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Abstract 

The model validation problem using time-domain experi- 
mental data is studied for multirate linear fractional un- 
certain models in this paper. As a technical tool, the 
Carathbdory-FejCr interpolation problem with a nest 
operator constraint is first investigated. This problem 
is itself of interest mathematically and has potential ap- 
plications in addressing other problems in control, signal 
processing, and circuit theory. A necessary and suffi- 
cient solvability condition for this interpolation problem 
is given. The validation tests are then given based on this 
condition and the liiing technique. Tractable convex op- 
timization methods can be used to solve the validation 
problems. 

1 Introduction 

Recently, much attention has been paid on multirate 
systems due to its wide applications in control, commu- 
nication, signal processing, econometrics and numerical 
mathematics. Multirate signal processing is now one of 
the most vibrant areas of research in signal processing, 
see recent book [18,19] and references therein. The driv- 
ing force for studying multirate systems in signal pro- 
cessing comes from the need of sampling rate conversion, 
subband coding, and their ability to generate wavelets. 
In control community, two groups of research stand out: 
using multirate control to achieve what single rate con- 
trol cannot as well as the limitation of doing this [7] and 
the optimal design of multirate controllers [3, 141. In 
communication community, multirate sampling is used 
for blind system identification and equalization [8]. We 
also notice the cross discipline fertilization between sig- 
nal processing and control in using N, optimization to 
design filter banks [4, 201. 
In this paper, we will study the control-oriented model 
validation problems pertaining to the general multirate 
systems. There has recently been considerable research 
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devoted to robust or control-oriented model validation 
[lo, 161. However, the research on model validation of 
multirate systems is almost nonexisting. Due to the wide 
applications of multirate systems, their model validation 
problem should receive comparable attention to those of 
single rate systems. 
Model validation is a very important step in the process 
of control system modeling. Generally, the model vali- 
dation problem is to examine if the sets of experimental 
data are consistent with the model of the plant. Our 
confidence in the model set is increased if the model is 
consistent with the data. A model is said to be inval- 
idated when the validation test fails. Since a model is 
either invalidated or not invalidated, it is actually more 
accurate to call the validation procedure as model inval- 
idation. 
The approaches taken vary with the Werent formula- 
tion of model validation, depending on the type of the 
model, the assumption of the noise, the physical data 
available, and the identification technique. Ljung [9] dis- 
cusses model validation in the traditional identification 
setting. More recently, motivated by the considerable 
research on control-oriented system identification, much 
attention has been paid on validation of uncertain models 
consisting of a nominal model and a norm bounded mod- 
eling uncertainty [ l ,  11, 161. Such uncertainty models 
are the starting point for robust control. The first study 
of model validation for linear fractional transformation 
(LFT) model-sets was carried out by Smith and Doyle 
[16]. Chen [l] considered the general validation prob- 
l em of linear fractional uncertain models in frequency 
domain and reduced it to the Nevanlinna-Pick interpo- 
lation problem, which can be solved by standard convex 
optimization methods. Based on the Carathbodory-Fejbr 
(CF) interpolation problem, a purely time-domain for- 
mulation for models with an additive uncertainty is pre- 
sented in [U]. It is shown that the problem can be solved 
as a convex program involving linear matrix inequalities 
(LMI). The time domain validation approach in a more 
general setup which is for LFT uncertain model-sets is 
studied in [2]. The similar setup is also used to con- 
sider the validation problem in a sampled-data frame- 
work [15, 17. 
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Figure 1: A general multirate LFT uncertain model. 

In this paper, we extend the results in [2] and Ill] to mul- 
tirate systems. The setup is shown in Fig . l, where Pm, 
and Am? are both multirate systems, and they together 
form a multirate uncertain system model with P,,. fixed 
and A,, unknown. The model validation problem con- 
sidered in this paper is as follows. Given P,,, an uncer- 
tainty set which A,, belongs to, a set of time domain ex- 
perimental data on ui and yi, and a set € of noise signals, 
find out if there exists a An, in the uncertainty set such 
that the experimental data can be reproduced with Pmr 
and A,, together with the noises E .  As a technical tool, 
we first propose and study a CF interpolation problem 
with a nest operator constraint. This problem is itself of 
interest mathematically and has potential applications in 
addressing other problems in control, signal processing, 
and circuit theory. A necessary and sufficient solvability 
condition for this constrained CF interpolation problem 
is given. Then the validation tests are presented based 
on the above condition. 
The paper is organized as follows. The next section intro- 
duces some basic facts about the general multirate sys- 
tems and shows how to convert a multirate system to an 
equivalent LTI system with a causality constraint. Sec- 
tion I11 addresses the tangential CF interpolation prob- 
lem with nest operator constraint, which are the main 
tool to obtain the model validation test for general mul- 
tirate systems. Section IV provides the necessary and 
sufficient validation conditions for the time-domain ex- 
perimental data. Section V concludes the paper. 

