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Abstract 

Linear periodically time-varying (LPTV) systems are abundant in control and signal processing; examples include 
multirate sampled-data control systems and multirate filter-bank systems. In this paper, several ways are proposed to 
quantify aliasing effect in discrete-time LPTV systems; these are associated with optimal time-invariant approximations of 
LPTV systems using operator norms. @ 1997 Elsevier Science B.V. 
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1. Introduction 

Examples of  linear periodically time-varying (LPTV) systems are abundant: In control, multirate sampled- 
data systems are designed to exploit their cost advantage in digital implementation [6, 5]; in signal processing, 
multirate filter banks, which are typically LPTV, are designed for efficient coding and transmission of digital 
signals [11]. 

Different from linear time-invariant (LT1) systems, aliasing exists in LPTV systems; this may cause ad- 
verse effect for robustness against high-frequency uncertainties in periodic control systems [7] and for perfect 
reconstruction in multirate filter banks [11]. The first question in this paper is therefore: 

How to quantit~y aliasing effect in LPTV systems? 

I f  aliasing is negligible in an LPTV system to be controlled, one can then approximate it by an LT1 system 
with little error. Control design can be then based on the LTI model; this has several advantages: First, robust 
control design for LTI systems is thoroughly studied and there are now many techniques applicable; second, 
the controller designed in this way normally is LT1 too and so is easier to implement than an LPTV controller, 
resulting from design based on the original LPTV system. Hence the second question in this paper is: 

How to optimally approximate an LPTV system by an LTI one? 
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Throughout the paper, we will focus on discrete-time MIMO (multi-input multi-output) systems. The two 
questions are related as follows. Since LTI systems form a subspace within LPTV systems, we consider the 
following distance problem: 

Given an LPTV system, compute its distance to the subspace of LTI systems. 

The distance, to be measured by norms, is a measure of how time varying the LPTV system is and hence 
can be used to quantify aliasing; the LTI system achieving the distance is the optimal LTI approximation to 
the given LPTV system. 

Two norms will be used for LPTV systems: the Hilbert-Schmidt norm o r  ~2 norm and the ~2-induced 
norm or ~o~ norm. 

LPTV systems have no transfer functions in general; however, there are two ways to describe their frequency 
responses using matrices: The first one is based on a time-domain technique called lifting in control [8] or 
blocking in signal processing [11]; the second one is a frequency-domain technique, also independently used 
in control [7] and signal processing [10]. Though the two techniques are essentially related [9], here we adopt 
the latter for better insight in the frequency domain. 

Briefly, the paper is organized as follows. In the next section we discuss a frequency-domain representation 
for LPTV systems, which is relevant to our studies later. Section 3 studies the distance problem using Hilbert- 
Schmidt norm and gives complete solutions. Section 4 looks at the distance problem using {2-induced norm 
and only partial solutions are obtained. In Section 5 we show the relevance of the work here to an example 
of LPTV systems in signal processing, namely, the multirate filter-bank system used in, e.g., subband coding. 
Finally, we conclude in Section 5. 

2. Frequency-response matrices 

We begin with the definition of frequency-response matrices from [7, 10]. (A continuous-time analog of 
this was introduced in [2].) It is convenient to define the exponential signal of frequency f :  

e f ( k )  : =  e j2~fk. 

If H were LYI and stable, the output of H due to this input ef(k)  would be I2I( f )ef(k) ,  I2I(f) being the 
frequency response. 

Now let H denote an LPTV system of period m. If the input to H is again ef(k),  the corresponding output 
is now a linear combination of the complex exponentials of frequencies [10] 

1 m - 1  
f , f  + --, . . . .  f +  - -  

m m 

Define the m-dimensional subspace 

5Pf := span{el, ef+l/m,.. . ,  ef+(m--1)/m}. 

It follows [10] that 5~f is an invariant subspace for H. Thus, an input to H of the form 

m--1 

u(k ) = ~ Unei +,/m(k ), 
n = 0  

which is represented by the m-dimensional vector 

I u° 
Ul 

u : =  i 

Urn-- l 
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for the obvious choi.ce of basis functions in 5°f, will produce an output of the form 

rn--1 

y(k) = ~ y.er +./m(lO, 
n = 0  

which is represented by the vector [,0 
Yl 

f i :=  

Y2-1 

This induces an m "< m matrix, denoted/~FR(f), relating fi to )3: 

This matrix is called the alias component matrix in [10] in view of its prior occurrence in the literature on 
multirate filter banks, and is a generalization of frequency-response function. The matrix HFR is called the 
frequency-response matrix for the LPTV system H from now on. Note that in the definition of /~FR(f) ,  f 
ranges over the interval - 1/2m <~ f <, 1/2m. 

