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Now, choose the coordinates transformation as follows:

�1 =h = x
�1

1 x3 � 1

�2 =Lfh = 1� x3x
�1

4

�3 =�1 = x
�1

2 x4 2 SC
1(M)

�4 =�1 = x
�1

1 x
�1

2 x3x4 lnx3 + x
�1

2 x4 ln x4: (24)

Writing system (23) in� coordinates results in

_�1 = �2;

_�2 =(1 + �1)
�1(�2 � 1) + 1� �2 + (1� �2)�

�1

3

� (1� �2)
2
� ((1 + �1)

�1(1� �2) + 1� �2)u

_�3 =1� �
2

3 + �2�3

_�4 = �2�4 � �3�4 + �
�1

3 �4 + �2(�1 + 2)�1�4 + 1

+ �2�3(�1 + 2)�1 ln(1� �2)� �1�3 + �2�3 � �3: (25)

The zero dynamics is

_�3 =1� �
2

3

_�4 =��3�4 + �
�1

3 �4 + 1� �3 (26)

which is of cascade decomposition form.

V. CONCLUSIONS

It has been shown that the zero dynamics of a nonlinear system pos-
sessing symmetries has many special properties. The zero dynamics
maintains symmetries if it exists, and a semiglobal zero dynamics al-
ways exists. We can obtain this kind of semiglobal zero dynamics by
“moving” any known local zero dynamics along the�-orbits. The zero
dynamics has a cascade decomposition according to the vector relative
degree and the dimension of the symmetryLie group. This kind of de-
composition is also called triangular decomposition, which is widely
used in the study of stability in the literature (for example, refer to [5]).
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Limitations on Maximal Tracking Accuracy

Jie Chen, Li Qiu, and Onur Toker

Abstract—This paper studies optimal tracking performance issues per-
taining to finite-dimensional, linear, time-invariant feedback control sys-
tems. The problem under consideration amounts to determining the min-
imal tracking error between the output and reference signals of a feed-
back system, attainable by all possible stabilizing compensators. An inte-
gral square error criterion is used as a measure for the tracking error, and
explicit expressions are derived for this minimal tracking error with re-
spect to step reference signals. It is shown that plant nonminimum phase
zeros have a negative effect on a feedback system’s ability to reduce the
tracking error, and that in a multivariable system this effect results in a
way depending on not only the zero locations, but also the zero directions.
It is also shown that if unity feedback structure is used for tracking pur-
poses, plant nonminimum phase zeros and unstable poles can together play
a particularly detrimental role in the achievable tracking performance, es-
pecially when the zeros and poles are nearby and their directions are closely
aligned. On the other hand, if a two-parameter controller structure is used,
the achievable tracking performance depends only on the plant nonmin-
imum phase zeros.

Index Terms—Nonminimum phase zeros, optimal tracking, performance
limitation, two-parameter control, unstable poles.

I. INTRODUCTION

In this paper, we study optimal tracking performance issues per-
taining to finite-dimensional, linear, time-invariant feedback control
systems. The problem under consideration amounts to determining the
maximal tracking accuracy, or the minimal tracking error between the
output and the reference signals of a feedback system, attainable by all
possible stabilizing compensators under either a unity feedback struc-
ture or a two-parameter structure. Here, the tracking error is defined in
theL2 sense using an integral square error criterion, and the reference
signals under consideration are step signals.