2 General Multirate Systems 

The setup of a general MIMO multirate system is shown 
in Fig. 2. Here ui, i = 1,2, .  . . , p ,  are input signals 
whose sampling intervals are mih respectively, and y j ,  
j = 1,2,. . . , q are output signals whose sampling inter- 
vals are njh respectively, where h is a real number called 
base sampling interval and mi,nj are natural numbers 
(positive integers). Such systems can result from dis- 
cretizing continuous time systems using samplers of dif- 
ferent rates or they can be found in their own right. We 
will assume that all signals in the system are synchro- 
nized at time 0, i.e., the time 0 instances of all signals 
occur at the same time. In this paper, we will focus on 
those multirate systems that satisfy certain causal, lin- 

ear, shift invariance properties which are to be defined 
below. 

Figure 2: A general multirate system. 

Since we need to deal with signals with different rates, 
it is more convenient and clearer to associate each signal 
explicitly with its sampling interval. Let L' ( T )  denote 
the space of Rr valued sequences: 

er(T) = {{. . . , 2 ( - T ) ,  ) 2 ( 0 ) , 2 ( T ) ,  . . .}  : Z ( k T )  E Rr}. 

The system in Fig. 2 is a map from &C(mih) to 
$:==,L(njh). It is said to be linear if this map is a linear 
map. 
Let 1 E N be a multiple of mi and nj, i = 1,2 , .  . . , p ,  
j = 1,2 , .  . . ,q.  Let ~ % i  = l/mi and ii, = l/nj. Denote 
the sets {mi} and {nj} by M and N respectively and 
the sets {ai} and { f i j }  by M and w respectively. Let 
S : P(T) -+ P(T) be the forward shift operator, i.e., 

S a  = diag{S"', . . . , Sap}, 
Ss = diag(S"1,. . . ,SRq} .  

Then the multirate system in Fig. 2 is said to be (a, w)- 
shift invariant or lh periodic in real time if FmrSfi = 
SmF,,. Now let Pt : P(T) 3 P(T) be the truncation 
operator, i.e., 

Pt {. . . , z ( ( k  - l)T),z(kT),2((k + l).), . . .}  
= {. . . , Z((k - I).), 2(kT),  0,. . . } 

if k~ 5 t < (k + 1) T. Extend this definition to spaces 
@='=,l(mih) and @;==,L(njh) in an obvious way. Then 
the multirate system is said to  be causal if 

P ~ u  =.Ptv +- PtFmru = PtFmrv 

for all t E R In this paper, we will concentrate on causal 
linear (A?, R)-shift invariant systems. Such general mul- 
tirate system covers many familiar classes of systems as 
special cases. If mi, nj, 1 are all the same, then this is an 
LTI single rate system. If mi,nj are all the same but 1 
is a multiple of them, then it is a single rate I-periodic 
system [13]. I f p  = q = 1, this becomes the SISO dual 
rate system studied in [4]. If mi are the same and nj 
are the same, then this becomes the MIMO dual rate 
system studied in [12J. For systems resulted from dis- 
cretizing LTI continuous time systems using multirate 

5047 

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 16,2021 at 03:35:30 UTC from IEEE Xplore.  Restrictions apply. 



sample and hold schemes in [3,14], 1 turns out to be the 
least common multiple of mi and nj. The study of mul- 
tirate systems in such a generality as indicated above, 
however, has never been done before. 
A standard way for the analysis of such systems is to use 
lifting or blocking. Define a lifting operator L, : l ( ~ )  -+ 
l'(r7) by 

