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Abstract  

In this paper, we proposed a new model for multirate 
and periodic systems using the concept of periodicly 
time-varying input-output spaces. We then study the 
robust stabilization problem of multirate periodic sys- 
tems with the v-gap metric uncertainty. Both the opti- 
mal robust stability margin and suboptimal observer- 
form controller are presented explicitly by the tool of 
constrained Nehari extension problem. 

1 Introduct ion 

hlultirate and periodic systems are finding more and 
more applications in control, communication, signal 
processing, econometrics and numerical mathematics. 
The reason may be due to their power in model- 
ing physical systems with inherent features like peri- 
odic behavior changes, seasonal operating environment, 
nonuniform information exchange pattern, multirate 
sampling, etc., or due to  the fact that they can often 
achieve objectives that cannot be achieved by single 
rate UI'I systems. 

The study of periodic system can be traced back to 
161. Examples of more recent studies are 111, 10, 201, as 
well as the works of an Italian school [I] and a survey 
of some computational aspects [23]. The study of mul- 
tirate systems goes back to late 1950's, see for example 
1131. A renaissance of researchon multirate systems has 
occured since 1980 in signal processing, communication 
and control communities. The driving force for study- 
ing multirate systems in signal processing comes from 
the need for sampling rate conversion, subband coding, 
and their ability to  generate wavelets. Multirate signal 
processing is now one of the most vibrant areas of re- 
search in the signal processing community, see recent 
book [22] and references therein. In communication 
systems, blind identification and equalization call for 
using multirate sampling [21]. In the control commu- 
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nity, two groups of research st,and out: using multirate 
control to achieve what single rate control cannot as 
well as the limitation of doing this 114, 151, and t.he 
optimal design of multirate controllers 14, 8, 181. We 
also notice the cross discipline fertilization between sig- 
nal processing and control in using H, optimization to 
design filter banks [3]. 

Recently, there has been considerable research devoted 
to the problem of robust stabilization 19, 12, 26). For 
LTI systems with gap and u-gap metric uncertainty, 
it is now well-known that both the optimal robustness 
bound and the suboptimal controller can be easily ob- 
tained without the so-called 7-iteration and the subop 
timal controller is an observer form. In this paper, we 
will extend these results to multirate periodic systems. 
The robus$ stabilization problem for discrete-time pe- 
riodic uncertain systems described by the normalized 
coprime factorization was studied in [29]. This study 
is based on periodic Riccati equations, which cannot 
be straightforwardly extended to general multirate sys- 
tems. A related study was presented in [12] which prc- 
vides a method to  design a strictly proper controller 
for the discrete-time, normalized left-coprime factoriza- 
tion robust, stabilization problem. A general study for 
robust stabilization of LTI discrete-time systems with 
normalized stable factor perturbation is given in [%I. 
Using the concept of periodic time-varying input- 
output spaces [lo], we propose a new model for mul- 
tirate and periodic systems, called multirate periodic 
(MP) systems. The advantages of this setup are its 
generality: it allows for nonuniform and asynchronous 
sampling, and its convenience: it better relates back to  
the rich theory on the usual periodic systems. The 
u-gap metric is defined for h,lP systems. We then 
study the robust stabilization problem for MP systems 
with the u-gap metric uncertainty. Both the optimal 
robust stability margin and suboptimal observer-form 
controller are presented explicitly by the tool of con- 
strained Nehari extension problem. 

The paper is organized as follows. In section 2, we 
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give the general. setup on MP systems and the lifting 
technique. We will see that a general MP system can 
be converted to  an LTI system with a structural con- 
straint due to  the causality requirement. In section 3, 
we introduce the v-gap metric to MP systems and show 
that a robust stabilization problem of an MP system 
with the v-gap metric uncertainty can be converted to  
a constrained 'H, optimization problem. The optimal 
robust stability margin and an observer-based subop 
timal controller are presented explicitly in section 4. 
Finally, this paper is concluded in section 5. 

