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MULTIRATE PERIODIC SYSTEMS AND CONSTRAINED
ANALYTIC FUNCTION INTERPOLATION PROBLEMS∗
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Abstract. Multirate periodic systems and some related constrained analytic function interpo-
lation problems are studied in this paper. After showing how to convert a general multirate periodic
system to an equivalent linear time invariant (LTI) system with a structural constraint, we for-
mulate some analytic function interpolation problems with such a constraint that can find various
applications in the study of multirate and periodic systems. Both the solvability conditions and
characterization of all solutions are presented to these constrained interpolation problems.
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1. Introduction. Periodic and multirate systems are finding more and more ap-
plications in control, signal processing, communication, econometrics, and numerical
mathematics. There are several reasons for this.

• In signal processing, the use of periodic and multirate systems can often lead
to the reduction of the required transmission rate, storage space, or computational
complexity for a given task, depending on the application [24].

• In large-scale multivariable digital systems, often it is unrealistic, or sometimes
impossible, to sample all physical signals uniformly at one single rate. In such situa-
tions, one is forced to use multirate sampling.

• Periodic and multirate systems can often achieve objectives that cannot be
achieved by single rate systems. Examples include gain margin improvement and
simultaneous stabilization [14].

The study of periodic systems can be traced back to [10]. Examples of more
recent studies are [2, 15]. The study of multirate systems goes back to the late
1950s. A renewal of research on multirate systems has occurred since 1980 within
the signal processing, communication, and control communities. The driving force for
studying multirate systems in signal processing comes from the need for sampling rate
conversion, subband coding, and their ability to generate wavelets. Multirate signal
processing is now one of the most vibrant areas of research within the signal processing
community; see the recent book [24] and references therein. In the communication
community, blind identification and equalization call for the use of multirate sampling
[23]. In the control community, two groups of research stand out: (i) using multirate
control to achieve something that otherwise cannot be achieved by single rate control
(see, for example, [14]) and (ii) optimal design of multirate controllers [7, 18].
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MULTIRATE PERIODIC SYSTEMS AND INTERPOLATION 1973

A standard technique for treating periodic and multirate systems is called lifting
in control theory [7, 14] and blocking in signal processing [15, 24]. First, we establish
a setup of multirate periodic (MP) systems, which cover many familiar systems as
special cases. Using the technique of lifting, an MP system can be converted to an
equivalent linear time invariant (LTI) system satisfying a causality constraint that
requires the feedthrough term to be block lower triangular. Motivated by this fact
we propose and then study the problem of analytic function interpolation with an
additional constraint that requires the value of the interpolating function at the origin
to be block lower triangular [4, 5]. These constrained analytic function interpolation
problems play the same role for multirate systems as their unconstrained counterparts
do for single rate systems.

Analytic function interpolation problems have a very rich history in mathematics,
and there has been a large volume of literature on this subject; see the recent books
[1, 11, 13]. Many successful approaches have been proposed to solve the analytic
function interpolation problems since the theory was first proposed at the beginning
of the last century. In particular, Sarason [21] encompassed different classical inter-
polation problems in a representation theorem of operators commuting with special
contractions, which was later developed to a general framework on commutant lifting
theorem [11, 22]. On the other hand, using the realization method from the sys-
tem theory, Ball, Gohberg, and Rodman [1] present another systematic way to deal
with the interpolation of rational matrix functions. Recently, Foias et al. [12] com-
bined the commutant lifting theorem from operator theory and state-space method
from system theory to provide a unified approach for a more general setup of the
problems, where they used the concept of operator-valued functions with operator
arguments.

The increasing research interest on analytic function interpolation theory is also
partly due to its wide applications in a variety of engineering problems such as those
in control, circuit theory, and digital filter design [4, 8, 13]. The Nevanlinna–Pick
(NP) interpolation theory was first brought into system theory by Youla and Saito,
who gave a circuit theoretical proof of the Pick criterion [28]. In the early stage of the
development of H∞ control theory, the analytic function interpolation theory played
a fundamental role [25]. A detailed review of this connection can be found in [13]. Re-
cently, some new methods in high-resolution spectral estimation have been presented
based on the NP interpolation with degree constraints [3]. The NP interpolation and
Carathéodory–Fejér (CF) interpolation problems are also used extensively in robust
model validation and identification [5, 6, 16].

