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Abstract— This paper deals with the mean square stabi-
lization problem for multi-input networked systems via single
packet or multiple packets transmission, where the unreliability
of input channels is modeled by a multiplicative white noise.
For the single packet case, the critical value (lower bound) of
mean square capacity for ensuring mean square stabilization
is given by adopting the bisection technique. For the m-
parallel multiple packets transmission strategy, a necessary
and sufficient condition on overall mean square capacity for
mean square stabilization in terms of the Mahler measure
or topological entropy of the plant is presented, under the
assumption that the given network resource can be allocated
among all the input channels. Applications in erasure-type
channel and channel with stochastic sector-bounded uncertainty
are provided to demonstrate the results.

I. INTRODUCTION

In the past few years, networked systems have found
applications in a broad range of areas such as sensor net-
works, automated highway systems and unmanned aerial
vehicles, due to their advantages over classical feedback
control systems, e.g., low cost; flexibility; reduced weight
and power requirement; simple installation and maintenance.
However, networked systems require new formalisms for
ensuring stability, performance and robustness, since in ex-
ecuting estimation and control operations, we cannot ignore
the unreliability of network introduced by inherent computa-
tional and communication constraints. Therefore, significant
research efforts have been and will continue to be devoted
to this research area; see the survey papers [1], [2].

Several kinds of network uncertainties have been ad-
dressed in literature, for instance, packet dropout [3], [4],
[5], quantization [6], [7], [8], time delay [9], and limited
capacity [10], [11]. However, a unified treatment of these
uncertainties is unavailable at present, although there are a
few papers considering two or three issues mentioned above
simultaneously, e.g., [12] for logarithmic quantization and
binary i.i.d. packet loss; [13] for logarithmic quantization,
bounded transmission delay and bounded packet dropout.

The most pertinent results to this paper are [14] and [15].
Elia [14] considered the mean square stabilization over a
fading channel in the framework of robust control, where
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the randomness of the fading was interpreted as a stochastic
model uncertainty. Several channels fit in this general fading
model, such as memoryless multiplicative channel and Rice
fading channel. Moreover the binary i.i.d. packet loss case
falls into the channel with erasure property. One of the
interesting discoveries is that for single-input systems, the
minimum demand for mean square capacity assigned to the
input can be presented in terms of the topological entropy of
the plant. Recently, Gu and Qiu [15] found that subject to a
total network resource constraint, the stabilization problem
of a linear time-invariant discrete-time multi-input system
with bounded time-varying sector-bounded uncertainties in
the input channels can be solved analytically via a modified
µ synthesis, and the solution is given in terms of the Mahler
measure or topological entropy of the plant as well.

Note that [15] only addresses the deterministic uncertainty
case for multi-input systems, while [14] only discusses
the minimum requirement of mean square capacity for the
single-input case. It is also worth mentioning that random
uncertainties are prominent in networked systems such as
random packet losses and/or quantization errors with cer-
tain distribution, and stochastic descriptions of underlying
uncertainties can lead to less conservative results based on
the classical robust control theory. Therefore, this paper con-
siders the mean square stabilization problem for multi-input
systems across unreliable multiplicative channels described
by stochastic uncertainties.

The remainder of the paper is organized as follows. The
problem is formulated in Section II. The mean square stabi-
lization problem is discussed in Section III and Section IV
for the single packet case and multiple packets transmission
case, respectively. Applications and conclusions follow in
Section V and Section VI.

Notation: ≡ means ”defined as”. The superscript ′ denotes
the transpose of vector or matrix. A−1, ρ(A) and λu

i (A)
represent the inverse, the spectral radius and an unstable
eigenvalue of n×n square matrix A, accordingly the Mahler
measure and the topological entropy of A are defined by
M(A) ≡ ∏

i |λu
i (A)| and H(A) ≡ lnM(A), respectively.