L, {. I"), . . . I  

+. {...I [ %Cp, ] , [ z(;) ] ,... } 
Z ( ( T  - 1)T) Z( (2T  - 1 ) T )  

and let 

LB = diag{Lihl ,... ,Lm,}, 

L n  
Then the l i e d  system F = LmF,,,,.LG is an LTI system 
in the*sense that FS = SF.  Hence it has transfer func- 
tion F in A-transform. However, F is not an arbitrary 
LTI system, instead its direct feedthrough term F(0)  is 
subject to a constraint that is resulted from the causal- 
ity of Fmr. This constraint is best described using the 
language of nests and nest operators 112, 141. 
Let X be a finite dimensional vector space. A nest in 
X , denoted { Xk} , is a chain of subspaces in X, including 
(0) and X, with the non-increasing ordering: 

= diag {La,, . . . , LfiP } . 

x = x, 2 x, 2 f * 2 XI-1 2 xi = (0). 

Let U ,  Y be finite dimensional vector spaces. Denote by 
L(U, y )  the set of linear operators U 3 y .  Assume that 
U and y are equipped respectively with nest (Uk)  and 
{Yk} which have the same number of subspaces, say, Z+1 
as above. A linear map T E L ( U , y )  is said to be a nest 
operator if 

T U k c y k ,  k = 0 , 1 ,  ... , 1 .  (1) 
The set of all nest operators (with given nests) is denoted 
N({Uk} ,  {Yk}).  If we decompose the spaces U and y in 
the following way: 

U = (Uo e Ul) e (Ul e u2) CB . . . CB (Ulvl e 24) 
Y = (Yo e Yd CB (Yl e Yz)  @ CB ( Y z - ~  e 3)  

(2) 
(3) 

then a nest operator T E n / ( { u k } ,  {W}) has the follow- 
ing block lower triangular form r T~~ o ... o 1 

Define for k = 0 , 1 , .  . . , 1 ,  

Uk = {g(o) : Ui (rmih) = 0 if rmih < kh} 
Yk = {y(O) : y j  (mjh)  = 0 if rnjh < Ich}. 

Then the l i e d  plant F will have 

(0) E N({Uk)r {Yk)).  (5) 

Now we see that each multirate system has an equivalent 
single rate LTI system satisfying a causality constraint. 
This causality constraint is characterized by a nest op- 
erator constraint as in (5) on its transfer function. 

3 Mathematical Preparations 

Let D be the open unit disc. Denote Xm(U,Y) the 
Hardy class of all uniformly bounded analytic functions 
on D with values in ,C(p,y). Denote by X m ( { U ~ ) L { Y k } )  
the set of functions G E R,(U,Y) satisfying G(0) E 
N({Uk},{yk}). The purpose of this section is to ad- 
dress the CF interpolation problem using functions in 
X,({Uk}, {Yk}). Before going into this problem, we 
need to state a result on matrix positive completion. 

3.1 Matrix Positive Completion 
The matrix positive completion problem is as follows [5]: 
Given Bij, Ij - il q, satisfying Bij = B;i, find the re- 
maining matrices Bij, lj - il > q, such that the block 
matrix B = [Bij]& is positive definite. The matrix 
positive problem was &st proposed by Dym and Go- 
hberg [5], who gave the following result: 

Lemma 1 The matrix positive completion problem has 
a solution if and only if 

Bii . . . Bi,i+q 
- >O, i = 1 ,  ..., n - q .  (6) [ -  &+q,i * * . &+q,i+q : I  

3.2 Carath6odory-Fej6r Interpolation with Nest 
Operator Constraint 
Let X, U and Y be finite dimensional Hilbert spaces. The 
Hilbert space direct sum of n copies of X will be denoted 
by Xn. Assume that U and Y are equipped respectively 
with nests {Uk} and { Y k } .  Let Vi and K, i = 0,1,. . . ,n, 
be linear operators from X to U and from X to y respec- 
tively. Denote 

U =  [ 71 a n d Y = [  Y* y ]  
U* 

(7) 

The Toeplitz matrix generated by U is defined as 

[ U0 0 * e *  0 1 
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The Toeplitz matrix generated by Y is defined similarly. 
The tangential CF interpolation problem with constraint 
N({Uk}, {Yk}) for the data U, Y is to find (if possible) 
a function 6 (A) = GiAi in Xm((Uk} ,  {&}) such 
that llG1lm < 1 and 

Y =TGU 

where 

Note that the dimension of TG depends on an integer n, 
to simplify the notation, however, we choose to ignore 
this dependence. In fact, this does not cause any confu- 
sion if we always assume that all the matrix operations 
are compatible. 