In this paper, we propose a general model of multirate and periodic systems which
covers single rate periodic systems and many other multirate systems in the litera-
ture as special cases. We also propose and solve some constrained analytic function
interpolation problems that play the same role in multirate and periodic systems as
the unconstrained counterparts do in single rate systems. That is, our results can
be applied directly to multirate and periodic systems for H∞ control, robust model
validation and identification, etc. We present the necessary and sufficient solvability
conditions and the parametrization of all solutions explicitly. The interpolation and
distance problems involving analytic function with such structural constraints were
first discussed in [13], but explicit solutions to the problem considered in this paper
were not given there.

The notation used in this paper is standard. The real and complex numbers are
denoted by R and C, respectively. The open unit disc of the complex plane is denoted
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1974 LI CHAI AND LI QIU

by D. Let

p = [ p1 · · · pl ] and q = [ q1 · · · ql ](1.1)

be two vectors, where pi and qi, i = 1, . . . , l, are nonnegative integers. Denote

|p| =

l∑
i=1

pi and |q| =

l∑
i=1

qi.(1.2)

For k = 0, . . . , l, define

Πk(p) = diag(0p1
, . . . , 0pk

, Ipk+1
, . . . , Ipl

),(1.3)

Πk(q) = diag(0q1 , . . . , 0qk , Iqk+1
, . . . , Iql),(1.4)

where 0n denote the n × n zero matrix and In the n × n unit matrix. Note that
Π0(p) = I|p|, Πl(p) = 0|p|, Π0(q) = I|q|, and Πl(q) = 0|q|. The set of |q| × |p| matrices

is denoted by C
|q|×|p|, and every such matrix is assumed to have an underlining

partition so that its ijth block is qi by pj . Hence we have

C
|q|×|p| :=

⎧⎪⎨
⎪⎩

⎡
⎢⎣

M11 · · · M1l

...
. . .

...
Ml1 · · · Mll

⎤
⎥⎦ : Mij ∈ C

qi×pj

⎫⎪⎬
⎪⎭ .

Note that the entry Mij is “empty” if qi = 0 or pj = 0. The block lower triangular
subset of C

|q|×|p|, denoted by T (q, p), consists of all matrices with Mij = 0, i < j,
and the strictly block lower triangular subset, Ts(q, p), consists of all matrices with

Mij = 0, i ≤ j. Let H|q|×|p|
∞ denote the Hardy class of all uniformly bounded analytic

functions on D with values in C
|q|×|p|. For any G(λ) ∈ H|q|×|p|

∞ , there exist G0, G1, . . . ∈
C

|q|×|p| such that G(λ) =
∑∞

m=0 λ
mGm for λ ∈ D.

2. Multirate periodic systems. To introduce the general setup of multirate
periodic systems, we need the concept of signals with time-varying dimensions. A
signal with time-varying dimensions is defined as

x = {. . . , x(−2), x(−1), |x(0), x(1), x(2), . . . },

where x(k) ∈ R
p(k) and p(k) is a nonnegative integer for any k. Here the vertical line

indicates the position of time zero. Note that when p(k) = 0, x(k) ∈ R
p(k) means

that x(k) is always equal to 0. If p(k) is periodic with period l, i.e., p(k + l) = p(k)
for any k, we call x a signal with l-periodically time-varying dimensions. Define the
l-step shift operator Sl as

Sl{. . . , x(−1), |x(0), x(1), . . . }
= {. . . , x(−l − 1), |x(−l), x(−l + 1), . . . }.(2.1)

Denote Pk as the truncation operator, i.e.,

Pk{. . . , x(k − 1), x(k), x(k + 1), . . . } = {. . . , x(k − 1), x(k), 0, . . . }.(2.2)

Consider the system Gmp, shown in Figure 2.1, where the input u with u(k) ∈
R

p(k) and output y with y(k) ∈ R
q(k) are signals with l-periodically time-varying

dimensions; that is, p(k) and q(k) are periodic with period l. Assume that Gmp satisfy
the following properties:

D
ow

nl
oa

de
d 

03
/3

1/
21

 to
 1

43
.8

9.
10

5.
15

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



MULTIRATE PERIODIC SYSTEMS AND INTERPOLATION 1975

Gmp ��u y

Fig. 2.1. The multirate periodic system.

(1) Linearity. The system Gmp is a linear operator.
(2) Periodicity. Gmp satisfies GmpS

l = SlGmp, where Sl is given by (2.1).
(3) Causality. Gmp satisfies PkGmp(I − Pk) = 0, where Pk is given by (2.2).
In this paper, we focus on the systems that satisfy linear, periodic, and causal

properties defined above. We call them multirate periodic (MP) systems. The general
class of MP systems defined here covers many familiar classes of systems as special
cases.