This frequency-response matrix has an equivalent interpretation as follows• Let the input and output of H 
be u and y. Denote the Fourier transform of u by ~ ( f ) ,  a periodic function with period 1 (in f ) .  Chop one 
period of ~ into m pieces and form a vector: 

~ ( f )  
1 N 

1 1 

, 2m<~f<~~m • 

o(s m-,)m_ 
Similarly, for the Fourier transform )3(f). It follows that the two vectors are related exactly by the frequency- 
response matrix: 

f i ( f )  

= /~FR 

33(f) 

1 1 
-2~.N<f~< ~m. (1) 

mm ') mm ') 
Now we look at bow to compute frequency-response matrices. We start with a causal, IV'IMO, LPTV system 

H with period m. H is characterized by its impulse response matrix h(k, l) as follows: 

k 

y ( k )  = Z h ( k ,  l )u(l) .  (2) 
/ = 0  

Periodicity is equiwllent to the condition 

h(k + m, l  + m) = h(k, l) ,  Vk, 1, 
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, ~ l ] m  

Y 
p 

Fig. 1. Decomposition of the LPTV system H. 

and causality is equivalent to 

h(k , l )  = 0, whenever l > k. 

Define ~ = k - l  to get h (k , l )  = h ( z +  l , l ) .  It follows that for any fixed z, h ( z +  l , l )  is m-periodic in l and 
hence has a discrete Fourier series: 

m--1 

h('c + I, l) = Z hn(z)en/m(l), 
n = 0  

(3) 

1 m--I 

h.(z) = ~ ~ h(z + l,l)e_~/m(l). 
/ = 0  

(4) 

Here h~(~) = 0 for v < 0 due to causality. Substitute (3) into (2) to get that y can be expressed as a sum 
of  convolutions of  h, with en/m U: 

m 1 

Y = Z h, * [e~/m u]. 
n = 0  

(5) 

Let Hn be the causal, LTI system with impulse response matrix hn(k). Eq. (5) represents a t ime-domain 
decomposit ion of  the LPTV H as depicted in Fig. 1: The input u(k)  is channeled into m different subsystems 
numbered 0, 1 . . . . .  m - 1; at the nth subsystem u(k )  is first modulated by the exponential function en/m(k) 
and then passed through the LTI system H, ;  the sum of  the outputs of  H,  forms y. The m LTI systems H,  
are called the components of  the LPTV system H;  they uniquely characterize H .  

Based on the decomposit ion in (5), it is easy to get that the LPTV system H becomes LTI iff hn = 0 for 
n = 1,2 . . . . .  m - 1. To generalize this, let m = mlm2 with ml and m2 both positive integers. How to test ml 
periodicity of  H based on its m LTI component systems Hn? 

T h e o r e m  1. Assume a causal, M I M O  system H is L P T V  with period m; its associated component sys tems 
are d e n o t e d  H(nm):n = O, 1 . . . . .  m -  1. Let  positive integers ml and m2 satisfy m = mlm2. Then H is L P T V  
with period m l (ff 

H (m) = O, n ~L O, m2,2m2 . . . . .  (ml -- 1)m2; 

in this' case, the ml component systems o f  H associated with periodicity ml are 9iven by 

H (m')  = 14 (m) n = O, 1 . . . .  ,ml - 1 .  
* " r i m 2 ,  
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The decomposition in (5) or in Fig. 1 gives a way to compute the frequency-response matrix for H. Take 
Fourier transform of both sides of (5) to get 

~ ( f )  

m--1 
n 

n=O mm l) 
Replacing the frequency f in the above equation by f - 1/m . . . . .  f - (m - 1 )/m, respectively, and noting the 
periodicity of fi [f i (f  4- 1) = ~(f ) ] ,  one can get a matrix equation in the form of (1), where the frequency- 

/4o(f)  /41 ( f )  "'" / tm--l(f) 
l)  .. 1) 

~ , ( f  m-1)m_ / t 2 ( /  m-1)m_ "'" /-)0(f m-1)m_ 

response matrix is 

/qFl', ( f )  = 
1 1 

~ f ~  2m ~m' 

(This representation is also given in [14].) The frequency-response matrix is completely characterized by the 
m transfer functions H0,H1 . . . . .  /-)m-a. Note the row-wise circular structure coupled with the frequency shift. 

