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Now, choose the coordinates transformation as follows: [10] ——, “On symmetries in optimal control,” ifProc. 25th IEEE Conf.
Decision Contr. 1986, pp. 482-486.
& =h= ;pl_l;pg -1 [11] J. Zhao and S. Zhang, “On the controllability of nonlinear systems with
—1 symmetry,”Syst. Contr. Lettvol. 18, pp. 445-448, 1992.
§o=Lih=1-wx3r; [12] ——, “A simplified condition for the invertibility of symmetry systems,”
&=\ = ,r2_1,r4 € SC™(M) Chinese J. Automavol. 7, pp. 172-175, 1995.
o =1 = .731_1.732_1:03.774 Inzs + .732_1.734 In 24. (24)
Writing system (23) ir¢ coordinates results in
& =&,
bo=(l4e) " (E—1) 41—+ (1-6)&" Limitations on Maximal Tracking Accuracy
2 —1

—(1-&)" - ((1+&6) (1-&)+1-8)u Jie Chen, Li Qiu, and Onur Toker

53 =1- 5?, + &6
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=&6 — & : 2 1
b =6k §3 bt éil Gt ela+2) Gt ) Abstract—This paper studies optimal tracking performance issues per-
+ 666 +2) In(l-E&)—&& +&E —E.  (25)  taining to finite-dimensional, linear, time-invariant feedback control sys-
tems. The problem under consideration amounts to determining the min-

The zero dynamics is imal tracking error between the output and reference signals of a feed-
back system, attainable by all possible stabilizing compensators. An inte-
5'3 =1-= é% gral square error criterion is used as a measure for the tracking error, and
. X 1 explicit expressions are derived for this minimal tracking error with re-
§a==88+& &t+1-¢ (26)  spect to step reference signals. It is shown that plant nonminimum phase
o . zeros have a negative effect on a feedback system’s ability to reduce the
which is of cascade decomposition form. tracking error, and that in a multivariable system this effect results in a

way depending on not only the zero locations, but also the zero directions.
It is also shown that if unity feedback structure is used for tracking pur-
poses, plant nonminimum phase zeros and unstable poles can together play

It has been shown that the zero dynamics of a nonlinear system p%)ﬂ@“lilcu'?]f'y dﬁ"ime”ta' fg'e i? the aChieng'e téaﬁki_ng _perf_ormance,les-l

: : . : ally when the zeros and poles are nearby and their directions are closely

ses_s'“g symmeme? ha_‘s_ mapy special prOp_ertleS' The zero dy_”argﬁ‘g ed. On the other hand, if a two-parameter controller structure is used,
maintains symmetries if it exists, and a semiglobal zero dynamics @z achievable tracking performance depends only on the plant nonmin-
ways exists. We can obtain this kind of semiglobal zero dynamics ium phase zeros.

“mOVIng” any known local zero dynamlcs along t_ﬂ}eorb'ts' The zero . Index Terms—Nonminimum phase zeros, optimal tracking, performance
dynamics has a cascade decomposition according to the vector relafj¥ation, two-parameter control, unstable poles.

degree and the dimension of the symméiigrgroup. This kind of de-

composition is also called triangular decomposition, which is widely

used in the study of stability in the literature (for example, refer to [5]). [. INTRODUCTION

V. CONCLUSIONS

In this paper, we study optimal tracking performance issues per-
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consider multi-input—-multi-output (MIMO) unstable systems. Our in-
vestigation leads to several new discoveries unique to the latter. Arathel
interesting consequence is that in a multivariable system the minimal
tracking error depends not only on the location of the plant nhonmin-
imum phase zeros, but also on how the input signal may interact with
the zeros. This interaction can be precisely characterized by the angle:
between the input and zero directions. It becomes clear that although
for SISO systems it is impossible to achieve perfect tracking in tli_gg. 1.
presence of plant nonminimum phase zeros, this can be accomplished
n MIMO systems for. r.eference S|gna!s that are properly a!|gned Wlthaper that the system is initially at rest. For a given input signtie
zero directions, specifically when the input and zero directions are (5) . ) )
s . . racking error of the system is defined as
thogonal. Additionally, as another interesting feature, our result shows
that in a unity feedback configuration, a close coupling between plant J = /m lle(t)|? dt.
Q

nonminimum phase zeros and unstable poles can be particularly detri-

mental. Here, the coupling is determined not only by the closenessi@h the system sensitivity function be defined W§(s) :=

pole and zero locations, but also in how the pole and zero directioffs | p(s)K(s))~". Becauseé(s) = S(s)i(s), it follows from
are aligned. This phenomenon was unknown previously with resp@sg well-known Parseval identity that

to tracking performance. Nevertheless, our study further reveals that 1 e
the adverse “coupling” effect can be overcome by use of two-param- J =53 = — / 1S Gu)P (G| dw. (2.1)