If p(k) = p1 and q(k) = q1 for all k ∈ Z, then an MP system is a usual l-periodic
system, for which there is a vast literature [2]. The multirate feature arises when p(k)
and q(k) are truly time-varying. Let l be a multiple of m and n. If

u(k) ∈
{

R
p1 if m|k

{0} otherwise
and y(k) ∈

{
R

q1 if n|k
{0} otherwise

,

then such an MP system is a dual rate system considered in [17]. Let l be a multiple
of integers mi, i = 1, . . . , s, and nj , j = 1, . . . , t. If

u(k) =

⎡
⎢⎣

u1(k)
...

us(k)

⎤
⎥⎦ and y(k) =

⎡
⎢⎣

y1(k)
...

yt(k)

⎤
⎥⎦ ,

where

ui(k) ∈
{

R
pi if mi|k

{0} otherwise
and yj(k) ∈

{
R

qj if nj |k
{0} otherwise

,

then such an MP system becomes a general multirate system with uniform synchro-
nized but different sampling in each input or output channel [7, 18, 20, 26]. The study
of periodic and multirate systems in such a generality as indicated above, however,
has never been done before.

Remark 1. One advantage of modelling a multirate system as a periodic system
with periodically time-varying input-output spaces is that it better relates the present
study to the rich theory on the usual periodic systems, as surveyed in [2]. Other
advantages are its generality (it allows for nonuniform and asynchronous sampling)
and its convenience (the treatments using this model take similar forms to those using
other models, such as the one discussed in [7, 18]).

A standard method for the analysis of MP systems is to use lifting or blocking.
For the MP system shown in Figure 2.1, define a lifting operator Ll on

⊕∞
k=−∞ R

p(k)

by

Ll : {· · · |u(0), u(1), · · · } �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
· · ·

∣∣∣∣∣∣∣∣∣

⎡
⎢⎢⎢⎣

u(0)
u(1)

...
u(l − 1)

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

u(l)
u(l + 1)

...
u(2l − 1)

⎤
⎥⎥⎥⎦ , · · ·

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.
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1976 LI CHAI AND LI QIU

Ll on
⊕∞

k=−∞ R
q(k) is defined similarly. Then the lifted system G = LlGmpL

−1
l is an

LTI system in the sense that GS1 = S1G, where S1 is the unit shift. Hence it has
transfer function in the λ-transform (λ = 1

z )

G(λ) =

⎡
⎢⎣

G11(λ) · · · G1l(λ)
...

. . .
...

Gl1(λ) · · · Gll(λ)

⎤
⎥⎦ .

The LTI system G is not an arbitrary LTI system. Instead, its direct feedthrough
term G(0) is subject to a constraint that results from the causality of Gmp :

Gij(0) = 0q(i)×p(j) for 1 ≤ i < j ≤ l;

i.e., G(0) is a block lower triangular matrix. Therefore the causality constraint can
be represented by

G(0) ∈ T (q, p),

where p = [ p(1) · · · p(l) ] and q = [ q(1) · · · q(l) ]. Notice that the form of the
causality here is simpler than that in [7, 18] due to the new form of the model.

3. Constrained analytic interpolation problems. In this section, we will
present some constrained analytic function interpolation problems, which can be
viewed as a multirate version of the standard interpolation problems. These con-
strained interpolation problems have various applications in MP systems as do their
unconstrained counterparts in single rate systems. We first present a general case: a
constrained tangential NP interpolation problem. Some more useful special cases are
then formulated for convenience. In the following sections, we always assume that p,
q, |p|, and |q| are defined by (1.1)–(1.2).

Problem 1 (constrained tangential NP interpolation). Given U ∈ C
|p|×n, Y ∈

C
|q|×n, and Z ∈ C

n×n with spectral radius ρ(Z) < 1, find (if possible) a function

G(λ) =
∑∞

m=0 Gmλm ∈ H|q|×|p|
∞ such that

(i) ‖G‖∞ ≤ 1,

(ii)
∑∞

m=0 GmUZm = Y,

(iii) G(0) ∈ T (q, p).

Roughly speaking, the integer n in the problem determines the number of inter-
polation conditions.

We can also formulate the following interpolation problems with block lower tri-
angular constraints, which are special cases of Problem 1.

Problem 2 (constrained classical NP interpolation). Given a set of complex num-
bers λα ∈ D along with matrices Uα ∈ C

|p|×n and Yα ∈ C
|q|×n for α = 1, . . . , s, find

(if possible) a function G ∈ H|q|×|p|
∞ such that

(i) ‖G‖∞ ≤ 1,

(ii) G(λα)Uα = Yα for α = 1, . . . , s,

(iii) G(0) ∈ T (q, p).