When X and Y are real symmetric matrices, the notation
X ≥ Y (respectively, X > Y ) indicates that X − Y is posi-
tive semidefinite (positive definite). I is the identity matrix,
and 0 denotes the zero matrix or zero vector. Furthermore,
let E(·) stand for the mathematical expectation operator.
‖G(z)‖2 represents the traditional H2-norm for transfer
function matrix G(z). ⊗ denotes a Kronecker product, and
vec(X) is the vector formed by stacking the columns of X
into one long vector.
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II. PROBLEM FORMULATION

The overall system structure considered in this paper is
depicted in Fig. 1.

Fig. 1. Multi-Input Networked Control System over Multiplicative Chan-
nels.

Consider a discrete-time multi-input LTI plant as follows:

x(t + 1) = Ax(t) + Bu(t), (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control
input. We will denote this system by (A,B) for simplicity.
Assume that A is unstable, (A,B) is stabilizable and B =
[B1 B2 · · ·Bm] has full-column rank.

For any stabilizable pair (A,B), the following Wonham
decomposition [16] will play a crucial role in our further
deduction:

Ā =




A1 ? · · · ?
0 A2 · · · ?
...

...
. . .

...
0 0 · · · Am


 , B̄ =




b1 ? · · · ?
0 b2 · · · ?
...

...
. . .

...
0 0 · · · bm


 (2)

with ? representing the part which will not be used in the
derivation and

Ai ∈ Rni×ni , bi ∈ Rni×1,
m∑

i=1

ni = n,

where Ā = T−1
1 AT1, B̄ = T−1

1 B with T1 being a similarity
transformation matrix and each pair (Ai, bi) stabilizable. In
fact, the canonical form (2) reveals certain structure property
of plant (1) with respect to each input channel.

Another linear coordinate transformation involved in this
paper is shown as follow:

Ã = T−1
2 AT2 =

[
As 0
0 Au

]
, B̃ = T−1

2 B =
[

Bs

Bu

]
, (3)

where T2 is invertible, As is stable, all the poles of Au are
unstable and (Au, Bu) is controllable.

Suppose x(t) is available at the controller, and the state
feedback v(t) = Kx(t) is adopted throughout this paper.
The control signal v(t) is then processed (e.g. quantized)
and sent through a communication channel to the actuator.
The above processing and communication are modeled by
the following memoryless multiplicative form:

u(t) = ξ(t)v(t), (4)

where ξ(t) is a deterministic function or a random process
with certain distribution.

Remark 2.1: Note that the above model can describe com-
munication network uncertainties including quantization [7],
signal distortion [11] and packet dropouts [3]. In particular,
for the logarithmic quantizer considered in [7], ξ(t) is a
sector bounded time-varying gain, which is used to model
a sector bounded nonlinear function of v(t). In [3], ξ(t) is
a 0-1 binary valued variable/matrix which models a packet-
loss phenomenon. (4) can also be used to model the case
where quantization and packet loss exist simultaneously, see
Corollary 5.3 in this paper.

In view of (4), the closed-loop system can be written as

x(t + 1) = Ax(t) + Bξ(t)v(t). (5)

Gu and Qiu [15] adopts

ξ(t) = diag {1 + ∆1(t), 1 + ∆2(t), · · · , 1 + ∆m(t)} (6)

with ∆i(t) ∈ [−δi, δi], i = 1, 2, · · · ,m representing quan-
tization errors, which is a possibly nonlinear, time-varying,
dynamic uncertain system, and presents the theorem below.

Theorem 2.1: For a multiplicative channel described by
(4) and (6), there exists a network resource allocation
{δ1, δ2, · · · , δm} satisfying

∏m
i=1 δi = δ̄ such that the

networked system (5) is stabilizable if and only if

δ̄ <
1

M(A)
. (7)

However, when the network uncertainties become stochas-
tic, we need to establish a parallel result in stochastic
scenario as shown in the following two sections, where
both the single packet transmission and multiple packets
transmission strategies will be considered. Before closing this
section, let us recall the definition of mean square stability
[14] and some useful results in matrix theory [17], [18].

Definition 2.1: For stochastic system

x(t + 1) = h(x(t), ξ(t)), h(0, ·) = 0 (8)

with random process ξ(t) and possibly nonlinear mapping
h(·, ·), the equilibrium point at the origin is mean square
stable if for any given initial state x(0), M(t) ≡ E[x(t)x′(t)]
is well-defined for any t ≥ 0, and limt→+∞M(t) = 0.