The unity feedback system.

eter feedback schemes, and that the tracking performance achievable 2r )

by a two-parameter controller depends only on the nonminimum phdaehis paper, we shall consider a step reference signal of the form
zeros, in exactly the same way as it does when the unity feedback is v, >0
used for a stable plant. From a broad perspective, our contribution is r(t) = {0’ " _< 0
related to and reinforces a number of well-known results regarding ’
cheap LQR control [8], servomechanism problems [10], &hdop- Wherev is a constant unitary vectdjv|| = 1. The subspace spanned
timal tracking control [9], and it also bears a close relationship to pddy v Will be called the input direction. This signal may be viewed as
formance studies facilitated by Bode- and Poisson-type integrals (se@djeneralized unit step signal, whose Laplace transform is given by
e.g., [1],[2], [6], and [11]), as well as those undeér, criteria[7], [13]. 7(s) = v/s.

The notation used throughout this paper is fairly standard. For anyLet R denote the set of all stable, proper, rational transfer func-
complex number:, we denote its complex conjugate by For any tion matrices. Let also the right and left coprime factorization® die
vector «, we denote its conjugate transpose ®y. For any signal given by
u(t), we denote its Laplace transform lys). The conjugate trans-
pose of a matrix4 is denoted byd” . If A is a Hermitian matrix, its
largest and smallest eigenvalues are writteAas (4) andAwin (A),  \whereN, M, N, M € RH.. and satisfy the double Bezout identity
respectively. All vectors and matrices involved in the sequel are as- - i
sumed to have compatible dimensions, and for simplicity, their dimen- { X _Y} {M ¥ } =7 (2.4)
sions are omitted. Let the open right half plane be denoted_py= -N M N X

{s: Re(s) > 0}. Moreover, lef| - || denote the Euclidean vector normg,, someX, Y, X,V € RH... Itis well known that every stabilizing

anf|| - |l the norm in the spacé. . Itis well known [5] that> and  compensatof can be described via the so-called Youla parameteri-
Hs are subspaces @k, and they constitute orthogonal complements4iqn, 5]

in £>. The spacé; is a Hilbert space with an inner product defined by

(2.2)

P=NM'=M"'N (2.3)

~ K:={K:K=—(Y -MQ)X -NQ)™'
Fjw)g(jw) dw. =—(X-QN)"'(Y —QM).Q ERH..}.  (25)

. 1
<f7(}> = ﬁ
In particular, whenP i§ stable, then we can seledt = N = P,
X=M=I1,X=M=1,Y = 0,andY = 0. As aresult, the

For anyf € Hs> andg € Hz, we have(f, g) = 0. This simple fact -
VI 2 g > &7 9) P parameterization (2.5) reduces to

furnishes the main mechanism in our development.
Partial and related results of this paper were presented previously inc = {K: K = Q(I — PQ) ' = (I - QP) 'Q. Q € RH..}.
[3] and [4]. 2.6)

Il. PRELIMINARIES The minimal tracking error attainable by all possible stabilizing com-

] ) o ) ] o _ pensators, accordingly, is
Let us first consider the finite-dimensional, linear, time-invariant

unity feedback system depicted in Fig. 1. In this sef@pjenotes the J" = inf J.

plant model and{ denotes the compensator, whose transfer function, . .
matrices areP(s) and K (s), respectively. The signals-, y, ande Itis well known that for.J* to be finite for allv, a necessary and suf-

represent, respectively, the reference input, the system output, tﬁggéﬁgg?ltlon is thatV(0) is right invertible. This will be assumed

the error signal between and r. We shall assume throughout the ) ) ) ) .