Problem 3 (constrained CF interpolation). Given Uβ ∈ C
|p|×n and Yβ ∈ C

|q|×n,

β = 0, . . . , r − 1, find (if possible) a function G(λ) =
∑∞

m=0 Gmλm ∈ H|q|×|p|
∞ such

that

(i) ‖G‖∞ ≤ 1,
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MULTIRATE PERIODIC SYSTEMS AND INTERPOLATION 1977

(ii)

⎡
⎢⎢⎢⎣

Y0

Y1

...
Yr−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

G0 0 · · · 0
G1 G0 · · · 0
...

...
. . .

...
Gr−1 Gr−2 · · · G0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

U0

U1

...
Ur−1

⎤
⎥⎥⎥⎦ ,

(iii) G(0) ∈ T (q, p).
Problem 4 (constrained simultaneous NP and CF interpolation). Given U1,β ∈

C
|p|×n, Y1,β ∈ C

|q|×n for j = 0, . . . , r − 1, and Uα ∈ C
|p|×n, Yα ∈ C

|q|×n, and λα ∈ D

for α = 2, . . . , s, find (if possible) a function G(λ) =
∑∞

m=0 Gmλm ∈ H|q|×|p|
∞ such

that
(i) ‖G‖∞ ≤ 1,

(ii)

⎡
⎢⎢⎢⎣

Y1,0

Y1,1

...
Y1,r−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

G0 0 · · · 0

G1 G0
. . .

...
...

...
. . . 0

Gr−1 Gr−2 · · · G0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

U1,0

U1,1

...
U1,r−1

⎤
⎥⎥⎥⎦ ,

(iii) G(λα)Uα = Yα for α = 2, . . . , s,
(iv) G(0) ∈ T (q, p).
Before giving the necessary and sufficient conditions of the above constrained ana-

lytic function interpolation problems, we need a result on matrix positive completion.
The matrix positive completion problem is as follows [9]: For a block matrix

B = [Bij ]
n
i,j=1 , given Bij , |j − i| ≤ m, satisfying Bij = B∗

ji, find the remaining

matrices Bij , |j − i| > m, such that the block matrix B is positive definite. The
matrix positive completion problem was first proposed by Dym and Gohberg [9], who
gave the following result.

Lemma 3.1. The matrix positive completion problem has a solution if and only
if ⎡

⎢⎣
Bii · · · Bi(i+m)

...
...

B(i+m)i · · · B(i+m)(i+m)

⎤
⎥⎦ ≥ 0, i = 1, . . . , n−m.(3.1)

Reference [27] gave a detailed discussion of this problem and presented an explicit
description of the set of all solutions via a linear fractional map whose coefficients are
given in terms of the original data. However, Lemma 3.1 is sufficient for our purpose.
We are now in a position to give the main result of this section.

Theorem 3.2. There exists a solution to Problem 1 if and only if

Q− Q̃ + Y ∗Πk(q)Y − U∗Πk(p)U ≥ 0(3.2)

for all k = 1, . . . , l, where Q and Q̃ are, respectively, the unique solutions of Lyapunov
equations

Q = Z∗QZ + U∗U,(3.3)

Q̃ = Z∗Q̃Z + Y ∗Y.(3.4)

Here Πk(p) and Πk(q) are defined in (1.3)–(1.4).
Proof. The structural constraint on the interpolation function G can be viewed

as an additional interpolation condition,

G (0) I = T,
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1978 LI CHAI AND LI QIU

for some T ∈ T (q, p). Set λ0 = 0, U0 = I, and Y0 = T . By the solvability condition
of the standard NP interpolation problem [12], the constrained interpolation problem
has a solution if and only if there exists T ∈ T (q, p) such that

Qa − Q̃a ≥ 0,(3.5)

where Qa and Q̃a satisfy

Qa =

[
λ0I 0
0 Z

]∗
Qa

[
λ0I 0
0 Z

]
+

[
I
U∗

] [
I U

]
,(3.6)

Q̃a =

[
λ0I 0
0 Z

]∗
Q̃a

[
λ0I 0
0 Z

]
+

[
T ∗

Y ∗

] [
T Y

]
.(3.7)

It is easy to see from (3.6)–(3.7) that

Qa =

[
I U
U∗ Q

]
and Q̃a =

[
T ∗T T ∗Y

Y ∗T Q̃

]
.

Substituting Qa and Q̃a into the inequality (3.5), we have

[
I − T ∗T U − T ∗Y

U∗ − Y ∗T Q− Q̃

]
≥ 0.(3.8)

The left-hand side of (3.8) can be rewritten as

[
I U

U∗ Q− Q̃ + Y ∗Y

]
−
[

T ∗

Y ∗

] [
T Y

]
.

