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Abstract 

Linear periodically time-varying (LPTV) systems are 
abundant in control and signal processing; examples in- 
clude multirate sampled-data control systems and mul- 
tirate filter-bank systems. In this paper, several ways 
are proposed to  quantify aliasing effect in discrete-time 
LPTV systems; these are associated with optimal time- 
invariant approximations of LPTV systems using oper- 
ator norms. 

Keywords: periodic systems, multirate systems, opti- 
mization, aliasing, discrete-time systems. 

1 Introduction 

Examples of linear periodically time-varying (LPTV) 
systems are abundant: In control, multirate sampled- 
data systems are designed to exploit their cost advan- 
tage in digital implementation [6, 51; in signal process- 
ing, multirate filter banks, which are typically LPTV, 
are designed for efficient coding and transmission of 
digital signals [ll]. 

Different from linear time-invariant (LTI) systems, 
aliasing exists in LPTV systems; this may cause ad- 
verse effect for robustness against high frequency un- 
certainties in periodic control systems [7] and for per- 
fect reconstruction in multirate filter banks [ll]. The 
first question in this paper is therefore: 

How to quantify aliasing effect in LPTV systems? 

If aliasing is negligible in an LPTV system to be con- 
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trolled, one can then approximate it by an LTI system 
with little error. Control design can be then based 
on the LTI model; this has several advantages: First, 
robust control design for LTI systems is thoroughly 
studied and there are now many techniques applica- 
ble; second, the controller designed this way normally 
is LTI too and so is easier to implement than an LPTV 
controller, resulted from design based on the original 
LPTV system. Hence the second question in this pa- 
per is: 

How to optimally approximate an LPTV system 
by an LTI one? 

Throughout the paper, we will focus on discrete-time 
MIMO (multi-input multi-output) systems. The two 
questions are related as follows. Since LTI systems 
form a subspace within LPTV systems, we consider 
the following distance problem: 

Given an LPTV system, compute its distance to  
the subspace of LTI systems. 

The distance, to  be measured by norms, is a measure 
of how time-varying the LPTV system is and hence can 
be used to  quantify aliasing; the LTI system achieving 
the distance is the optimal LTI approximation to the 
given LPTV system. 

Two norms will be used for LPTV systems: the 
Hilbert-Schmidt norm or 3 1 2  norm and the &-induced 
norm or 3c, norm. 

LPTV systems have no transfer functions in general; 
however, there are two ways to  describe their frequency 
responses using matrices: The first one is based on a 
time-domain technique called lifting in control [8] or 
blocking in signal processing [ll]; the second one is a 
frequency-domain technique, also independently used 
in control [7] and signal processing [lo]. Though the 
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two techniques are essentially related [9] , here we adopt 
the latter for better insight in the frequency domain. 

Briefly, the paper is organized as follows. In the 
next section we discuss a frequency-domain represen- 
tation for LPTV systems, which is relevant to our 
studies later. Section 3 studies the distance problem 
using Hilbert-Schmidt norm and gives complete solu- 
tions. Section 4 looks at  the distance problem using e,- 
induced norm and only partial solutions are obtained. 
In Section 5 we show the relevance of the work here 
to an example of LPTV systems in signal processing, 
namely, the multirate filter-bank system used in, e.g., 
subband coding. Finally, we conclude in Section 5. 

2 Frequency-Response Matrices 

We begin with the definition of frequency-response ma- 
trices from [7, lo]; the notation follows that of [9]. It is 
convenient to define the exponential signal of frequency 
f :  

e f ( k )  := e J Z T f k .  

Consider a periodic signal z(k) of period m. It has a 
discrete Fourier series: 

m-1 

n = O  

- m-1 

That is, 2 ( n )  is the discrete Fourier transform (DFT) 
of z ( k ) .  Now consider modulating z ( k )  by e f  ( k )  to get 
a signal of the form 

~ ( k )  = e j ( k ) z ( k ) .  (3) 

Substitution of (1) into (3) shows that ~ ( k )  is a linear 
combination of the complex exponentials of frequencies 

the coefficients being the DFT coefficients of s(k). In- 
deed, the subspace of all signals of the form (3) as z ( k )  
ranges over all m-periodic signals is precisely the m- 
dimensional subspace 

s.f := span {ef , ef+l /mr  . . . 7 e j + ( m - l ) / m } .  

Turning to systems, let H denote an LPTV system of 
period m. As shown in [lo], Sj is an invariant subspace 
for H .  Thus an input to H of the form 

~ ( k )  = e f ( k ) z ( k ) ,  z ( k )  m-periodic 

will produce an output of the form 

y(k) = e f ( k ) u ( k ) ,  u ( k )  m-periodic. 