Remark 2.2: Note that at every time step t, ξ(t) in (8)
can be a continuous, or discrete, or even hybrid random
variable/vector/matrix.

Lemma 1: The statements below are true.
(i) The matrix equation Y = MXN can be written in a

vector form: vec(Y ) = (N ′ ⊗M)vec(X).
(ii) The matrix inversion lemma: for Y = X +MQN , and

X, Y,Q nonsingular,

Y −1 = X−1 −X−1M(Q−1 + NX−1M)−1NX−1.

(iii) det(I + MN) = det(I + NM).
(iv) The Hadamard’s inequality: for any m × m positive

definite matrix Q = [qij ],

det(Q) ≤
m∏

i=1

qii.

Furthermore, equality holds if and only if Q is diago-
nal.
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III. MEAN SQUARE STABILIZATION VIA SINGLE PACKET
TRANSMISSION

In this section, we assume that at each time step t, all
elements of v(t) ∈ Rm are packed into a single packet and
then sent through the unreliable network.

Assumption 3.1: Suppose ξ(t) in (5) is a white random
variable with mean µ ≡ E{ξ(t)} 6= 0 and variance σ2 ≡
E{(ξ(t)− µ)2} < +∞.

For a single multiplicative input/output channel, e.g., set-
ting m = 1 in (1), Elia [14] presents the (normalized) mean
square capacity as

CMS = fMS(µ, σ2) ≡ 1
2

ln
(

1 +
µ2

σ2

)
. (9)

Adopt this definition of CMS for our single packet transmis-
sion, and further denote

g = f(µ, σ2) ≡ 1 +
µ2

σ2
. (10)

Note that the larger the g, the larger the CMS.
The next lemma summarizes a series of conditions for

mean square stabilization.
Lemma 2: Under Assumption 3.1, the following state-

ments are equivalent.
(i) System (5) or (A,B) over the network (4) is mean

square stabilizable.
(ii) There exists a state feedback gain matrix K such that

ρ(Ψ) < 1, where

Ψ = (A + µBK)⊗ (A + µBK) + σ2BK ⊗BK.

(iii) There exist P > 0 and K such that

P > (A + µBK)′P (A + µBK) + σ2K ′B′PBK.

(11)

(iv) There exists P > 0 such that

P > A′PA− µ2

σ2 + µ2
A′PB(B′PB)−1B′PA. (12)

In this situation, one possible state feedback gain can
be chosen as K = KM ≡ − µ

σ2+µ2 (B′PB)−1B′PA.
(v) (Au, Bu) over the network (4) with Au, Bu being

defined in (3) is mean square stabilizable.
Proof: See the Appendix.

We can further deduce the following result.
Proposition 3.1: Under Assumption 3.1, networked sys-

tem (5) is mean square stabilizable if and only if the mean
capacity of the input channel is greater than some critical
value, i.e.,

CMS > CMSc, or g > gc,

where CMSc = 1
2 ln(gc), and gc ∈ [ρ(A)2, M(A)2] can be

obtained by applying the bisection method to the optimiza-
tion below

gc ≡ min
S>0,Y

g, g ∈ [ρ(A)2, M(A)2]

s.t.




−S (AS + BY )′ (
√

1
g−1BY )′

AS + BY −S 0√
1

g−1BY 0 −S


 < 0. (13)

Further, if B is rank one, i.e., m = 1, then gc = M(A)2; if
B is square and invertible, i.e., m = n, then gc = ρ(A)2.
Proof: First, the equivalence between (11) and (13) fol-
lows from the Schur complement decomposition with S =
P−1/µ, Y = KP−1. Note that if (13) is true for g = ga >
1, then it holds for any g = gb ≥ ga. In this situation the
bisection method can be used. The range of gc as well as the
results on the two special cases can be found in Lemma 5.4
of [2].