By the Schur complement, (3.8) is equivalent to

⎡
⎣ I U T ∗

U∗ Q− Q̃ + Y ∗Y Y ∗

T Y I

⎤
⎦ ≥ 0.(3.9)

Therefore, the constrained NP interpolation problem has a solution if and only if (3.9)
holds for a block lower triangular matrix T . This is a matrix positive completion
problem. By Lemma 3.1, there is a block lower triangular T such that (3.9) holds if
and only if

⎡
⎣ Πk(p) Πk(p)U 0

U∗Πk(p) Q− Q̃ + Y ∗Y Y ∗[Iq − Πk(q)]
0 [Iq − Πk(q)]Y Iq − Πk(q)

⎤
⎦ ≥ 0(3.10)

for k = 0, . . . , l. Using the Schur complement twice, we can easily show that (3.10) is
equivalent to

Q− Q̃ + Y ∗Πk(q)Y − U∗Πk(p)U ≥ 0(3.11)

for k = 0, . . . , l. We claim that inequality (3.11) when k = l implies the case when
k = 0. In fact, when k = 0, inequality (3.11) gives

Q− Q̃ + Y ∗Y − U∗U ≥ 0.(3.12)
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MULTIRATE PERIODIC SYSTEMS AND INTERPOLATION 1979

Note that inequality (3.12) is equivalent to

Z∗(Q− Q̃)Z ≥ 0.

When k = l, inequality (3.11) gives

Q− Q̃ ≥ 0.(3.13)

It is obvious that inequality (3.13) implies (3.12).
Remark 2. If there is no constraint, then we have l = 1. In this case, the condition

in Theorem 3.2 becomes Q − Q̃ ≥ 0, which is a well-known result in the literature
[1, 11, 12].

Remark 3. To verify the condition in Theorem 3.2, two Lyapunov equations, (3.3)
and (3.4), can be combined into one:

Q− Q̃ = Z∗(Q− Q̃)Z + U∗U − Y ∗Y.

However, Q and Q̃ will be used in the next section.
Q and Q̃ can be given directly from the original data in some special cases. We

end this section by providing the explicit formula for these special cases.
Corollary 3.3. There exists a solution to Problem 2 if and only if

[
U∗
αUβ − Y ∗

αYβ

1 − λ∗
αλβ

+ Y ∗
αΠk(q)Yβ − U∗

αΠk(p)Uβ

]s
α,β=1

≥ 0(3.14)

for k = 1, . . . , l.
Proof. Note that Problem 2 can be viewed as a special case of Problem 1 with

Z = diag(λ1In, . . . , λsIn),

U = [ U1 · · · Us ],

Y = [ Y1 · · · Ys ].

Then it is easy to check that

Q =

[
U∗
αUβ

1 − λ̄αλβ

]s
α,β=1

and Q̃ =

[
Y ∗
αYβ

1 − λ̄αλβ

]s
α,β=1

are the solution of the Lyapunov equations (3.3) and (3.4), respectively. The result
then follows from Theorem 3.2 directly.

For V = [ V0 · · · Vr−1 ], we use TV to denote a corresponding lower Toeplitz
matrix

TV :=

⎡
⎢⎢⎢⎢⎣

V0 0 · · · 0

V1 V0
. . .

...
...

. . . 0
Vr−1 Vr−2 · · · V0

⎤
⎥⎥⎥⎥⎦ .(3.15)

Corollary 3.4. For the data of Problem 3, denote

U = [ U0 · · · Ur−1 ],

Y = [ Y0 · · · Yr−1 ].
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1980 LI CHAI AND LI QIU

Then there exists a solution to Problem 3 if and only if

T ∗
U

[
Ip(r−1) 0

0 Ip − Πk(p)

]
TU − T ∗

Y

[
Iq(r−1) 0

0 Iq − Πk(q)

]
TY ≥ 0(3.16)

for all k = 1, . . . , l.

Proof. Note that Problem 3 can be viewed as a special case of Problem 1 with U,
Y , and

Z =

⎡
⎢⎢⎢⎢⎣

0 In 0

0
. . .

. . . In
0

⎤
⎥⎥⎥⎥⎦
rn×rn

.

Hence Q can be computed by

Q =
∞∑

m=0

Z∗mU∗UZm =

r−1∑
m=0

Z∗mU∗UZm

=

⎡
⎢⎢⎢⎣

0
...
0
U∗

0

⎤
⎥⎥⎥⎦
[

0 · · · 0 U0

]
+ · · · +

⎡
⎢⎣

U∗
0
...

