rather 

it points to yet another major conceptua B f f  di erence 
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systems. While in a multivariable system plant unsta- 
ble poles may or may not affect the tracking perfor- 
mance and it depends on the alignment between in- 

case I[ = (1, 2, . . . , I } ,  and (3.4) reduces to 

and hence in this case 

k 
2Rezi s H put and pole directions, in a sin le input single-output L-'(s) = I + 7- r l z r l z  . zz zz - s system they always do. It is J e i r  that in the latter . 2=1  

This leads to 

There is also a strong indication from Theorem 3.2 
that nonminimum phase zeros and unstable poles can 
particularly limit the tracking performance when they 
are close to each other. To better observe this prop- 
erty, it is instructive to examine (3.4) with respect to  
certain special cases. Consider the case that there is 
only one unstable pole p whose direction contains U. 
Under this circumstance, 

2Re(zi) k J*=C- cos2 L(qi,v)+- 
i = l  IZi 12 
"~ - 

(3.5) 
Additionally, suppose that the plant has only one non- 
minimum phase zero z together with q. Then, it fol- 
lows from (3.5) that 

Since 

(3.7) 

we may rewrite (3.6) as 

This expression is particularly reminiscent of the per- 
formance bounds obtained in [5,  4, 3, 7, 131. It is 
clear from this result that distribution of plant non- 
minimum phase zeros and unstable poles at nearby 
locations can be detrimental. Nevertheless, one can 
also see that the extent to which the zero and pole 
may affect J* depends upon how the zero and pole 
directions are aligned, noticing that in this case v lies 
in the pole direction. 

As a final note, we point out that when the plant 
has more than one nonminimum phase zeros then the 
effect imposed by plant unstable poles will also de- 
pend on how the zero directions are aligned. We il- 
lustrate this point by examining two limiting cases. 
Suppose again that there is only one unstable pole p 
whose direction contains v. In the first case we assume 
that all the zero directions are mutually ortho onal, 
by which we mean that cos L ( q z ,  7,) = 0 for i $ j .  It 
is easy to show from (2.9) that 

2Rez2 s H L,l(s) = I + ---=--------- r12% 7 z ,  za - s 

By combining this expression with (3.5) and using 
(3.7), we have 

In the second case, we assume that the zero directions 
are all parallel, i.e., cos L(vz,  q j )  = 1 for i # j. With 
no loss of generality we may assume that qi = for 
all i = 1, . . , IC. In this case, one can write 

where U is some matrix which together with q forms 
a unitary matrix. It follows that 

A comparison of (3.8) and (3.9) shows that J* may 
differ drastically due to different alignments between 
71 and 712. 

4 Effects of Time Delays 
We now consider plants with measurement time de- 
lays, by which we mean that the plant transfer func- 
tion matrix can be expressed as 

p d ( s )  = h(s)P(s ) ,  (4.1) 

where P ( s )  is a real rational transfer function matrix, 
and 

h ( s )  := diag(ePT1', . . . , e--Tms) 
Here Ti > 0 represent the delay constants in the dif- 
ferent channels, and m is the number of plant outputs. 
Let U be a given input whose Laplace transform is G. 
We denote the tracking error with respect to P d  by 

J d  := I I ( I  + p d K ) - l i i / l ;  , 

and correspondingly, the minimal tracking error by 

JZ := inf J d .  
K E K  
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As in the preceding development, J* will denote the 
minimal tracking error with respect to P. 

For purpose of illustration we shall consider the case 
that P is stable. In this case the right and left CO rime 
factorizations of Pd are given by Nd = AN = X P  = 
Pd, Nd = AN = AP = Pd, and M = = I .  Let the 
input be the unit step signal given by (3.1). Then, it 
follows that 

Clearly, for Ji to be meaningful, it is necessary that 
( I  - Pd(O)Q(O))v = ( I  - P(0)Q 0))v = 0,  thus neces- 

an expficit formula for J; . 
Theorem 4.1 Let U be given by  (3.1 , and suppose 

2.1 and Assumption 3.1 hold. Then, 

sitatin Assumption 3.1. The fo I lowing theorem gives 

that P is stable. In addition, suppose t R at Assumption 

m 

i=l 

Since for Ti > 0 we have Ji > J*, Theorem 5.1 
shows, and indeed attests to the inuition that the 
tracking performance is generally more difficult to at- 
tain with respect to delay systems. It is interesting to 
note that the delay units affect the tracking error in 
much the same way as nonminimum phase zeros will, 
in the sense that they do so in an additive fashion. 

5 Conclusion 
This is the first part of a two-part series devoted to the 
study of optimal trackin performance issues pertain- 

back control systems. We have examined, based upon 
an integral square criterion, specifically the minimal 
tracking error between the output and input signals 
of a system in response to  step signals. We presented 
explicit formulae for the minimal error. These formu- 
lae demonstrate explicitly how plant properties such 
as nonminimum phase zeros, unstable poles, and time 
delays in a multivariable system may degrade track- 
ing performance, thus leading to new insights into 
the optimal tracking problem, and more generally, in- 
sights lending a concrete su port to the previously 

on performance achievable via feedback control. Our 
results indicate that in a multivariable system track- 
ing performance can be seriously limited to an ex- 
tent determined by both the location and directions 
of plant nonminimum phase zeros, and it partially 
depends upon how the input and zero directions are 
aligned. When the plant is also unstable, this adverse 
effect can be more acute. Our result shows that for 
plants that are both nonminimum phase and unsta- 
ble, a close cou ling between the nonminimum phase 
zeros and unstatle poles can be particularly detrimen- 
tal to tracking performance. This is determined not 
only by the closeness of pole and zero locations, but 
also in how the pole and zero directions are aligned. 

Part I1 of this series contains results with respect 
to other typical signals and will be presented else- 
where. Examples of such signals include sinusoidal 

ing to  finite dimensiona B , linear, time invariant feed- 

known assertions regarding P undamental limitations 

731 

and ramp inputs. The approach as well as the results 
presented herein can be extended to several other re- 
lated problems. An immediate extension of interest 
is the tracking performance of discrete-time systems. 
Additionally, while the present work is restricted fully 
to right invertible plants, it is of interest to formulate 
and solve similar problems pertaining to plants that 
are not right invertible. The latter issue is of im- 
portance not only by itself, but also because it has 
a far reaching implication toward sampled-data sys- 
tems. These problems are currently under investiga- 
tion by the authors. 
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