We shall be particularly interested in the behavior of nonminimum
phase plants, by which we mean ttfats) has zeros in the open right
half plane. Suppose th&(s) is right-invertible. It is well known (see,

1inthe sequel, we shall use the same symbol to denote a system and its trarfs@r [2] and [11]) that any € €, is a nonminimum phase zero of

function, and whenever convenient, to omit the dependence on the frequeficyt and only if "/ N'(z) = 0 for some unitary vector. The vector
variables. 7 is called an (output) zero vector associated with the zeand the
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subspace it spans is called an (output) zero direction associated.witBecausel; (s) is all pass, it follows that
Similarly, anyp € C is an unstable pole d? ifand only if M (p)w =

0 for some unitary vectow. Likewise, the vectow is called an (input) 3 v 2
pole vector associated with the pgle and the subspace it spans is J* = Qein%}f% ‘ <L1_1 — <H L,;) P,,,Q) 3
called an (input) pole direction associated with * =2 2
Letz; € C1,i=1, ---, k, be the nonminimum phase zeroslof v k . 2
It is well known [2] thatP(s) can be factorized as = inf |(LT'-1)-+ <I - <H L) PmQ> - -
QERH o 8§ Pl S )

I‘»
P(s)=L(s)Pn(s) = <H Li(5)> P.(s) Note that.;'(0) = I, whichimpliesthat L7'—1)v/s € H3.Onthe
i=1 other hand, becaugg is to be selected so that — P(0)Q(0))v = 0,
k we have(I — (II*~, L;)P,.Q)v/s € Ha. Hence
L(s):= H Li(s) (2.7)
i=1 ) k 2
* ’—1 _ 3 L _ . l_)
7= nifie | (- (T 2) o)

whereP,, (s) represents the minimum phase parftf), andL(s) is .

an all-pass factor. A specific factorization admits the form of (3‘_3)
E,', Z; — 8 T
Li(s) = [n; Uy [Z Zi+s 0} {'”iH} . (2.8) By arepeated use of (3.3), we obtain
j |
. k . v2 . v2
Here, the unitary vectoy; can be sequentially determined fromthezero  J~ = Z H(Lz - I); ot Qelnr_«}}; H(I - PrnQ); .
direction vectors of?, andU; is a matrix whose columns, together with =1 ) = )
n:, form an orthonormal basis of the corresponding Euclidean space, k v (|2 . v |2
i.e.,nn! +U;UT = 1. Itisimmediately clear from (2.8) thak; (s) e H(I - Li); , T an%f{w H(I - PnQ) .
is indeed all pass, and that (0) = I. It is useful to point out that =t
When.P is stable, therﬂn V\{I|| be anouter fac.tor.and (2.7) amoupts BecauseP,, is an outer matrix function, we have
to an inner—outer factorization &1[5]. Under this circumstance, a right
inverse ofP,, analytic inC. exists. Clearly, if” is nonminimum phase ) v 2
and left invertible, then a similar factorization exists and is of the form Qelnl.g?f{m H(I = Pn@) sy 0. (3.4)
P(s) = P,.(s)L(s), with P’,, being the minimum phase part aid
the all-pass factor, which is clear by examinifig (s). Additionally, Next, it follows from (2.8) that
because the nonminimum phase zerod/¢%) coincide with those of
P(s_), N(s) can pe similarly factorized. oY 2 |2Re(z) | .
Finally, we define the angle between (the subspaces spanned by) two H( - ,-); , Z sl ;" vl
unitary vectors:, v to be ' 2
A straightforward calculation gives rise to
£(u, v) = arccos [uf v].
TP 1
Zi+s|, 2Re(z)
Ill. TRACKING LIMITATION OF UNITY FEEDBACK

A. Stable Plants The proof can now be completed by observing thatv|* =

8% L(ni,v). [ |

) . . . . CO;i
We shall examine first stable plants, for which the parameterizationy he one hand, Theorem 3.1 is similar to its counterpart for

(2.6) results inS = I — PQ, and hence, the minimal tracking erorgiso systems, which shows that in general perfect tracking cannot be
can be expressed as achieved with respect to nonminimum phase plants. A distinguishing
) feature about this result, on the other hand, shows that the tracking
. (3.1) accuracy depends not only on the zero locations, but also on the zero
2 and input directions, and that this dependence is fully captured by the
angles between the vectarsands; . To further illustrate, consider the
case that’ has only one right half plane zerowith a zero vector,
to which (3.2) reduces to

. v
J = inf |(I-PQ)-
1= odu, - Pe)
It is clear that in order for/* to be finite, Q must be selected such
that (I — P(0)Q(0))v = 0. Our following result gives an explicit
expression off ™.