We are interested in the intrinsic limit on the tracking performance
achievable via feedback. For this purpose, we adopt a frequency do-
main approach and derive explicit formulas for the minimal tracking
error. Although the same problem has been examined previously in
[9] with respect to single-input–single-output (SISO) stable plants, we
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consider multi-input–multi-output (MIMO) unstable systems. Our in-
vestigation leads to several new discoveries unique to the latter. A rather
interesting consequence is that in a multivariable system the minimal
tracking error depends not only on the location of the plant nonmin-
imum phase zeros, but also on how the input signal may interact with
the zeros. This interaction can be precisely characterized by the angles
between the input and zero directions. It becomes clear that although
for SISO systems it is impossible to achieve perfect tracking in the
presence of plant nonminimum phase zeros, this can be accomplished
in MIMO systems for reference signals that are properly aligned with
zero directions, specifically when the input and zero directions are or-
thogonal. Additionally, as another interesting feature, our result shows
that in a unity feedback configuration, a close coupling between plant
nonminimum phase zeros and unstable poles can be particularly detri-
mental. Here, the coupling is determined not only by the closeness of
pole and zero locations, but also in how the pole and zero directions
are aligned. This phenomenon was unknown previously with respect
to tracking performance. Nevertheless, our study further reveals that
the adverse “coupling” effect can be overcome by use of two-param-
eter feedback schemes, and that the tracking performance achievable
by a two-parameter controller depends only on the nonminimum phase
zeros, in exactly the same way as it does when the unity feedback is
used for a stable plant. From a broad perspective, our contribution is
related to and reinforces a number of well-known results regarding
cheap LQR control [8], servomechanism problems [10], andH2 op-
timal tracking control [9], and it also bears a close relationship to per-
formance studies facilitated by Bode- and Poisson-type integrals (see,
e.g., [1], [2], [6], and [11]), as well as those underH1 criteria [7], [13].

The notation used throughout this paper is fairly standard. For any
complex numberz, we denote its complex conjugate byz. For any
vectoru, we denote its conjugate transpose byuH . For any signal
u(t), we denote its Laplace transform bŷu(s). The conjugate trans-
pose of a matrixA is denoted byAH . If A is a Hermitian matrix, its
largest and smallest eigenvalues are written as�max(A) and�min(A),
respectively. All vectors and matrices involved in the sequel are as-
sumed to have compatible dimensions, and for simplicity, their dimen-
sions are omitted. Let the open right half plane be denoted by+ :=
fs: Re(s) > 0g. Moreover, letk � k denote the Euclidean vector norm
andk � k2 the norm in the spaceL2. It is well known [5] thatH2 and
H?2 are subspaces ofL2, and they constitute orthogonal complements
inL2. The spaceL2 is a Hilbert space with an inner product defined by

hf; gi :=
1

2�

1

�1

fH(j!)g(j!) d!:

For anyf 2 H?2 andg 2 H2, we havehf; gi = 0. This simple fact
furnishes the main mechanism in our development.

Partial and related results of this paper were presented previously in
[3] and [4].

II. PRELIMINARIES

Let us first consider the finite-dimensional, linear, time-invariant
unity feedback system depicted in Fig. 1. In this setup,P denotes the
plant model andK denotes the compensator, whose transfer function
matrices areP (s) andK(s), respectively.1 The signalsr; y, ande
represent, respectively, the reference input, the system output, and
the error signal betweeny and r. We shall assume throughout the

1In the sequel, we shall use the same symbol to denote a system and its transfer
function, and whenever convenient, to omit the dependence on the frequency
variables.

Fig. 1. The unity feedback system.

paper that the system is initially at rest. For a given input signalr, the
tracking error of the system is defined as

J :=
1

0

ke(t)k2 dt:

Let the system sensitivity function be defined byS(s) :=
(I + P (s)K(s))�1. Becauseê(s) = S(s)r̂(s), it follows from
the well-known Parseval identity that

J = kSr̂k22 =
1

2�

1

�1

kS(j!)r̂(j!)k2 d!: (2.1)

In this paper, we shall consider a step reference signal of the form

r(t) =
v; t � 0

0; t < 0
(2.2)

wherev is a constant unitary vector:kvk = 1. The subspace spanned
by v will be called the input direction. This signal may be viewed as
a generalized unit step signal, whose Laplace transform is given by
r̂(s) = v=s.