The vectors formed from the DFTs of x(k) and v(k) 
are related by an m x m matrix, denoted f i F ~ (  f): 

f i (0)  X(0) 

[ q m  - 1) 
] = f i F R ( f )  [ 

This matrix is called the alias component matrix in 
[lo] in view of its prior occurrence in the literature 
on multirate filter banks, and is a generalization of 
frequency-response function. The matrix f i ~ ~  is called 
the frequency-response matrix for the LPTV system H 
from now on. Note that in the definition of k F R ( f ) ,  f 
ranges over the interval -& 5 f 5 &. 
This frequency-response matrix has an equivalent in- 
terpretation as follows. Let the input and output of 
H be U and y. Denote the Fourier transform of U by 
ii(f), a periodic function with period 1 (in f). Chop 
one period of U into m pieces and form a vector: 

q m  - 1) 1 .  

Similarlyfor the Fourier transform $( f ) .  I t  follows that 
the two vectors are related exactly by the frequency- 
response matrix: 

i Y(f -%) 
1 

2m 
1 

5 f 5 G .  

Now we look at how to compute frequency-response 
matrices. We start with a causal, MIMO, LPTV sys- 
tem H with period m. H is characterized by its impulse 
response matrix h ( k ,  1 )  as follows: 

k 

6=0 

Periodicity is equivalent to the condition 

h ( k  + m, L + m) = h ( k ,  I ) ,  V k ,  I ,  
and causality is equivalent to 

h ( k , l )  = 0, whenever 1 > k .  

Define T = k - 1 to get h ( k , l )  = h ( ~  + 1 , l ) .  It follows 
that for any fixed T ,  h ( ~  + 1,l) is m-periodic in L and 
hence has a discrete Fourier series: 

m- 1 

h(T + 1 , l )  = h l ( + n / m ( q  (6) 
n=O 
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Here h,(r) = 0 for r < 0 due to causality. Substitute 
(6) into (5) to get that y can be expressed as a sum of 
convolutions of h, with enlmuL: 

m- 1 

n=O 

Let H ,  be the causal, LTI system with impulse re- 
sponse matrix hn(k). Equation (8) represents a time- 
domain decomposition of the LPTV H as depicted in 
Figure 1: The input u ( k )  is channeled into m differ- 
ent subsystems numbered 0, 1,  . . . )  m - 1 ;  at  the n-th 
subsystem u ( k )  is first modulated by the exponential 
function enlm (k) and then passed through the LTI sys- 
tem Hn;  the sum of the outputs of H ,  forms y.  The 
m LTI systems H ,  are called the components of the 
LPTV system H ;  they uniquely characterize H. 

Y 
Hm- 1 v c 

Figure 1: Decomposition of the LPTV system H 

Based on the decomposition in (8 ) ,  it is easy to get 
that the LPTV system H becomes LTI iff h, = 0 for 
n = 1 , 2 , . . . , m - l  . Togeneralize this,let m=mlmz 
with ml and m2 both positive integers. How to test ml 
periodicity of H based its m LTI component systems 
Hn? 

Theorem 1 Assume a causal, MIMO system H is 
LPTV with period m; its associated component systems 
are denoted H,"' : n = 0 , 1 , .  ' ., m - 1.  Let positive 
integers ml and m2 satisfy m = m1m2. Then H is 
LPTV with period ml iff 

H,") = 0, n # 0, ma, 2m2, a , (ml - 1)mz; 

in this case, the ml component systems of H associated 
with periodicity ml are given by: 

f p l )  = H("f n = 0 , 1 ,  .. ., ml - 1.  

The decomposition in (8) or in Figure 1 gives a way 
to compute the frequency-response matrix for H .  Take 

Fourier transform of both sides of (8) to get 

Replacing the frequency f in the above equation by f - 
&, . ' , f - , respectively, and noting the periodicity 
of ii [ii(f& 1 )  = ii( f)], one can get a matrix equation in 
the form of (41, where the frequency-response matrix 
f i ~ R ( f ) ,  for -1/(2m) 5 f 5 1/(2m), is 

&(f)  . . .  H 7 n - 1  (f) 
fi,-1 (f- $) ri, (f- A) ' . .  Ejm-2 (f - A) 
fil (f - e) fi; (f - *) . . . go (f - *) 

(This representation is also given in [14].) The 
frequency-response matrix is completely characterized 
by the m transfer functions fio, H I ,  . " I  Hm-1. Note 
the row-wise circular structure coupled with the fre- 
quency shift. 

As a special case, if H is LTI, the frequency-response 
matrix & p ~ ( f )  is diagonal: 

0 . . .  0 
0 & ( f -  6) ' . .  0 

0 0 ... f i o  ( f -  *) 

(A condition for time-invariance was also obtained in 
[12] in the time domain using state-space models.) 