Theorem 3.1:Let r be given by (2.2), and suppose thats) is

stable. Also, suppose th& s) is factorized as in (2.7). Then J = 21??'(22) cos® £ (1, v).
k c
I — Z ZRe(ji) cos? £(n:,0). (3.2) It is clear from this expression that perfect tracking is still possible,
i=1

Z provided the input direction is orthogonal to the zero direction. Spatial

properties of this kind have no analog in SISO systems. Note that for

Proof: According to (2.7) and (3.1), we can first wrife as any nonminimum phase zetg with a zero vectorj;, we always have
vl2 « « 2Re(z:) o .
= — D)= . J > = s™ L(Niy V).
T= nf H(I LP.Q)% | > S s L)
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Because the tracking errdr* depends on the input direction, it is of

329

Proof: First, using the doubly coprime factorizations (2.3) and

interest to examine its largest and smallest possible value achievatidela parameterization (2.5) yields= (X — NQ)M. Hence

among all possible. This process amounts to determining

* -—_—
min

.]*

min

Jrex i= max J*,
[lv]|l=1

lvll=1

which can be readily characterized as follows. Note first fifatan be
alternatively written as

2

k
e (

=1
This process suggests that

*
Jmiu = Amin (

and that the least and the most desirable input signal directions coincide
with those of the eigenvectors corresponding to the largest and smallest
eigenvalues. Let the dimension otbe m. We can see that whenever

2

.]*

= inf
QERH oo

|[xa1 - voany !

2

BecauseV can be factorized as in (2.7), it follows that

2

- T LN OID Y
I = Qeln%LwH(AM LN,Qi1) £
~ o~ ) 2
—  inf H LYXM = N,, QI iH . .
odil ( Q )s , (3.6)

We claim thatL=' XM = L~' 4+ R, for someR; € RH... In-
deed, it follows from (2.4) thaf/X — NY = I. Premultiplying
this equation by} ~! and postmultiplying it byM! leads toX 3 —
PYM = I, which implies thatPY M € RH.., and accordingly
P,.YM € RH... Consequently, it follows thak, = L™ (XM —
I) = P,YM € RH... It then follows that

g -1 - N Y ?

r= g, |7 e n -
= it @t -0t s @+ R N
 oéRite 5 PTG

E < m, Jun, = 0, and hence, perfect tracking is possible in thi§As in the proof for Theorem 3.1, we hav&~' — I)v/s € Hi, and

situation wher is appropriately aligned. Furthermore, itis not difficult

to see that/ ;... depends on the angles between the veaforsdeed,
a simple calculation for the cage= 2 reveals that

. Rez Rezs
J = T G
T fef?
Rez; Rezz>2 Rez ez2 . 5
+ < + —4 . sin® Z(n1,n2).
\/ |z> 0 [z2]? |z Jz2f?
Whenm = k = 2, we also obtain
. Rez Rezo
’L:ﬁn = T 5 T 19
EIEES;
Rez;  Rez \’ Rez; Rezs | ,
- ; - -4 — . — sin“ Z(n1,12).
W S PTE) TR )

Both of these expressions exhibit an explicit dependenck,gf and
Join ON the angle between andz-:.

B. Unstable Plants
More generally, Theorem 3.1 can be extended to unstable plants.

technical reasons, we shall assume that the plant transfer furietion
does not have a right half plane zero and pole at the same location,
and thatP has onlysimplepoles inC.. Our next result demonstrates
that plant unstable poles, when coupled with its nonminimum phase
zeros, may have a severe negative effect on the achievable tracking

performance.
Theorem 3.2:Let r be given by (2.2) andV (s) be factorized as in
(2.7). Then

cos? L(niyv) + v Hy

(3.5)

where
H= ARepIReR) (g1, (1 - L7 (y)
e +pj)piD;bib;
D, pj—pi
by = Yi pi=pi
Jl;[u pi P;+pi
i

andl is an index set defined dy:= {i: M (p;)v = 0}.
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(I+ R, — N,,QM)v/s € Hs. Hence

* —1 2 : T A i 2
et s g v
3.7)
Denote
* : _N 1 v 2

In light of (3.7), it suffices to show thak; = v'" Hv. Toward this end,
definef(s) := M(s)v. Becausef(p;) = 0 for anyi € I, and because
f(s)isleftinvertible, it admits a factorizatiofi(s) = g(s)b(s), where

g(s) is a minimum phase part arids) € RH .. is a scalar all-pass
factor that can be formed as