Let H1 denote the set of all stable, proper, rational transfer func-
tion matrices. Let also the right and left coprime factorizations ofP be
given by

P = NM�1 = ~M�1 ~N (2.3)

whereN;M; ~N; ~M 2 H1 and satisfy the double Bezout identity

~X � ~Y

� ~N ~M

M Y

N X
= I (2.4)

for someX; Y; ~X, ~Y 2 H1. It is well known that every stabilizing
compensatorK can be described via the so-called Youla parameteri-
zation [5]

K := fK: K = �(Y �MQ)(X �NQ)�1

=�( ~X �Q ~N)�1(~Y �Q ~M); Q 2 H1g: (2.5)

In particular, whenP is stable, then we can selectN = ~N = P ,
~X = M = I , X = ~M = I , Y = 0, and ~Y = 0. As a result, the

parameterization (2.5) reduces to

K = fK: K = Q(I � PQ)�1 = (I �QP )�1Q; Q 2 H1g:

(2.6)

The minimal tracking error attainable by all possible stabilizing com-
pensators, accordingly, is

J� := inf
K2K

J:

It is well known that forJ� to be finite for allv, a necessary and suf-
ficient condition is thatN(0) is right invertible. This will be assumed
throughout.

We shall be particularly interested in the behavior of nonminimum
phase plants, by which we mean thatP (s) has zeros in the open right
half plane. Suppose thatP (s) is right-invertible. It is well known (see,
e.g., [2] and [11]) that anyz 2 + is a nonminimum phase zero of
P if and only if �HN(z) = 0 for some unitary vector�. The vector
� is called an (output) zero vector associated with the zeroz, and the
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subspace it spans is called an (output) zero direction associated withz.
Similarly, anyp 2 + is an unstable pole ofP if and only if ~M(p)w =
0 for some unitary vectorw. Likewise, the vectorw is called an (input)
pole vector associated with the polep, and the subspace it spans is
called an (input) pole direction associated withp.

Let zi 2 +, i = 1; � � � ; k, be the nonminimum phase zeros ofP .
It is well known [2] thatP (s) can be factorized as

P (s) =L(s)Pm(s) =

k

i=1

Li(s) Pm(s)

L(s) :=

k

i=1

Li(s) (2.7)

wherePm(s) represents the minimum phase part ofP (s), andL(s) is
an all-pass factor. A specific factorization admits the form of

Li(s) = [�i Ui]

zi
zi

zi � s

zi + s
0

0 I

�Hi
UHi

: (2.8)

Here, the unitary vector�i can be sequentially determined from the zero
direction vectors ofP , andUi is a matrix whose columns, together with
�i, form an orthonormal basis of the corresponding Euclidean space,
i.e.,�i�Hi + UiU

H
i = I . It is immediately clear from (2.8) thatLi(s)

is indeed all pass, and thatLi(0) = I . It is useful to point out that
whenP is stable, thenPm will be anouter factor, and (2.7) amounts
to an inner–outer factorization ofP [5]. Under this circumstance, a right
inverse ofPm analytic in + exists. Clearly, ifP is nonminimum phase
and left invertible, then a similar factorization exists and is of the form
P (s) = ~Pm(s)~L(s), with ~Pm being the minimum phase part and~L
the all-pass factor, which is clear by examiningP T (s). Additionally,
because the nonminimum phase zeros ofN(s) coincide with those of
P (s); N(s) can be similarly factorized.

Finally, we define the angle between (the subspaces spanned by) two
unitary vectorsu; v to be

6 (u; v) := arccos juHvj:

III. T RACKING LIMITATION OF UNITY FEEDBACK

A. Stable Plants

We shall examine first stable plants, for which the parameterization
(2.6) results inS = I � PQ, and hence, the minimal tracking error
can be expressed as

J� = inf
Q2 H

(I � PQ)
v

s

2

2

: (3.1)

It is clear that in order forJ� to be finite,Q must be selected such
that (I � P (0)Q(0))v = 0. Our following result gives an explicit
expression ofJ�.