U∗
r−1

⎤
⎥⎦ [

U0 · · · Ur−1

]

=

⎡
⎢⎢⎢⎣

0 0 · · · U∗
0

...
... . .

. ...
0 U∗

0 · · · U∗
r−2

U∗
0 U∗

1 · · · U∗
r−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0 · · · 0 U0

0 · · · U0 U1

... . .
. ...

...
U0 · · · Ur−2 Ur−1

⎤
⎥⎥⎥⎦ .

Similarly, we have

Q̃ =

⎡
⎢⎢⎢⎣

0 0 · · · Y ∗
0

...
... . .

. ...
0 Y ∗

0 · · · Y ∗
r−2

Y ∗
0 Y ∗

1 · · · Y ∗
r−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0 · · · 0 Y0

0 · · · Y0 Y1

... . .
. ...

...
Y0 · · · Yr−2 Yr−1

⎤
⎥⎥⎥⎦ .

Condition (3.2) then becomes

Q− Q̃ + Y ∗Πk(q)Y − U∗Πk(p)U ≥ 0.(3.17)

By pre- and postmultiplying inequality (3.17) by

⎡
⎢⎣

0 · · · In
... . .

. ...
In · · · 0

⎤
⎥⎦
rn×rn

,
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MULTIRATE PERIODIC SYSTEMS AND INTERPOLATION 1981

we obtain another equivalent condition

T ∗
UTU − T ∗

Y TY +

⎡
⎢⎣

Y ∗
r−1
...
Y ∗

0

⎤
⎥⎦Πk(q)

[
Yr−1 · · · Y0

]

−

⎡
⎢⎣

U∗
r−1
...
U∗

0

⎤
⎥⎦Πk(p)

[
Ur−1 · · · U0

]
≥ 0.

This is exactly (3.16) after some simple algebraic manipulations.
Corollary 3.5. For the data of Problem 4, denote

U1 = [ U10 · · · U1(r−1) ],

Y1 = [ Y10 · · · Y1(r−1) ].

Then there exists a solution to Problem 4 if and only if

[
A11k A∗

21k

A21k A22k

]
≥ 0(3.18)

for all k = 1, . . . , l, where

A11k = T ∗
U1

[
Ip(r−1) 0

0 Ip − Πk(p)

]
TU1 − T ∗

Y1

[
Iq(r−1) 0

0 Iq − Πk(q)

]
TY1 ,

A21k =

⎡
⎢⎣

λ̄r−1
2 U∗

2 · · · λ̄2U
∗
2 U∗

2
... · · ·

...
...

λ̄r−1
s U∗

s · · · λ̄sU
∗
s U∗

s

⎤
⎥⎦
[

Ip(r−1) 0
0 Ip − Πk(p)

]
TU1

−

⎡
⎢⎣

λ̄r−1
2 Y ∗

2 · · · λ̄2Y
∗
2 Y ∗

2
... · · ·

...
...

λ̄r−1
s Y ∗

s · · · λ̄sY
∗
s Y ∗

s

⎤
⎥⎦
[

Iq(r−1) 0
0 Iq − Πk(q)

]
TY1

,

A22k =

[
U∗
αUβ − Y ∗

αYβ

1 − λ̄αλβ
− U∗

αΠk(p)Uβ + Y ∗
αΠk(q)Yβ

]s
α,β=2

.

Proof. Note that Problem 4 can be viewed as a special case of Problem 1 with U,
Y , and Z, where

U = [ U1 U2 · · · Us ],

Y = [ Y1 Y2 · · · Ys ],

Z = diag(Z1, λ2In, . . . , λsIn),

Z1 =

⎡
⎢⎢⎢⎢⎣

0 In 0

0
. . .

. . . In
0

⎤
⎥⎥⎥⎥⎦
rn×rn
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1982 LI CHAI AND LI QIU

Some simple algebraic manipulations show that

Q =

[
Q11 Q∗

21

Q21 Q22

]
and Q̃ =

[
Q̃11 Q̃∗

21

Q̃21 Q̃22

]

satisfy the Lyapunov equations (3.3) and (3.4), respectively, where

Q11 =

⎡
⎢⎢⎢⎣

0 · · · 0 U∗
10

0 · · · U∗
10 U∗

11
... · · ·

...
...

U∗
10 · · · U∗

1(r−2) U∗
1(r−1)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0 · · · 0 U10

0 · · · U10 U11

... · · ·
...

...
U10 · · · U1(r−2) U1(r−1)

⎤
⎥⎥⎥⎦ ,

Q21 =

⎡
⎢⎢⎢⎣

λ̄r−1
2 U∗

2 · · · λ̄2U
∗
2 U∗

2

λ̄r−1
3 U∗

3 · · · λ̄3U
∗
3 U∗

3
... · · ·

...
...