In contrast to the multiplicative model (4) adopted in this
paper, Braslavsky etc. [11] considers the additive white Gaus-
sian noise (AWGN) channel with an input power constraint
for single-input systems, i.e., u(t) = v(t)+n(t), where n(t)
is a zero mean Gaussian white noise with variance σ2. The
capacity of the AWGN channel is

C ≡ 1
2

log2(1 + SNR). (14)

As stated in Theorem III.1 of [11], the lower bound of SNR
in (14) for state feedback stabilization can be given by the
Mahler measure of system matrix A, similar to the result in
Proposition 3.1 for m = 1.

Remark 3.1: Except for some special cases as shown in
Proposition 3.1, the critical value gc is, in general, not con-
nected with system matrix A explicitly, instead a bisection
technique is needed. While this situation can be avoided if
the network resource is allocatable among all input channels
as presented in the next section.

IV. MEAN SQUARE STABILIZATION VIA m-PARALLEL
PACKETS TRANSMISSION

Now, each element of the state feedback signal v(t) is
assumed to be sent through an independent multiplicative
channel at every time step.

Assumption 4.1: In this section, we make the following
two assumptions.

(A1) m-parallel channels: ξ(t) in (5) is a random matrix
consisting of diagonal white noise process elements

ξ(t) = diag {ξ1(t), ξ2(t), · · · , ξm(t)} (15)

with mean µi ≡ E{ξi(t)} 6= 0 and variance σ2
i ≡

E{(ξi(t)− µi)2} < +∞.
(A2) The overall network resource constraint is given in

terms of

C̄MS =
m∑

i=1

CMSi, CMSi = fMS(µi, σ
2
i ),

i.e.,

ḡ =
m∏

i=1

gi, gi = f(µi, σ
2
i ),

and furthermore {g1, g2, · · · , gm} can be allocated
among the m-parallel channels.

Remark 4.1: The overall constraint on the sum of CMSi in
Assumption 4.1(A2) is reasonable, since CMSi is related to
the bit rate of the i-th channel.
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Let

∆̃i(t) ≡ ξi(t)− µi

σi
.

Then ∆̃i(t) has zero mean and unit variance. Based on the
framework of fading channel studied in [14], we rewrite (5)
as follows

x(t + 1) = (A + BµK)x(t) + BµΦw(t) (16)
z(t) = Kx(t) (17)
w(t) = ∆̃(t)z(t) (18)

where

Bµ = Bdiag {µ1, µ2, · · · , µm} = [µ1B1 µ2B2 · · ·µmBm],

Φ = diag
{

σ1

µ1
,
σ2

µ2
, · · · ,

σm

µm

}

= diag
{√

1
g1 − 1

,

√
1

g2 − 1
, · · · ,

√
1

gm − 1

}
,

∆̃(t) = diag
{

∆̃1(t), ∆̃2(t), · · · , ∆̃m(t)
}

.

Note that the stabilizability of (A,B) guarantees that of
the mean network (setting ∆̃(t) = 0), i.e., (A,Bµ) is
stabilizable, as µi 6= 0 for every i = 1, 2, · · · ,m. The
transfer function from w(t) to z(t) of the mean network
is denoted by

G(z) ≡ K(zI −A−BµK)−1BµΦ. (19)

Lemma 3: Under Assumption 4.1, the following state-
ments are equivalent.

(i) System (5) or (A,B) over the network (4) is mean
square stabilizable.

(ii) There exists a diagonal scaling matrix D ∈ Rm×m

such that

inf
D>0, Diag.

‖D−1G(z)D‖2MS < 1, (20)

where the mean square norm of G(z) with di-
mension m × m is defined as ‖G(z)‖MS ≡
maxi=1,2,··· ,m

√∑m
j=1 ‖Gij(z)‖22.

(iii) There exists K = [K ′
1 K ′

2 · · ·K ′
m]′ such that ρ(Ψ) <

1, where

Ψ = (A + BµK)⊗ (A + BµK)

+
m∑

i=1

σ2
i BiKi ⊗BiKi.