Theorem 3.1:Let r be given by (2.2), and suppose thatP (s) is
stable. Also, suppose thatP (s) is factorized as in (2.7). Then

J� =

k

i=1

2Re(zi)

jzij2
cos2 6 (�i; v): (3.2)

Proof: According to (2.7) and (3.1), we can first writeJ� as

J� = inf
Q2 H

(I � LPmQ)
v

s

2

2

:

BecauseLi(s) is all pass, it follows that

J� = inf
Q2 H

L�11 �

k

i=2

Li PmQ
v

s

2

2

= inf
Q2 H

L�11 � I
v

s
+ I �

k

i=2

Li PmQ
v

s

2

2

:

Note thatL�11 (0) = I , which implies that(L�11 �I)v=s 2 H?2 . On the
other hand, becauseQ is to be selected so that(I �P (0)Q(0))v = 0,
we have(I � (�ki=2 Li)PmQ)v=s 2 H2. Hence

J� = (L�11 � I)
v

s

2

2

+ inf
Q2 H

I �

k

i=2

Li PmQ
v

s

2

2

:

(3.3)

By a repeated use of (3.3), we obtain

J� =

k

i=1

(L�1i � I)
v

s

2

2

+ inf
Q2 H

(I � PmQ)
v

s

2

2

=

k

i=1

(I � Li)
v

s

2

2

+ inf
Q2 H

(I � PmQ)
v

s

2

2

:

BecausePm is an outer matrix function, we have

inf
Q2 H

(I � PmQ)
v

s

2

2

= 0: (3.4)

Next, it follows from (2.8) that

(I � Li)
v

s

2

2

=
2Re(zi)

zi

2
1

zi + s

2

2

� j�Hi vj
2:

A straightforward calculation gives rise to

1

zi + s

2

2

=
1

2Re(zi)
:

The proof can now be completed by observing thatj�Hi vj
2 =

cos2 6 (�i; v).
On the one hand, Theorem 3.1 is similar to its counterpart for

SISO systems, which shows that in general perfect tracking cannot be
achieved with respect to nonminimum phase plants. A distinguishing
feature about this result, on the other hand, shows that the tracking
accuracy depends not only on the zero locations, but also on the zero
and input directions, and that this dependence is fully captured by the
angles between the vectorsv and�i. To further illustrate, consider the
case thatP has only one right half plane zeroz with a zero vector�,
to which (3.2) reduces to

J� =
2Re(z)

jzj2
cos2 6 (�; v):

It is clear from this expression that perfect tracking is still possible,
provided the input direction is orthogonal to the zero direction. Spatial
properties of this kind have no analog in SISO systems. Note that for
any nonminimum phase zerozi with a zero vector~�i, we always have

J� �
2Re(zi)

jzij2
cos2 6 (~�i; v):
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Because the tracking errorJ� depends on the input direction, it is of
interest to examine its largest and smallest possible value achievable
among all possiblev. This process amounts to determining

J�max := max
kvk=1

J�; J�min := min
kvk=1

J�

which can be readily characterized as follows. Note first thatJ� can be
alternatively written as

J� = vH
k

i=1

2Rezi
jzij2

�i�
H
i v:

This process suggests that

J�max =�max

k

i=1

2Rezi
jzij2

�i�
H
i

J�min =�min

k

i=1

2Rezi
jzij2

�i�
H
i

and that the least and the most desirable input signal directions coincide
with those of the eigenvectors corresponding to the largest and smallest
eigenvalues. Let the dimension ofv bem. We can see that whenever
k < m, J�min = 0, and hence, perfect tracking is possible in this
situation whenv is appropriately aligned. Furthermore, it is not difficult
to see thatJ�max depends on the angles between the vectors�i. Indeed,
a simple calculation for the casek = 2 reveals that

J�max =
Rez1
jz1j2

+
Rez2
jz2j2

+
Rez1
jz1j2

+
Rez2
jz2j2

2

� 4
Rez1
jz1j2

�
Rez2
jz2j2

sin2 6 (�1; �2):

Whenm = k = 2, we also obtain

J�min =
Rez1
jz1j2

+
Rez2
jz2j2

�
Rez1
jz1j2

+
Rez2
jz2j2

2

� 4
Rez1
jz1j2

�
Rez2
jz2j2

sin2 6 (�1; �2):

Both of these expressions exhibit an explicit dependence ofJ�max and
J�min on the angle between�1 and�2.