λ̄r−1
s U∗

s · · · λ̄sU
∗
s U∗

s

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0 · · · 0 U10

0 · · · U10 U11

... · · ·
...

...
U10 · · · U1(r−2) U1(r−1)

⎤
⎥⎥⎥⎦ ,

Q22 =

[
U∗
αUβ

1 − λ̄αλβ

]s
α,β=2

,

Q̃11 =

⎡
⎢⎢⎢⎣

0 · · · 0 Y ∗
10

0 · · · Y ∗
10 Y ∗

11
... · · ·

...
...

Y ∗
10 · · · Y ∗

1(r−2) Y ∗
1(r−1)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0 · · · 0 Y10

0 · · · Y10 Y11

... · · ·
...

...
Y10 · · · Y1(r−2) Y1(r−1)

⎤
⎥⎥⎥⎦ ,

Q̃21 =

⎡
⎢⎢⎢⎣

λ̄r−1
2 Y ∗

2 · · · λ̄2Y
∗
2 Y ∗

2

λ̄r−1
3 Y ∗

3 · · · λ̄3Y
∗
3 Y ∗

3
... · · ·

...
...

λ̄r−1
s Y ∗

s · · · λ̄sY
∗
s Y ∗

s

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0 · · · 0 Y10

0 · · · Y10 Y11

... · · ·
...

...
Y10 · · · Y1(r−2) Y1(r−1)

⎤
⎥⎥⎥⎦ ,

Q̃22 =

[
Y ∗
αYβ

1 − λ̄αλβ

]s
α,β=2

.

Condition (3.2) then becomes

Q− Q̃ + Y ∗Πk(q)Y − U∗Πk(p)U ≥ 0.(3.19)

By pre- and postmultiplying inequality (3.19) by⎡
⎢⎢⎢⎣

0 · · · In
... . .

. ...
In · · · 0

0

0 I(s−1)n

⎤
⎥⎥⎥⎦ ,

we obtain condition (3.18) after some direct operator manipulations.
Remark 4. Corollaries 3.3 and 3.4 can be directly used for robust model validation

of multirate systems following the method for LTI systems studied in [6, 16].

4. Parametrization of all solutions. In this section, we characterize all so-
lutions G to Problem 1 when the solvability condition is satisfied. We will consider
only the generic case when Q − Q̃ > 0. The unlikely case when Q − Q̃ is singular is
technically more involved.
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MULTIRATE PERIODIC SYSTEMS AND INTERPOLATION 1983

Since the characterization for the unconstrained case has been given in [12], our
strategy in solving the constrained problem is then to choose, if possible, from this
characterization all those solutions that satisfy the structural constraint. The same
notation is used as in previous sections and more notation is needed. Given an oper-
ator ∆ and two operator matrices

Λ =

[
Λ11 Λ12

Λ21 Λ22

]
and Γ =

[
Γ11 Γ12

Γ21 Γ22

]
,

the linear fractional transformation associated with Λ and ∆ is denoted by

F(Λ,∆) = Λ11 + Λ12∆(I − Λ22∆)−1Λ21,

and the star product of Λ and Γ is defined as

Λ � Γ =

[
Λ11 + Λ12Γ11(I − Λ22Γ11)

−1Λ21 Λ12(I − Γ11Λ22)
−1Γ12

Γ21(I − Λ22Γ11)
−1Λ21 Γ21(I − Λ22Γ11)

−1Λ22Γ12 + Γ22

]
.

Here we assume that the operator manipulations are all compatible. With these
definitions, we have

F(Λ,F(Γ,∆)) = F(Λ � Γ,∆).

The following lemma from [19] will be used later.
Lemma 4.1. For M ∈ C

|q|×|p|, the following statements are equivalent:
(1) There exists T ∈ T (q, p) such that ‖M + T‖ ≤ 1.
(2) There exists

P =

[
P11 P12

P21 P22

]

with P11 ∈ T (q, p), P12 ∈ T (q, q) invertible, P21 ∈ T (p, p) invertible, and P22 ∈
Ts(p, q) such that