Theorem 1 There exists a solution to  the CF interpola- 
t ion problem with constraint N({&},  {Yk}) for the data 
U,Y  if and only if 

T;II,yne,y,~Tu - T;IIyney;Ty 2 0 (9) 

for all k = 1,.  . . , 1 .  

Proof: The ne_st operator constraint on the inter- 
polation function G can be considered as an additional 
interpolation condition 

for some T E N({Uk},  {&}). By the solvability condi- 
tion of the standard CF interpolation problem [SI, the 
constrained CF interpolation problem has a solution if 
and only if 

o*u - P*P 2 0 (10) 

where 

r o u0 o ... o 1 

r o  YO o ... 0 1  

Notice that the submatrices of 8 and P formed by re- 
moving the first block column are block Toplitze matrices 
and are equal to Tu and Ty respectively. It follows from 
Schur complement that (11) is equivalent to 

TY 0 
T I 

- > o  (12) 

- 
for some T E N((Uk},(Yk}). If we decompose the 
spaces U and y as in (2), then a nest operator T E 
N({Uk},  {&}) has a block lower triangular form shown 
in (4). Therefore, the constrained CF interpolation prob- 
lem has a solution if and only if (12) holds for a block 
lower triangular matrix T.  This is a matrix positive com- 
pletion problem. By Lemma 1, such a T exists if and only 
if 

for k = 0, 1, . . . , 1. Here IIuk 'and IIyne,,+ are operators 

where fiom U to u k  and from yn+l to y n  e 5; respectively. 
Using Schur complement twice, we see that (13) is equiv- 
alent to [ 0 U0 0 0 ... 0 0 1 

The zero columns in 6 and P do not contribute anything 
to inequality (10). Hence (10) is equivalent to 

D*8 -?*E 2 0 (11) 

for k = 0,1, .  . . , 1. Note that (14) is exactly (9). Finally, 
notice that (9) when k = 0 is implied by (9) when k = 1. 
This completes the proof. 

The solvability condition for the standard CF interpola- 
tion problem without constraint is recovered when 1 = 1. 
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Figure 3: The equivalent LTI uncertain model. 

4 Time-Domain Validation for Multirate L F T  
Uncertain Model 

In robust control theory, many problems can be treated 
in a unified framework using LFT machinery. In fact, 
additive, multiplicative and coprime factor uncertainty 
descriptions can all be represented as an LFT on the un- 
certainty, with a suitable choice of the coefficient matrix 
[21] .  In this section, we will give the validation tests for 
multirate LFT uncertain models. 
Suppose we have an uncertain multirate system shown 
in Fig. 1 .  Here, ui, i = 1 , .  . . , p ,  are input signals whose 
sampling intervals are m:h and yj, j = 1, .  . . , q, are out- 
put signals whose sampling intervals are n)h. Also vi, 
i = 1 , .  . . , T,  and wj, j = 1 , .  . . , s, are the auxiliary sig- 
nals whose sampling intervals are mih and njh respec- 
tively. Assume that both P,, and A,, are Ih periodic 
in real time for some integer 1. As discussed in Section 
11, we can then convert the above multirate LFT un- 
certain system to an equivalent single rate LTI system 
with a causality constraint. Let mi = l/mi, fi>, = l /n>, 
f i i  = l/mi, fij = l/nj. And let 2 = k y ,  g = L f i , ~ ,  
- w = L ~ v ,  = LNW, and 

-1 LR., 0 Lfi, 0 
= [ o  L N ] p , r [ o  L a ]  

where LR,, La,,  L a ,  LN are appropriately defined as in 
Section 11. Then the multirate uncertain system in Fig. 
1 is converted to  an equivalent LTI uncertain system as 
shown in Fig. 3. We know that such equivalent LTI 
system satisfies a causality constraint. Denote 

tJ(0) = [Wl(O)T,. . . ,Vl((fil - l>mh)T,. . . , 
v,(o)~, . . . , ~r((fir - ~ ) m r h ) ~ ]  

- W(O) = 
WS(0)T,. . . , ws((iis - l)nsh)TIT 

g(0) = [u1(O)T, ... ,ul((fi; - 1)m;hy ,... , 
up(0)T,.  . . ,up((?%; - l)m;h)T] 

y(0) = [yl (V,. . . ,yl((fi; - l)n:hIT,. . . , 
Y&V-, . .  . ,Yn((fib - l)n;h)TIT. 