B. Unstable Plants

More generally, Theorem 3.1 can be extended to unstable plants. For
technical reasons, we shall assume that the plant transfer functionP
does not have a right half plane zero and pole at the same location,
and thatP has onlysimplepoles in +. Our next result demonstrates
that plant unstable poles, when coupled with its nonminimum phase
zeros, may have a severe negative effect on the achievable tracking
performance.

Theorem 3.2:Let r be given by (2.2) andN(s) be factorized as in
(2.7). Then

J� =

k

i=1

2Re(zi)

jzij2
cos2 6 (�i; v) + vHHv (3.5)

where

H =
i; j2

4Re(pi)Re(pj)

(pi + pj)pipjbibj
(I � L�1(pi))

H(I � L�1(pj))

bi :=
j2
j 6=i

pj
pj

pj � pi
pj + pi

and is an index set defined by:= fi: ~M(pi)v = 0g.

Proof: First, using the doubly coprime factorizations (2.3) and
Youla parameterization (2.5) yieldsS = (X �NQ) ~M . Hence

J� = inf
Q2RH

(X ~M �NQ ~M)
v

s

2

2

:

BecauseN can be factorized as in (2.7), it follows that

J� = inf
Q2 H

(X ~M � LNmQ ~M)
v

s

2

2

= inf
Q2 H

(L�1X ~M �NmQ ~M)
v

s

2

2

: (3.6)

We claim thatL�1X ~M = L�1 + R1 for someR1 2 H1. In-
deed, it follows from (2.4) that~MX � ~NY = I . Premultiplying
this equation by~M�1 and postmultiplying it by ~M leads toX ~M �
PY ~M = I , which implies thatPY ~M 2 H1, and accordingly
PmY ~M 2 H1. Consequently, it follows thatR1 = L�1(X ~M �
I) = PmY ~M 2 H1. It then follows that

J� = inf
Q2 H

(L�1 +R1 �NmQ ~M)
v

s

2

2

= inf
Q2 H

(L�1 � I)
v

s
+ (I +R1 �NmQ ~M)

v

s

2

2

:

As in the proof for Theorem 3.1, we have(L�1 � I)v=s 2 H?2 , and
(I + R1 � NmQ ~M)v=s 2 H2. Hence

J� = (L�1 � I)
v

s

2

2

+ inf
Q2 H

(I +R1 �NmQ ~M)
v

s

2

2

:

(3.7)

Denote

J�1 := inf
Q2 H

(I +R1 �NmQ ~M)
v

s

2

2

:

In light of (3.7), it suffices to show thatJ�1 = vHHv. Toward this end,
definef(s) := ~M(s)v. Becausef(pi) = 0 for anyi 2 , and because
f(s) is left invertible, it admits a factorizationf(s) = g(s)b(s), where
g(s) is a minimum phase part andb(s) 2 H1 is a scalar all-pass
factor that can be formed as

b(s) =
i2

pi
pi

pi � s

pi + s
:

Moreover, becausef(s) 2 H1, g(s) is a co-outer factor [5] off(s)
whose left inverse is analytic in+. It now follows that

J�1 = inf
Q2 H

((I +R1)v �NmQgb)
1

s

2

2

= inf
Q2 H

(I +R1)v

b
�NmQg

1

s

2

2

:

Based on a partial fraction procedure, we may write

I +R1(s)

b
=

i2

pi
pi

pi + s

pi � s

I +R1(pi)

bi
+R2(s)

whereR2 2 H1. Furthermore, it is easy to verify thatR1(pi)v =
�L�1(pi)v for any i 2 . Therefore

J�1 = inf
Q2 H

i2

pi
pi

pi + s

pi � s

I � L�1(pi)

bi
v

+R2(s)v�NmQg
1

s

2

2

= inf
Q2 H

i2

pi
pi

pi + s

pi � s
� 1

I � L�1(pi)

bi
v
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+ R2(s)v +
I � L�1(pi)

bi
v �NmQg

1

s

2

2

=
i2

1

pi � s

2Repi(I � L�1(pi))

pibi
v

2

2

+ inf
Q2 H

R2(s)v+
I � L�1(pi)

bi
v �NmQg

1

s

2

2

:

BecauseNm is right invertible andg left invertible, we have

inf
Q2 H

R2(s)v+
I � L�1(pi)

bi
v �NmQg

1

s

2

2

= 0:

Consequently

J
� = v

H

i;j2

4Re(pi)Re(pj)

pipjbibj
(I � L

�1(pi))
H

� (I � L
�1(pj))

1

pi � s
;

1

pj � s
v:

Let� be a positively oriented closed curve that encircless = pj . Then,
by invoking Cauchy’s theorem, we obtain

1

pi � s
;

1

pj � s
=

1

2�j

1

�1

d(j!)