(iv) There exist P > 0 and K = [K ′
1 K ′

2 · · ·K ′
m]′ such

that

P > (A + BµK)′P (A + BµK)

+
m∑

i=1

σ2
i K ′

iB
′
iPBiKi.(21)

(v) There exists P > 0 such that

P > A′PA−A′PBµJ−1B′
µPA, (22)

where

J = diag
{
σ2

1B′
1PB1, σ

2
2B′

2PB2, · · · , σ2
mB′

mPBm

}

+B′
µPBµ.

In this situation, one possible state feedback gain can
be chosen as

K = KM ≡ −J−1B′
µPA.

(vi) (Au, Bu) over the network (4) with Au, Bu being
defined in (3) is mean square stabilizable.

Proof: (i)⇔(ii): It follows from Theorem 6.4 in [14]. The
rest of the results can be proved similarly to Lemma 2.

The theorem below fully characterizes the relationship
between the overall mean square capacity and the topolog-
ical entropy of system matrix A for ensuring mean square
stability of (5).

Theorem 4.1: Under Assumption 4.1, there exists a net-
work resource allocation {g1, g2, · · · , gm} such that the
networked system (5) is mean square stabilizable if and only
if

ḡ > M(A)2, (23)

i.e.,
C̄MS > H(A). (24)

Proof: In view of the equivalence between (i) and (vi) in
Lemma 3, we assume that all the eigenvalues of A are either
on or outside the unit circle without loss of generality.
⇒: First, by applying the matrix inversion lemma on (22),

we have

P−1

< (A′PA)−1 + (A′PA)−1A′PBµ

×diag
{
σ2

1B′
1PB1, σ

2
2B′

2PB2, · · · , σ2
mB′

mPBm

}−1

×B′
µPA(A′PA)−1

= A−1P−1A′−1 + A−1B

×diag
{

g1 − 1
B′

1PB1
,

g2 − 1
B′

2PB2
, · · · ,

gm − 1
B′

mPBm

}
B′A′−1

= A−1P−1A′−1 + A−1
m∑

i=1

(gi − 1)BiB
′
i

B′
iPBi

A′−1,

and hence

det(P−1) < det(A−1) det

(
I +

m∑

i=1

(gi − 1)BiB
′
iP

B′
iPBi

)

×det(P−1) det(A′−1)
= det(A−1)2 det(P−1) det

(
I + B̄′PB̄

)
(25)

≤ det(A)−2 det(P−1)
m∏

i=1

gi (26)

= M(A)−2 det(P−1)ḡ,

where (25) is due to (iii) of Lemma 1 and

B̄ =

[√
g1 − 1
B′

1PB1
B1

√
g2 − 1
B′

2PB2
B2 · · ·

√
gm − 1

B′
mPBm

Bm

]
.
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In the above, inequality (26) follows from the positive
definiteness of I + B̄′PB̄ and the Hadamard’s inequality.
Thus, we can conclude that ḡ > M(A)2.
⇐: A constructive proof will be given by adopting a

similar technique in [15]. According to (2), with the same
T1, (A,Bµ) has the Wonham decomposition (Ā, B̄µ) and

B̄µ = T−1
1 Bµ =




b̄1 ? · · · ?
0 b̄2 · · · ?
...

...
. . .

...
0 0 · · · b̄m


 (27)

with b̄i = µibi and each pair (Ai, b̄i) controllable. Choose
D = diag{1, ε, · · · , εm−1} with a small real number ε > 0
and define S = diag{In1 , εIn2 , · · · , εm−1Inm}.

Now, we denote K̂ ≡ KT1 and let K̂ have the block-
diagonal form K̂ = diag{k1, k2, · · · , km}, ki ∈ R1×ni ,
such that Ai + b̄iki is stable and thus, according to Corol-
lary 8.4 in [14], we can get

inf
ki

‖ki(zI −Ai − b̄iki)−1b̄i‖22 = M(Ai)2 − 1. (28)

Since

Â = S−1ĀS =




A1 o(ε) · · · o(ε)
0 A2 · · · o(ε)
...

...
. . .

...
0 0 · · · Am


 ,

B̂µ = S−1B̄µD =




b̄1 o(ε) · · · o(ε)
0 b̄2 · · · o(ε)
...

...
. . .