[
M + P11 P12

P21 P22

]

is unitary.
A way to find P from M was given in [19]. Recall that an operator valued

function Θ is said to be two-sided inner if Θ is an inner function and Θ(ejw) is almost
everywhere unitary. For U, Y , and Z in Problem 1, assume that Q− Q̃ > 0, where Q
and Q̃ are defined by (3.3) and (3.4), respectively. By [12, Theorem III 7.2], there exist
matrices C ∈ C

n×|p| and E ∈ C
|p|×|p| such that the state space model {Z,C,U,E} is

controllable and observable and the transfer function

Θ(λ) := E + λU(I − λZ)−1C(4.1)

is two-sided inner in H|p|×|p|. It follows from QR factorization that there is a special
Θ(λ) such that E∗ ∈ T (p, p) and (4.1) holds. By Cholesky factorization, there exist
N ∈ T (q, q) and S ∈ T (p, p) such that

N∗N = [I + Y (Q− Q̃)−1Y ∗]−1,(4.2)

S∗S = [I + C∗Q̃(Q− Q̃)−1QC]−1.(4.3)
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1984 LI CHAI AND LI QIU

Let A0 = (Q−Z∗Q̃Z)−1Z∗(Q− Q̃). It is shown in [12, Proposition V 1.7] that A0 is
stable. Define

Φ(λ) =

[
Φ11(λ) Φ12(λ)
Φ21(λ) Φ22(λ)

]
,

where

Φ11(λ) = Y (I − λA0)
−1(Q− Z∗Q̃Z)−1U∗,

Φ12(λ) = N−1 − λY A0(I − λA0)
−1(Q− Q̃)−1Y ∗N−1,

Φ21(λ) = SΘ∗(λ) − S−1C∗Q(I − λA0)
−1(Q− Q̃)−1Q̃CΘ∗(λ),

Φ22(λ) = −λS−1C∗Q(I − λA0)
−1(Q− Q̃)−1Y ∗N−1.

The set of all G(λ) solving the unconstrained interpolation problem is then given by

G(λ) = F(Φ(λ), V (λ)),

where V (λ) is a contractive analytic function in H|q|×|p|
∞ . Obviously, the set of all

solutions to the constrained interpolation problem is

{G(λ) = F(Φ(λ), V (λ)) : G(0) ∈ T (q, p)}.(4.4)

It is easy to check that

Φ11(0) = Y (Q− Z∗Q̃Z)−1U∗,

Φ12(0) = N−1,

Φ21(0) = SE∗ − S−1C∗Q(Q− Q̃)−1Q̃CE∗

= S[I − C∗Q(Q− Q̃)−1Q̃C]E∗

= S−1E∗,

Φ22(0) = 0.

Now assume condition (3.2) in Theorem 3.2 is satisfied. Then there is a contractive

analytic function V (λ) in H|q|×|p|
∞ such that

G(0) = Φ11(0) + N−1V (0)S−1E∗ ∈ T (q, p).

That is,

‖ −NΦ11(0)(S−1E∗)−1 + NĜ(0)(S−1E∗)−1‖ ≤ 1.

By Lemma 4.1, there exists

P =

[
P11 P12

P21 P22

]

with P11 ∈ T (q, p), P12 ∈ T (q, q) invertible, P21 ∈ T (p, p) invertible, and P22 ∈
Ts(p, q) such that

B :=

[
−NΦ11(0)(S−1E∗)−1 + P11 P12

P21 P22
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MULTIRATE PERIODIC SYSTEMS AND INTERPOLATION 1985

is unitary. Define Ψ = Φ � B. It is easy to check that Ψ11 ∈ T (q, p), Ψ12 ∈ T (q, q),
Ψ21 ∈ T (p, p), Ψ22 ∈ Ts(p, q), and both Ψ12 and Ψ21 are invertible. By setting a
bijective map R = F(B, V ), we have

G(λ) = F(Φ, V ) = F(Φ,F(B,R)) = F(Φ � B,R) = F(Ψ, R).

Note that G(0) ∈ T (q, p) if and only if R(0) ∈ T (q, p). Hence the set (4.4) can be
rewritten as

{G(λ) = F(Ψ, R) : R ∈ H|q|×|p|
∞ with R(0) ∈ T (q, p) and ‖R‖ ≤ 1}.

This gives us the main result of this section, the following theorem.

Theorem 4.2. For Problem 1, assume that Q − Q̃ > 0 and the solvability
condition (3.2) holds. Then the set of all interpolants G(λ) is given by

G(λ) = F(Ψ(λ), R(λ)),

where R is a contractive analytic function with R(0) ∈ T (q, p).

5. Conclusion. In this paper, we study the MP systems and some related ana-
lytic function interpolation problems. We show that each MP system has an equiv-
alent LTI system with a causality constraint which can be represented by a set of
block lower triangular matrices. We then study some analytic function interpolation
problems with such a constraint. The necessary and sufficient solvability conditions
are given using the result of the positive matrix completion problem. Finally, all the
solutions are presented in terms of linear fractional transformation.
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