(pi + j!)(pj � j!)

=
1

2�j
�

ds

(s+ pi)(s� pj)
=

1

pi + pj
:

This process establishes thatJ�1 = vHHv, and, hence, completes the
proof.

It is clear from Theorem 3.2 that for an unstable, nonminimum phase
plant, its unstable poles will in general worsen the optimal tracking per-
formance. It is interesting to note, however, that they affect the tracking
performance in a rather intricate way. First, such poles will have an ef-
fect onJ� only when the plant is also nonminimum phase. Indeed, if
the plant is minimum phase, thenH = 0, for in this caseL = I; this
can also be seen from the fact thatS = (X�NQ) ~M . Second, even for
a nonminimum phase plant, they will have an effect only when the input
direction coincides certain pole directions. The latter property appears
rather intriguing, and it points to yet another conceptual difference be-
tween MIMO and SISO systems. Although in a multivariable system,
plant unstable poles may affect the tracking performance and it de-
pends on the alignment between the pole and input directions, in a SISO
system they always do. Indeed, in the latter situation,= f1; 2; � � � ; lg,
and (3.5) reduces to

J
� =

k

i=1

2Re(zi)

jzij2
+

l

i;j=1

4Re(pi);Re(pj)

(pi + pj)pipjbibj

� (1� L
�1(pi))

H(1� L
�1(pj)):

A strong indication exitsts from Theorem 3.2 that nonminimum phase
zeros and unstable poles can particularly limit the tracking performance
when they are close to each other. To better observe this property, it is
instructive to examine (3.5) with respect to certain special cases. Con-
sider the case in which only one unstable polep exists whose direction
coincides with the input direction. Under this circumstance

J
� =

k

i=1

2Re(zi)

jzij2
cos2 6 (�i; v)

+
2Re(p)
jpj2

k(I � L
�1(p))vk2: (3.8)

Fig. 2. Two-parameter control scheme.

Additionally, suppose that the plant has only one nonminimum phase
zeroz with a zero vector�. Then, it follows from (3.8) that

J
� =

2Re(z)

jzj2
1 +

4Re(z)Re(p)

jz � pj2
cos2 6 (�; v): (3.9)

Because

4Re(z)Re(p)

jz � pj2
=

p+ z

p� z

2

� 1

we may rewrite (3.9) as

J
� =

2Re(z)

jzj2
z + p

z � p

2

cos2 6 (�; v):

It is clear from this result that closely located plant nonminimum phase
zeros and unstable poles can be detrimental. Nevertheless, we can also
see that the extent to which the zero and pole may affectJ� depends on
how the zero and pole directions are aligned, noticing that in this case
the input direction and the pole direction are identical.

IV. TRACKING LIMITATION OF TWO-PARAMETER FEEDBACK

Two-parameter or two-degree-of-freedom systems represent the
most general feedback configuration in a linear control scheme. A
generic structure for this class of systems is shown in Fig. 2, with
ê = K1r̂ + K2ŷ. Let the right and left coprime factorizations of
P be given by (2.3). Then, the set of all stabilizing two-parameter
compensators is [12]

K2 := fK: K = [K1 K2] = ( ~X �R ~N)�1

� (Q~Y �R ~M); Q 2 H1; R 2 H1g: (4.1)

The tracking error and its minimal version are, respectively

J :=
1

0

kr � yk2 dt; J
� := inf

K2K
J:

Becausêy = NQr̂ [12], whereQ 2 H1 is the parameter in (4.1),
it follows thatJ� = infQ2 H k(I �NQ)r̂k22. The following result
is thus clear.