...
0 0 · · · b̄m


 ,

K̂ = D−1KT1S,

we have

D−1G(z)D
= D−1K(zI −A−BµDD−1K)−1BµDΦ
= D−1KT1S(zI − S−1ĀS − S−1B̄µDD−1KT1S)−1

×S−1B̄µDΦ

= K̂(zI − Â− B̂µK̂)−1B̂µΦ

= diag
{

G1(z)
√

1
g1 − 1

, G2(z)
√

1
g2 − 1

, · · · ,

Gm(z)
√

1
gm − 1

}
+ oz(ε),

where Gi(z) = ki(zI − Ai − b̄iki)−1b̄i, and oz(ε) is a
function of ε as well as z satisfying limε→0 oz(ε) = 0.
For ḡ > M(A)2 =

∏m
i=1 M(Ai)2, we can always choose

gi > M(Ai)2 and ki according to (28), such that

‖Gi(z)‖22
gi − 1

< 1, for ∀i = 1, 2, · · · ,m.

It follows that ‖D−1G(z)D‖2MS < 1 for sufficiently small ε,
i.e., there exist a positive diagonal matrix D, a stabilizing
state feedback gain K = K̂T−1

1 and a factorization ḡ =∏m
i=1 gi such that system (5) is mean square stable.

The equivalence between (23) and (24) is obvious based
on expressions (9)(10). This completes the proof.

V. APPLICATIONS

In this part, we only consider the m-parallel transmission
strategy, while the single packet case can be addressed
analogously via Proposition 3.1.

A. Capacity Constraint Induced by Packet Loss

Assumption 5.1: Suppose corresponding to the i-th chan-
nel, i = 1, 2, · · · ,m, the packet-loss process is driven by an
i.i.d. random variable θi(t) with probability distribution

Pr{θi(t) = 0} = αi, Pr{θi(t) = 1} = 1− αi, 0 ≤ αi < 1.
(29)

We have ξ(t) = diag {θ1(t), θ2(t), · · · , θm(t)} with µi =
1− αi, σ2

i = αi(1− αi), and hence gi = α−1
i .

Theorem 4.1 gives us the following corollary.
Corollary 5.1: Under Assumptions 4.1 and 5.1 there ex-

ists a data loss rate allocation {α1, α2, · · · , αm} satisfying∏m
i=1 αi = ᾱ such that the networked system (5) is mean

square stabilizable if and only if ᾱ < M(A)−2.
Obviously, the above corollary is consistent with the result

of [2] if m = 1.

B. Capacity Constraint Induced by Random Sector-Bounded
Uncertainty

Assumption 5.2: Revisit the multiplicative channels mod-
eled by (6), but now ∆i(t) is assumed to be uniformly
distributed over [−δi, δi] for every i = 1, 2, · · · ,m and t.
See [8] for a similar model of single logarithmic-quantized
input.

Then, µi = 1, σ2
i = 1

3δ2
i , gi = 3

δ2
i

+ 1.
Corollary 5.2: Under Assumptions 4.1 and 5.2 there ex-

ists a network resource allocation {δ1, δ2, · · · , δm} satisfying∏m
i=1

(
3
δ2

i
+ 1

)
= ḡ such that the networked system (5) is

mean square stabilizable if and only if

ḡ > M(A)2. (30)
Other than uniform distribution, any other type of distribu-

tion with constant expectation and variance can be adopted
for ξi(t) or ∆i(t). By taking the stochastic information into
account, less conservative results can be obtained; see the
differences between Corollary 5.2 and Theorem 2.1, as the
condition (30) can be rewritten as δ̄√∏m

i=1(3+δ2
i )

< 1
M(A) .

It is also easy to extend the above results to more compli-
cated situations by choosing ξ(t) in (5) appropriately, e.g.,
combining the above packet loss case and sector-bounded
uncertainty case together by setting ξi(t) = θi(t)(1+∆i(t)).