As a special case, if H is LTI, the frequency-response matrix is diagonal: 

/~o(f) 

0 

/~FR ( f )  = 

/4o ( f  - - -  

0 

0 

m-1)m_ 

1 1 
- - - < ~ f  2m ~ ~m" 

(A condition for time invariance was also obtained in [12] in the time domain using state-space models.) 
As an example, consider the state-space model with input u, output y, and state vector x: 

x(k + 1 ) = A(k)x(k) + B(k)u(k), y(k) -- C(k)x(k) + D(k)u(k). 

Assume that A(k), B(k), C(k), and D(k) are LPTV with period 2; write 

A(k)= { A° ; i fk is  even, 
A1 :f k is odd, 

and similarly for B(k), C(k), and D(k). This system is LPTV with period 2. Its component systems H0 and 
H1 can be computed from definitions; they are given by their transfer functions H0(z) and Hi(z): First define 
two functions 

Go(z) =Do+(CoA1 ÷zC1)(z-2I-AoAl)-~Bo,  Gl(Z) =D1 +(C1Ao+zCo)(z-2I -A1Ao)-IB1; 

then 

& ( z )  = l[do(:, ,)  + all(z)],  & ( z )  = i [ d o ( z )  - all(Z)]. 

Note that in general[ the orders of the LTI systems H0 and Hi exceed the dimension in the matrix A(k) but 
are finite. Of course, these formulas can be generalized to LPTV state-space systems with a general period m. 
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Based on the frequency-response matrices, we shall study two optimal approximation problems involving 
LPTV and LTI systems; the quantities used to measure degree of closeness of two LPTV systems are the 
Hilbert-Schmidt norm and the (z-induced norm. 

3. Using the Hilbert-Schmidt norm 
Any MIMO, causal, LPTV system H is completely determined by its impulse response matrix h(k, l) for 

0 ~ < k <  oc and0~<l  < m - 1 .  We s a y H  is stable if 

m - - I  oo  

Z E trace [h(k, l) 'h(k,  1)1 < ~ .  
l = 0  k = 0  

All causal, stable, LPTV systems with period m form a Hilbert space with the Hilbert-Schmidt norm: 

IIHII.s -- trace [h(k, l)'h(k, l)] 
l = 0  k = 0  

(6) 

(H can be regarded as a Hilbert-Schmidt operator if one restricts the input to be defined on the time set 
[0, 1 . . . . .  m -  1].) Several ways to evaluate this norm are given below (some of these are also given in [14]): 

1. In terms of the component functions hn(z), n = 0, 1 . . . . .  m - 1, we have 

m - - I  oc) 

IlHll~s = ~ ~ trace [h.(z)'h.(z)]. 
n = 0  z = O  

(7) 

Proof. Rearrange the summations in (6) to get 

The 

Note 
get 

l oc  m - 1  

[[HHZs = m Z E trace [h(z + l, l) 'h(v + l,/)] 
z = O  l = 0  

_- _1 Z t r a c e  h(z+.  1,1) 

m r = o  

h(~ + m - 1,m - 1) 

DFT involved in (3) implies 

h(z  + 1, 1) eJZ~/'~I 

h(~ + m -  1 , m -  1) eJZ~(m--l)/mI 

h(~,0) 
h(~+ 1,1) 

h ( z + m -  1 , m - l )  

(8) 

I I [ ho(z) eJZ~(m_ l)/mI hi!z) 
eJZn(m-1)Z/mI [ hm_l('c) 

that the DFT matrix W appears here. Substituting this into (8) and using the property W * W  = mI, we 

oo 

Ilglfns : ~ trace 
" r = 0  

h0(z) 
hl(Z) 

hm_l(-C) 

! 
h0(~) 
hl(~) 

hm-x(T) 

m - - 1  c~  

= Z Z trace [hn(~)'hn(~)]. 
n = O  ~ = 0  

[] 
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2. In terms of  the frequency responses f in(f)  of  the LTI component systems H, ,  n = 0, 1 . . . . .  m - 1, we 
have 

m--1 m--I /1 /2  
II ll s E o 2  E = II- ,112 = 

n=0 n=0 d--1/2 
trace [ /4 . ( f )*H~( f ) ]  d f .  (9) 

Here 11H.112 denotes the J/f2 norm of  the LTI system. This result follows from (7) by Parseval's equality. 
3. In terms of  the frequency-response matrix I2IvR(f), we have 

1/2m 

[[H[[2s = ]I/~FR [[] := d--l/2m trace [/~FR(f)*/~FR(f)] d f .  