Theorem 4.1:Let r be given by (2.2) andP (s) be factorized as in
(2.7) and (2.8). Then

J
� =

k

i=1

2Re(zi)

jzij2
cos2 6 (�i; v): (4.2)

Theorem 4.1 makes it clear that in a two-parameter scheme the plant
unstable poles do not affect the tracking performance, hence demon-
strating a distinctive advantage of two-parameter compensators. This
feature falls under the general statement in [12, p. 148] that in a two-pa-
rameter system the achievable performance between an external input
and the plant output is not limited by the plant unstable poles. For this
reason, for a stable plant, the optimal tracking performance achievable
by both one-parameter and two-parameter compensators coincide.
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V. EFFECT OFTIME DELAYS

Consider again the unity feedback structure shown in Fig. 1. Assume
that the plant has measurement time delays, by which we mean that the
plant transfer function matrix can be expressed as

Pd(s) =�(s)P(s)

�(s) := diag(e�T s; � � � ; e�T s) (5.1)

whereP (s) is a real rational transfer function matrix,Ti > 0 represent
the delay constants in the different channels, andm is the number of
plant outputs. Denote the tracking error with respect toPd by Jd, and
correspondingly, the minimal error byJ�d

Jd := k(I + PdK)�1ûk22; J�d := inf
K2K

Jd:

Furthermore, denote the minimal tracking error with respect toP by
J�.

Consider the case in whichP is stable. In this case, the right and left
coprime factorizations ofPd are given byNd = �N = �P = Pd,
~Nd = � ~N = �P = Pd, andM = ~M = I . Let the input be the unit

step signal given by (2.2). Then, it follows that

J�d = inf
Q2 H

(I � PdQ)
v

s

2

2

= inf
Q2 H

(I � �PQ)
v

s

2

2

:

(5.2)

The following theorem gives an explicit formula forJ�d . It shows how
time delays may affect the tracking performance, attesting to the intu-
ition that the tracking performance is generally more difficult to attain
with respect to delay systems.

Theorem 5.1:Let r be given by (2.2), and suppose thatP is stable.
Then

J�d =

m

i=1

Tijvij
2 + J�: (5.3)

Proof: First, because� is all pass, it follows from (5.2) that

J�d = inf
Q2 H

(��1 � PQ)
v

s

2

2

= inf
Q2 H

(��1 � I)
v

s
+ (I � PQ)

v

s

2

2

:

It is clear that(��1 � I)v=s 2 H?2 , and that(I � PQ)v=s 2 H2.
Hence

J�d = (��1 � I)
v

s

2

2

+ inf
Q2 H

(I � PQ)
v

s

2

2

= (��1 � I)
v

s

2

2

+ J�:

To complete the proof, we first note that

(��1 � I)
v

s

2

2

=

m

i=1

jvij
2 eT s � 1

s

2

2

:

Next, according to the Parseval identity, we have

eT s � 1

s

2

2

=
T

0

dt = Ti:

This completes the proof.

VI. CONCLUSION

Our results in this paper indicate that in a MIMO system tracking per-
formance can be seriously limited to an extent determined by both the
location and directions of plant nonminimum phase zeros, and it par-
tially depends on how the input and zero directions are aligned. When
the plant is also unstable, this adverse effect can be more acute. In gen-
eral, the following statements can be made from this work.

• Nonminimum phase zeros will limit the tracking performance to
a significant extent only when they are close to the imaginary
axis. The effect of nonminimum phase zeros is determined by
zero locations and the mutual orientation between zero and input
signal directions.

• Unstable poles will affect the tracking performance only when
the plant is also nonminimum phase, and when the input and cer-
tain pole directions are completely aligned. When this is the case,
approximate unstable pole-zero cancelation can lead to particu-
larly poor tracking performance.

• Time delays in the plant will degrade the tracking performance,
in much the same way as nonminimum phase zeros do.

• In a two-parameter control scheme, only nonminimum phase
zeros will affect the tracking performance.

These results shed new light on tracking performance issues, and, more
generally, lend new insight into the study of fundamental limitation of
feedback control.
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