As an example, consider the state-space model with 
input U ,  output y ,  and state vector x: 

~ ( k  + 1 )  = A(k)z(k)  + B ( k ) u ( k ) ,  
Y(k) = C ( k ) X ( k )  + D(k)u(k) .  

Assume that A(k),  B ( k ) ,  C (k ) ,  and D ( k )  are LPTV 
with period 2; write 

if k is even, { i f k  is odd, A(k) = 

and similarly for B( k), C ( k ) ,  and D( k). This system is 
LPTV with period 2. Its component systems Ho and 
HI can be computed from definitions; they are given by 
their transfer functions fio(z) and & l ( z ) :  First define 
two functions 
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then Define the DFT matrix as 

6 . 2  7r (m I 1  - 1 ) /m I 
W := . 

I $Wm-- l ) /mI  . .  . g 27r ( m  - 1 ) 2 /  m I I: 1 -  
fi i(z) = ~ [ G O ( Z )  - Gi(z)]. 

Note that in general the orders of the LTI systems Ho 
and H I  exceed the dimension in the matrix A ( k )  but 
are finite. Of course, these formulas can be generalized 

Then the DFT involved in (6) implies 

to  LPTV state-space systems with a general period m. 

Based on the frequency-response matrices, we shall 
study two optimal approximation problems involving 
LPTV and LTI systems; the quantities used to mea- 
sure degree of closeness of two LPTV systems are the 
Hilbert-Schmidt norm and the la-induced norm. 

h(T, 0 )  h0 ( T I  [ h ( T + l > l )  1 =w [ J , h(T + m - 1, m - 1) L - i ( T )  

Substituting this into (11) and using the property 
W*W = mI, we get 

3 Using the Hilbert-Schmidt Norm 

Any MIMO, causal, LPTV system H is completely 
determined by its impulse response matrix h ( k , l )  for 
0 5 k < cc and 0 5 1 < m -  1. We say H is stableif 

m-1 00 

x t r a c e  [ h ( k ,  l)’h(k,  93 < 00. 

1=0 k=O 

All causal, stable, LPTV systems with period m form 
a Hilbert space with the Hilbert-Schmidt norm: 

( H  can be regarded as a Hilbert-Schmidt operator if 
one restricts the input to be defined on the time set 
[0,1, . . ., m - 11.) Several ways to evaluate this norm 
are given below (some of these are also given in [14]): 

1. In terms of the component functions hn(7) ,  n = 
0 , 1 , . . . , m - l ,  we have: 

m-1 M 

n=O T=O 

Proof: Rearrange the summations in (9) to get 

0 

2. In terms of the frequency responses k,(f) of the 
LTI component systems H,, n = 0 , 1 , .  . . , m - 1, 
we have: 

m- 1 

n=O 

Here Ilki,ll2 denotes the ‘Hz norm of the LTI sys- 
tem. This result follows from (10) by Parseval’s 
equality. 

3. In terms of the frequency-response matrix 
f i ~ ~ ( f ) ,  we have: 

IIHll?fs = IIfiFRII; 
1/2m 

-1/2m 
:= 1 trace [R-Lf)*&(.f)l df. 

This follows readily from (12) and the definitions 
1 O0 m--l  of HFR(f). 

IIHllis = - m trace [h(r  + d- ’ I  ‘I1 The distance problem to be studied in this section is: 
Given a causal, stable, LPTV system HI  what is the 
distance, measured by the Hilbert-Schmidt norm, from 
H to the subspace of causal, stable, LTI systems? This 
problem is written: 

T=O l=o 
I 

h(T + 1, 1) 

h ( ~  + m - 1, m - 1) 
/I := min [If- GIIHs. 

The LTI system Gopt achieving this minimum is the op- 
timal LTI approximation to the LPTV H .  The quan- 
tity 1-1 can be used as a measure of aliasing in the LPTV 

LTI G 

(11) 

h ( r + m - I , m -  1) 
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system; or relatively to the size of H ,  one can use the 
quantity Y := ~ / I I H I I H s  ( 0  5 v 5 1) to measure alias- 
ing; in this case, v = 0 means H is already LTI and 
v = 1 means H is anti-LTI, i.e., the optimal LTI ap- 
proximation GOpt = 0. 

Theorem 2 The optimal LTI approximation to the 
LPTV system H is G,t = Ho and 

/m-1 

Proof: Let G be any LTI, causal, stable system with 
compatible input and output dimensions with H .  The 
component systems Gn for G as an LPTV system with 
period m are given by 

if n = 0, 
if 1 5 n 5 m - 1. G n =  { :l 

By property 2 above we have 
m-I 

n=O 
m-I  

n=l 

Clearly, this quantity is minimized by taking G = fio 
and hence the results. 0 

This theorem also suggests that one can orthogonally 
decompose an LPTV system H into H = HLTI + 
HLTV, where the LTI component is HLTI = Gopt and 
the anti-LTI (aliasing) component is H L T V .  Then 

IPIILs = IIHLTIIILS + IIHLTvGS. 