T 

[w1 ( o ) ~ ,  . . . , w1 ((ail - l)nlh)T,. . . , 

T 

Define for k = 0,1 , .  . . , I ,  

V k  = ( ~ ( 0 )  : wi(rmih) = 0 if rmih < kh}  
Wk = ( ~ ( 0 )  : Wj(Tnjh) = O if ~ n j h  c t h }  
Uk = {g (O)  : ui(~m:h) = O if ~ m : h  < kh}  
~k = ( ~ ( 0 )  : yj(~n;h) = o if mgh e k h } .  

Then P satisfies P (0) E n/({Uk@Vk}, { Y k @ W k } )  and A 
satisfies A (0) E N ( { w ~ } ,  {Vk}). From now on, we will 
only consider the equivalent LTI system shown in Fig. 3 
with such constraints. 
Assume that an uncertain model of the lifted LTI 
equivalence of a m:ltifate system is represented by 
the lower LFT 4 ( P , A ) ,  where the nominal model 

E 7-1, is given and satisfies P22 E 31,({Vk},{Wk}) 
and 11*2~11~ I $, and A is the uncertainty satisfying 
11A11, 5 7. Several time domain experiments are car- 
ried out so that several input/output pairs of the lifted 
system are collected 

- U : = [  i I..:=[ &I i 1 .  
U n  Y n  

The model validation problem is to test whether the un- 
certain model is consistent with the experiments data, 
i.e., whether there exists an A E ? l w ( ~ { W k } , { V k } ) )  
with llAlloo 5 7 such that the following holds 

- y = TPl,U+ TPIZV+E (15) 
- W = TpzlZL+T~z2V (16) 
- V = TAW (17) 

E E,  where E is a compact convex set repre- for some 
senting a bound on the error and 

- v := [ " I .  
E a  K n  

Theorem 2 For data U and E, define 

= { v : Ty = TP,,TU + TP,& + TE, E € E }  . 
The uncertain model (15-17) is not invalidated if and 
only .if there exists a V E fly such that Hk(V) 2 0 for 
k = l ,  ... ,1,  where 
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Proof: First we show Qk 2 0 so that is 
well-defined. We know that p 2 2  (0) E N({Yk},  {wk}) 
from P (0) E N({& 63 Vk} ,_ (Yk  @ W k } ) .  Thus 7P22 E 

P22 (A) = CEO Setting 
7-&({Vk},{Wk)) since Ilrp22llm I 1. Recall that 

Note that T,pzzU = U, it follows from Theorem 1 that 

nv-ev: - y2G$,nW=eWk~~zz 2 0 

for all k = 1, .  . . , 1 .  Therefore Qk 2 0 for all k = 1 , .  . . , I ,  
and Q? is well-defined. By Theorem 1, there exists an 

if and only if 
A E zm ( N ( { w ~ )  , {vk))) with Its (A> /Im 5 Y in (17) 

T Y2T$,=,W,lTW 5 T y 4 % n g L  (18) 

for all k = 1 , .  . . ,Z. Substituting (16) into (18) yields 

H k i i  (E) - T,TQkTy 2 0. (19) 

Since Qk 2 0, it follows by Schur complement that (19) 
is equivalent to Hk (E) 2 0. Hence, the uncertain model 
is not invalidated if and only if there exists a E RE 
such that Hk (E) 2 0 for k = 1, .  . . ,1 .  

The conditions in Theorem 2 are the well-known LMI 
feasibility conditions which is numerically feasible. 

5 Conclusion 

The model validation for general multirate systems is 
studied in this paper. Based on the solutions to the 
constrained CF interpolation problem, the time domain 
validation test is presented for the general multirate LFT 
uncertain models. These tests can be carried out by 
solving feasibility problems involving LMIs. 
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