Corollary 5.3: Suppose the m-parallel channels (15) is
described by ξi(t) = θi(t)(1+∆i(t)), where θi(t) is i.i.d. sat-
isfying (29) and ∆i(t) is uniformly distributed over [−δi, δi],
then under Assumption 4.1 there exists a network resource
allocation {α1, α2, · · · , αm} and {δ1, δ2, · · · , δm} satisfying∏m

i=1

(
3+δ2

i

3αi+δ2
i

)
= ḡ such that the networked system (5) is

mean square stabilizable if and only if ḡ > M(A)2.

FrA17.5

6897

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 14,2021 at 06:30:14 UTC from IEEE Xplore.  Restrictions apply. 



VI. CONCLUSIONS

In this paper, the overall minimal mean square capacity
for guaranteeing the mean square stabilization is given
for a multi-input system with multiplicative input channels
described by white processes. It is direct to generalize the
results in this paper to observer design over unreliable multi-
output channels via the duality. However, the corresponding
Kalman filtering and LQG control problems are not so
straightforward and would be interesting topics worth of
investigation. Considering multiplicative channel with both
stochastic and deterministic uncertainty also deserves future
studies, where preliminary results on single-input case can
be found in [12], [19].

APPENDIX I
PROOF OF LEMMA 2

(i)⇔(ii): Based on Definition 2.1, we can obtain

M(t + 1)
= E[(Ax(t) + Bξ(t)Kx(t))(Ax(t) + Bξ(t)Kx(t))′]
= (A + µBK)M(t)(A + µBK)′ + σ2BKM(t)K ′B′.

It then follows from (i) of Lemma 1 that

vec(M(t + 1)) = Ψvec(M(t)) = Ψt+1vec(M(0)).

Thus, the mean square stabilization of (5) is equivalent to the
existence of K such that ρ(Ψ) < 1, following the argument
in Lemma 2 of [4].

(i)⇔(iii): It can be proved following a similar line of the
proof on page 136-137 of [20].

(iii)⇐(iv): Inequality (12) implies that (11) is true by
setting K = KM .

(iii)⇒(iv): By taking derivative, it is easy to get that u =
Kx = KMx minimizes the following function

Θ ≡ −x′Px + (Ax + µBu)′P (Ax + µBu) + σ2u′B′PBu,

which completes the proof.
(i)⇐(v): Since As in (3) is stable, there exists P1 such

that P1 − A′sP1As > 0. (Au, Bu) over (4) is mean square
stabilizable, thus based on condition (iii) there exist P2 and
Ku such that

P2 > (Au+µBuKu)′P2(Au+µBuKu)+σ2K ′
uB′

uP2BuKu,

which further implies that for some β > 0

P2 > βI + (Au + µBuKu)′P2(Au + µBuKu)
+σ2K ′

uB′
uP2BuKu.

Denote Q ≡ K ′
uB′

sP1BsKu − K ′
uB′

sP1As(P1 −
A′sP1As)−1A′sP1BsKu. By choosing a sufficiently large
γ > 0 such that γβI −Q > 0, we can get

P̃ > (Ã + µB̃K̃)′P̃ (Ã + µB̃K̃) + σ2K̃ ′B̃′P̃ B̃K̃,

where Ã, B̃ are defined as in (3), P̃ = diag{P1, γP2}
and K̃ = [0 Ku]. Further, it is immediate to prove that
the mean square stabilizability is invariant under similarity
transformations. This completes the proof.

(i)⇒(v): There exist P̃ = [P̃1 P̃3; P̃ ′3 P̃2] and K̃ =
[K̃s K̃u] such that

P̃ > (Ã + µB̃K̃)′P̃ (Ã + µB̃K̃) + σ2K̃ ′B̃′P̃ B̃K̃. (31)

After applying the linear coordinate transformation matrix
T3 = [I − P̃−1

1 P̃3; 0 I], it is direct to deduce

P2 > (Au+µBuKu)′P2(Au+µBuKu)+σ2K ′
uB′

uP2BuKu

from the 2 × 2 block of the inequality (31), where P2 =
P̃2 − P̃ ′3P̃

−1
1 P̃3 > 0, Ku = K̃u − K̃sP̃

−1
1 P̃3. Therefore,

(Au, Bu) over (4) is mean square stabilizable.
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