This follows readily from (9) and the definitions of /~FR(f ) .  
The distance problem to be studied in this section is: Given a causal, stable, LPTV system H, what is the 

distance, measured by the Hilbert-Schmidt norm, from H to the subspace o f  causal, stable, LTI systems? 
This problem is written: 

# :=  min liB- GllHs LTI G 

The LTI system Gopt achieving this minimum is the optimal LTI approximation to the LPTV H. The quantity 
p can be used as a measure o f  aliasing in the LPTV system, or relatively to the size o f  H, one can use the 
quantity v :=  #/[[HIIHS (0~<v~<l) to measure aliasing; in this case, v = 0 means H is already LTI and v = 1 
means H is anti-LTI, i.e., the optimal LTI approximation Gopt = 0. 

Theorem 2. The optimal LTI  approximation to the LPTV system H is Gopt - -  Ho and 

( ~  /~ 2 /  1/2 
= II , I t2  

kn= 1 

Proof.  Let G be a ry  LTI, causal, stable system with compatible input and output dimensions with H. The 
component systems Gn for G as an LPTV system with period m are given by 

G i f n  = 0 ,  
G n =  0 i f ]  <<.n<~m-1. 

By property 2 abow~ we have 

m--I m--1 
d 2 tbH . . . .  ctt s: ti/,o nit2 t1 ,o dtt] + E trY°it22 

r=O n=l 

Clearly, this quantity is minimized by taking G = H0 and hence the results. [] 

This theorem also suggests that one can orthogonally decompose an LPTV system H into H = HLT I +HLTv, 
where the LTI component is HLTI -- Gopt and the anti-LTI (aliasing) component is HLTV. Then 

IIHII~s = []HLT~ II~is + ]IHLTvII~s • 

To generalize Theorem 2, we can also consider approximating an LPTV system with period m by an LPTV 
system with period ml, where m is a multiple of  ml. Let H be LPTV with period m as before and write 
m = mira 2 with positive integers ml and m2. The problem is as follows: 

p :=  min{llH -- GI[Hs: G is LPTV with period ml}. 
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Theorem 3. Given the L P T V  system H with period m as above, the optimal L P T V  approximation G °pt 
with period ml is given by the component systems: 

Gopt = Hnm2, n = O, 1,. m l - 1. 

Moreover, 

= i2[ 2 , 

where the sum is' over all integers' n with O < ~ n ~ m -  1 and n ¢ 0,m2,2m2 ... .  ,(ml - 1)m2. 

This generalization is relevant if one would like to reduce the number of modeling parameters in LPTV 
systems by reducing the periodicity number; and the quantity p can be used as an indicator for error incurred 
in this approximation. 

4. Us ing  the f:- induced norm 

The second norm we use for approximation is the #2-induced norm. For a causal, MIMO, LPTV system 
H with period m, let u and y be the input and output vectors, respectively. The ~2-induced norm of H is 
defined as 

IIHII : =  sup{ l ly l l e :  Ilul12 = 1}. 

If this is finite, we say in this section that H is stable. 
It is proved in [10,9] that the #2-induced norm of an LPTV system H equals the cx>norm of the frequency- 

response matrix: 

IrHII = I I / tFRII~  = max  O'max[/~FR(f)], 
--l/2m<~f <~ 1/2m 

where O-ma x denotes the maximum singular value. This gives a way to evaluate the E2-induced norm in terms 
of the frequency-response matrices. 

The distance problem in this section is as follows: Given a stable, LPTV system H, compute the distance, 
measured by the ~2-induced norm, to the subspace of LTI systems: 

p~  := inf I IH-G]] .  
LTI G 

Again, the minimizing LTI system, Gopt, can be used as an approximation to H and the quantity #oo as 
a measure of aliasing in H. These are useful for robust control using unstructured uncertainty models: Using 
the LTI Gopt as the nominal model, the size of the modeling error is given by #~.  

Theorem 4. Assume H is causal, stable, and L P T V  with period 2. The optimal L T I  approximation & aop  t 

= Ho and 

/200 = ll/41 l l2 := max amax[/~l(f)] .  
1/4<~f <~1/4 

Proofl  For any LTI G, the frequency-response matrix for H - G is 

_ [/40(f)^ - Go(f)1 / 4 1 ( f )  I ' ~ ~< f  1 
/JvR(f)  GFR(f) = [ H i ( f - -  ~) I2Io(f -- ½ ) -  G o ( f  - ½) - 4  <~4" 



T. Chen, L. QiulSystems & Control Letters 30 (1997) 225~35 233 

In this matrix we note that both H i ( f )  and H l ( f -  ½), -¼ ~<f~< ¼, appear as submatrices; hence for any 
LTI G, we have 

IlH - G[I = I]/-)FR(f) -- dFR(f)llo~ • II& IIo~. 