D; pi—s

b(s) = L5 e
Moreover, becausg(s) € RH., g(s) is a co-outer factor [5] of (s)

whose left inverse is analytic i, . It now follows that
For

2
Ji

1
3 v—N._( —
eln%f H((I'FRl)L -\ngb)S

H <(I+% - Nng> L

Q 2
2
inf
QERH oo

s

2

Based on a partial fraction procedure, we may write

I+Rl(s):Z < >I+R1(pi)

b . b;
i€l
whereR, € RH... Furthermore, it is easy to verify th#; (p;)v =
— LY (p:)v for anyi € [. Therefore

pi P t+s
Dy pi—s

+ Ra(s)

.. _ 7! .
J;i = inf Z <I§ Pi —{—s) r-r (pz)“
QERH o0 S \Pi pi—s b;
; . 1|
+Ra(s)v — ]\’ng> 5
2
- _ =1 .
= inf Z <]j—l pits 1) -1 (p,)“
QERH o = \P; pi—s b;
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I— L "(p; N 1
+ RQ(S)U + T()U — J\’ng) ; —.’I‘ [ K1 K2 ] e P Y
2
9
_ Z 1 <2Ropi(1 — Lil(pi))v)
ier PiT 8 pibi 5
+ inf R (s)'v + ﬂv — N, Q l 2
QERM o0 27 b; Smied ) R
- Fig. 2. Two-parameter control scheme.
BecauseV,, is right invertible andy left invertible, we have
I— L (pi) LIP Additionally, suppose that the plant has only one nhonminimum phase
inf H <Rz(5)l’ + biplv — Nng> Z =o. zeroz with a zero vector,. Then, it follows from (3.8) that
QERH Slla
«  2Re(z 4Re(z)Re(p . :
Consequently JT = |7|§ ) <1 + |7(_ PE )} cos? L(n,v). (3.9)
g5l <Z wu L e Because
‘G Pipbib; 4Re(z)Re(p) [P+ = )
— 1 1 s—p2 |p-—=z
(I—L 1(pj))<1)'—57p'—s>>1)' | |
' ’ we may rewrite (3.9) as
LetI" be a positively oriented closed curve that encireles p;. Then, 2Re(2) |2 4 p 2 )
by invoking Cauchy’s theorem, we obtain JT = P |==p cos” £(n, v).
< 1 , 1 > _ 1 i /(>o _ .d(j"*’) i Itis clear from this result that closely located plant nonminimum phase
Pi—s8 pj—§ 21j ) Py +jw)(p; — jw) zeros and unstable poles can be detrimental. Nevertheless, we can also
_ L ds _ 1 see that the extent to which the zero and pole may afféctepends on
25 Jr (s+D)(s—p;) D;+p; how the zero and pole directions are aligned, noticing that in this case

the input direction and the pole direction are identical.
This process establishes thit = v " Hv, and, hence, completes the

proof. ]

Itis clear from Theorem 3.2 that for an unstable, nonminimum phase
plant, its unstable poles will in general worsen the optimal tracking per- TWo-parameter or two-degree-of-freedom systems represent the
formance. Itis interesting to note, however, that they affect the trackifi¢Pst general feedback configuration in a linear control scheme. A
performance in a rather intricate way. First, such poles will have an &eneric structure for this class of systems is shown in Fig. 2, with
fect on.J* only when the plant is also nonminimum phase. Indeed, if = K17 + K. Let the right and left coprime factorizations of
the plant is minimum phase, théh = 0, for in this casel = I; this I” be given by (2.3). Then, the set of all stabilizing two-parameter
can also be seen from the fact tifat= (X — N Q)M . Second, even for compensators is [12]

a nonminimum phase plant, they will have an effect only when the input . Lo o -~ “ g
direction coincides certain pole directions. The latter property appears Ky = {K: {‘ = [I‘} K] = (X = RN)
rather intriguing, and it points to yet another conceptual difference be- -(QY = RM), Q € RHoo, R € RHoo }. (4.1)
tween MIMO and SISO systems. Although in a multivariable system,
plant unstable poles may affect the tracking performance and it dee tracking error and its minimal version are, respectively
pends on the alignment between the pole and input directions, in a SISO o0

s

0

IV. TRACKING LIMITATION OF TWO-PARAMETER FEEDBACK

J" = inf J.