To generalize Theorem 2, we can also consider approx- 
imating an LPTV system with period m by an LPTV 
system with period ml, where m is a multiple of ml. 
Let H be LPTV with period m as before and write 
m = 17117722 with positive integers ml and m2. The 
problem is as follows: 

p := min{(lH-GIIHS : G is LPTV with period ml.}. 

Theorem 3 Given the LPTV system H with period m 
os above, the optimal LPTV approximation GoPt with 
period ml is given by the component systems: 

n = 0 ,  1 , . . . , m 1  - 1. Gip' = Hnm,, 

Moreover. 

where the sum as over all integers n with 0 5 n 5 m- 1 
a n d n # O , m 2 , 2 m 2 , . . . , ( m l -  l)m2. 

This generalization is relevant if one would like to re- 
duce the number of modeling parameters in LPTV 
systems by reducing the periodicity number; and the 
quantity p can be used as an indicator for error incurred 
in this approximation. 

4 Using the lz-Induced Norm 

The second norm we use for approximation is the f 2 -  

induced norm. For a causal, MIMO, LPTV system H 
with period m, let U and y be the input and output vec- 
tors respectively. The &-induced norm of H is defined 
as: 

IlHll := S~P{IIY112 : l l 4 l z  = 1). 
If this is finite, we say in this section that H is stable. 

It is proven in [lo, 91 that the &-induced norm of an 
LPTV system H equals the m-norm of the frequency- 
response matrix: 

WII = I I ~ ~ F R I L  
max Omac[fiFR(f)]~ 

- - 
- '< j< 1 

am- - - a m  

where umax denotes the maximum singular value. This 
gives a way to evaluate the ez-induced norm in terms 
of the frequency-response matrices. 

The distance problem in this section is as follows: 
Given a stable, LPTV system HI compute the distance, 
measured by the &induced norm, to the subspace of 
LTI systems: 

,um := inf IIH -GII. 
LTI G 

Again, the minimizing LTI system, Gopt, can be used 
as an approximation to H and the quantity /-loo as a 
measure of aliasing in H .  These are useful for robust 
control using unstructured uncertainty models: Using 
the LTI Gopt as the nominal model, the size of the 
modeling error is given by /-loo. 

Theorem 4 Assume H is causal, stable, and LPTV 
with period 2. The optimal LTI approximation is 
Gopt = HO and 

Proof: For any LTI G, the frequency-response matrix 
for H - G is f i ~ ~ ( f )  - G , v R ( ~ ) ,  which equals 

Bo(f) - Go(.f) HlCf] [ f i i  (f - 4) 80 (f - a) - Go (f - 4) 
In this matrix we note that both fil(f) and fil (f - f )  , 
- $  5 f 5 i, appear as submatrices; hence for any LTI 
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Though in this special case the optimal approximation 
equals that using the Hilbert-Schmidt norm, the dis- 
tance p, is different. 

The proof does not work for general LPTV systems 
with period m; in this case, only lower and upper 
bounds for poo are obtained: 

If m = 2, the lower and upper bounds reduce to the 
same (and hence the results in Theorem 4); however, 
it is not the case in general. 

In [3], LTI approximations of periodic systems were 
also studied; but they are not optimal in the sense of 
the ez-induced norm. 

In [4], design of the multirate filter banks [ll] for o p  
timal reconstruction is developed based on 31, opti- 
mization. Note that for a given set of analysis filters, 
the designed optimal synthesis filters do not remove 
aliasing completely but keep it at  a small level for op- 
timal overall performance. The measures proposed in 
this paper can be used to quantify aliasing in multirate 
signal processing systems. 

5 Concluding Remarks 

In Section 4, the distance problem is solved only when 
LPTV systems are of period 2; in the general case we 
obtained only lower and upper bounds for the mini- 
mum distance. Though no closed-form solutions are 
obtained in the general case, it is possible to compute 
the optimal solution within any desired accuracy via 
numerical optimization, because it is easy to see that 
the associated optimization problem is convex in na- 
ture. 

In Section 2 we discussed frequency-response matri- 
ces for discrete-time LPTV systems. Frequency re- 
sponses of continuous-time LPTV systems, which in- 
clude sampled-data control systems as special cases, 

and their computation are among the recent devel- 
opments in sampled-data control theory, see, e.g., 
[1, 2, 131. How to quantify aliasing and compute opti- 
mal LTI approximations in sampled-data systems could 
be addressed using the ideas of this paper and the 
ground work in [l, 2 ,  131; this is left for the future. 
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