So ~ > I f ' ,  II~. It can be verified that setting G = Ho, we get IIg - GII -- II& I1~ and therefore Gopt = H0 

a n d / ~  = II~', II~- [] 

Though in this special case the optimal approximation equals that using the Hilbert-Schmidt norm, the 
distance # ~  is different. 

The proof does rot  work for general LPTV systems with period m; in this case, only lower and upper 
bounds f o r / ~  are obtained: 

/ t 2 ( f )  "'" /~m--l(f)] l l~,  

0 H I ( f )  

1) o 

O l)m m,)m 

" ' "  / ~ m - l ( f )  
. . .  1) 

I f  m = 2, the lower and upper bounds reduce to the same (and hence the results in Theorem 4); however, it 
is not the case in general. 

In [3], LTI approximations of periodic systems were also studied, but they are not optimal in the sense of' 
the Ez-induced norm. 

5. Application to multirate signal processing 

The results in the preceding sections have applications in quantifying aliasing in multirate digital signal 
processing systems. 

Consider the multirate filter bank in Fig. 2. In this discrete-time system, Go, G1, F0, and F1 are LTI filters, 
,L2 denotes the downsampler (decimator) by a factor of  two, and T2 denotes the upsampler (expander) by the 
same factor. This mttltirate signal processing system is important in, e.g., subband coding, and has been studied 
a great deal; see the., recent book [11] and the references therein• Typically, the overall system H :x  ~-+ y is 
required to reconstruct x(k), ideally with at most a time-delay error. So perfect reconstruction is said to be 
achieved [11] if for some integer m>~O, y(k) = x ( k -  m). That is, the desired system from x(k) to y(k) is 
LTI with transfer function 

/~d(Z) = Z -m. 

Note that in general the system H is LPTV with period 2 because of the presence of the down and upsamplers. 

Fig. 2. Multirate filter bank. 

~(~) 
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Compared with the ideal system Ha, the LPTV system H in general suffers three types of  distortion due to 
aliasing, magnitude and phase errors. Aliasing distortion can be quantified using the norms introduced earlier. 
It is known that the input and output o f  the filter bank system H are related in the frequency domain as 
follows [ 11 ]: 

)3(z) = l[G0(z)ri0(z ) + G l ( Z ) r i l ( Z ) ] £ ( z )  -4- ½[Go(-z)r io(z)  + G l ( - z ) r i l ( Z ) ] . f ( - z ) .  

Hence, the component systems for H are given by 

/40( f )  = l [ ( ~ o ( f ) r i o ( f )  + G l ( f ) r i l ( f ) ] ,  

i 2 i i ( f )  = 1 ^ 1 ) r i o ( f )  + GI(U - 1 ^ ~ [ G 0 ( f -  ~ ~ ) F l ( f ) ] .  

In this case, two quantities can be used to measure the degree o f  aliasing: 

(f /2 f)l/2 = max } /1 , ( f ) , .  
'/~ = \J-- l /2  I/-)l(f)lZ d , Po¢ Ifl~<l/4 

Their interpretations are as follows: /~ is the distance from this LPTV system H to the space of  LTI systems 
via the Hilbert-Schmidt norm; and # ~  the distance via the f2-induced norm. (Of  course, the optimal LTI 
approximation to H is H0 using both norms.) 

In [4], design of  the synthesis filters for optimal reconstruction is developed based on 9 f ~  optimization. 
Note that for a given set o f  analysis filters, the designed optimal synthesis filters do not remove aliasing 
completely but keep it at a small level for optimal overall performance. 

6. Concluding remarks  

In Section 4, the distance problem is solved only when LPTV systems are o f  period 2; in the general case 
we obtained only lower and upper bounds for the minimum distance. Though no closed-form solutions are 
obtained in the general case, it is possible to compute the optimal solution within any desired accuracy via 
numerical optimization, because it is easy to see that the associated optimization problem is convex in nature. 

In Section 2 we discussed frequency-response matrices for discrete-time LPTV systems. Frequency responses 
of  continuous-time LPTV systems, which include sampled-data control systems as special cases, and their 
computation are among the recent developments in sampled-data control theory, see, e.g., [2, 1, 13]. How to 
quantify aliasing and compute optimal LTI approximations in sampled-data systems could be addressed using 
the ideas of  this paper and the ground work in [2, 1, 13]. 
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