system they always do. Indeed, in the latter situatien,{1,2,---,7}, ot
2N 2

and (3.5) reduces to
Because) = NQ7 [12], where( € RH is the parameter in (4.1),

Jr = LZ 2Re(z:) + i 4Re(pi); Re(p;) it follows thatJ* = infgern.. ||(I — NQ)#||5. The following result
= zl? 5= B+ pi)pip;bib; is thus clear. _ _ _
1 2 i Theorem 4.1: Let r be given by (2.2) and’(s) be factorized as in
(1=L7 (pi)" (1= L™ (pj))- (2.7) and (2.8). Then
A strong indication exitsts from Theorem 3.2 that nonminimum phase Re(z) -
zeros and unstable poles can particularly limit the tracking performance J" = Z |;‘|;Z cos® L(ni, v). 4.2)
when they are close to each other. To better observe this property, it is =t 7

iqstructive to e?(amine (3.5) with respect to cer'Fain special cases. C(ﬁ'feorem 4.1 makes it clear that in a two-parameter scheme the plant
S|d_er _the casein W.h'Ch on_Iy one unstable Q‘LDEX.'SIS whose direction unstable poles do not affect the tracking performance, hence demon-
coincides with the input direction. Under this circumstance strating a distinctive advantage of two-parameter compensators. This
£ feature falls under the general statementin [12, p. 148] that in a two-pa-
Jr = Z 21?0(| cos> L(niy ) rameter system the achievable performance between an external input
=1 '
2Re(p)

and the plant output is not limited by the plant unstable poles. For this
—1 2
[p|? 1T = L7 (p))ell". (3:8) by both one-parameter and two-parameter compensators coincide.

i)

n reason, for a stable plant, the optimal tracking performance achievable
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V. EFFeCT OFTIME DELAYS VI. CONCLUSION

Consider again the unity feedback structure shown in Fig. 1. ASsumegyr results in this paper indicate that in a MIMO system tracking per-
that the plant has measurement time delays, by which we mean thatifighance can be seriously limited to an extent determined by both the

plant transfer function matrix can be expressed as location and directions of plant nonminimum phase zeros, and it par-
tially depends on how the input and zero directions are aligned. When
Pa(s) =A(s)P(s) the plant is also unstable, this adverse effect can be more acute. In gen-
A(s) := diag(e—Tlsv coe, e Ty (5.1) eral, the following statements can be made from this work.

« Nonminimum phase zeros will limit the tracking performance to
whereP(s) is areal rational transfer function matrik, > 0 represent a significant extent only when they are close to the imaginary
the delay constants in the different channels, antg the number of axis. The effect of nonminimum phase zeros is determined by
plant outputs. Denote the tracking error with resped®fdoy J4, and zero locations and the mutual orientation between zero and input
correspondingly, the minimal error b signal directions.

« Unstable poles will affect the tracking performance only when

Joi=||(I 4+ PaK) a5, J; = Ai'%fzc Ja. the plant is also nonminimum phase, and when the input and cer-

tain pole directions are completely aligned. When this is the case,

Furthermore, denote the minimal tracking error with resped? toy approximate unstable pole-zero cancelation can lead to particu-
J*. larly poor tracking performance.

Consider the case in whidh is stable. In this case, the right and left Time delays in the plant will degrade the tracking performance,

coprime factorizations oP; are given byN, = AN = AP = Py, Iln much the same way as nlonmk:nlmum plhase zeros do. o
Ni= AN = AP = Py, andM = M = I. Letthe input be the unit  ° In @ two-parameter control scheme, only nonminimum phase

zeros will affect the tracking performance.

These results shed new light on tracking performance issues, and, more
generally, lend new insight into the study of fundamental limitation of
feedback control.

step signal given by (2.2). Then, it follows that

.. _ v
Ja = Qellllg-{m H(I PdQ)s

’ mt |- aro)2 |
z_QelﬂI?%leH( o Q): 2'
(5.2)

The following theorem gives an explicit formula fdj; . It shows how ACKNOWLEDGMENT
time delays may affect the tracking performance, attesting to the intu-
ition that the tracking performance is generally more difficult to attain '€ authors gratefully acknowledge helpful comments from T.
with respect to delay systems. Brinsmead and G. Goodwin.
Theorem 5.1: Let r be given by (2.2), and suppose tlfats stable.
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