2 Setup of MP systems 

I n  this paper, we model an IvlP system by a discrete 
time system, shown in Fig. 1, with periodic time- 
varying input and output spaces. Precisely, we a.- 
sume that the input sequence U = { u ( k ) } E - ,  takes 
values in @L-,U(k) ,  i.e., u(k)  E U ( k ) ,  and the 
output sequence y = {y(k)}p=-, takes values in 
@E-,y(k), i.e., y(k) E y(k), where U ( k )  and Y(k) 
are M-periodic timevarying vector spaces, i.e., they 
satisfy U(k + A4) = U ( k )  and y ( k  + M )  = Y(k). We 
further make the following assumptions: 

1. Linearity. The system G,,, is a linear operator 
from $L-,u(k) to Y(k). 

2. Periodicity. Let X ( k )  be vector space valued A4- 
periodic functions. Define the M-step shift oper- 
ator 9' on e:=-, X ( k )  as 

S M { .  ..,s(-l), /z(O),z(l),. . .} = 

{. . . , z(-hi - l),  lz(-M),s(-M + l ) ,  . . .}. 
Then Gmp satisfies G,,SM = S"G,,,,. Notices 
that when hf > 1, the 1-step shift S' is generally 
not defined. 

3. Causality, Let Pk be a projection operator on 
$E-, X ( k )  defined as 

Pk{. . . , z ( k  - l), s(k) ,s (k  + l), . . .} 
= {. . . ,s(k - l ) , s ( k ) , O , .  . .}. 

Then Gmp satisfies PkGmp(I - 5)  = 0. 

Figure 1: A general periodic and multirate system 

The general class of MP systems defined here covers 
many familiar classes of systems as special cases. An 
MP system with U ( k )  =U and y (k )  = Y for all k E Z 

is a usual M-periodic system, for which there is a vast 
literature [l]. The multirate feature arises when U ( k )  
and y(k)  are truly time-varying. If 

U if mlk 
{0} otherwise ,Y(k) = U ( k )  = 

and M is a multiple of m and n, then such an IvIP 
system is a dual rate system considered in [16]. Let M 
be a multiple of integers mi, i = 1 , .  . . , p 3  and nj,j = 
l , . . , , q .  If 

U; if milk yj if n j ( k  
U;@) = {0} otherwise ''j(k) = { {O} otherwise 

and 
P 'I 

~ ( k )  = @~i(k), ~ ( k )  = $Yj(k), 
i=l j=1 

then such an h,lP system becomes a general multirate 
system with uniform synchronized but different sam- 
pling in each input or output channel 14, 18, 251. One 
advantage of modeling a multirate system as a periodic 
system with periodically varying input output spaces 
is that it better relates back to  the rich theory on the 
usual periodic system, as surveyed in [I]. Other advan- 
tages are its generality: it al1ou.s for nonuniform and 
asynchronous sampling, and its convenience: the treat- 
ments using this model take similar forms than those 
using other models, such as the one in [4, 181. 

A standard way for the analysis of such systems is to 
use liftingor blocking. Let X, ( r )  = @ f ~ ~ ~ ~ ~ ' - '  X ( k ) .  
Define a lifting operator L[ : @F=--X(k)  + 

$E-, W )  by 

L, : {. . . ls(o),s(l)>~ . ' }  w 

Then the lifted systems Gi = L[G,,L;' are LTI sys- 
tems in the sense that GIS' = S'Gi, where S1 is the 
unit shift on @:"=_,&(T). Hence they have transfer 
functions in the A-transform (A = $) : 

G l , A f l ( X )  _ ' '  GL,AfM(X) 

G l ( A )  = 

Assume that dimU(k) = p ( k )  and dimy(k)  = q ( k ) .  
Then 6, takes values in the set of CE"=:l-'q(k) x 
C s - ' p ( k )  complex matrices. The LTI system G[ 
is not a n  arbitrary LTI system, instead its direct 
feedthrough term Gi(0) is subject to  a constraint that 
results from the causality of G,, : 

G[,~,(o) = o for i < j, 
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i.e., Gl(0)  is a block lower triangular matrix. Notice 
that the form of the causality here is simpler than that 
in 14, 181 due to the new form of the model. It can be 
easily shown that Gr are not all independent. Any one 
of the Gr, I = 0 , .  . . , M - 1,  can be defined as the LTI 
equivalent of the MP system Gyp. In the rest of this 
paper, we choose GQ as the LTI equivalent of the MP 
system G,, without loss of generality. 

3 u-gap Metric of MP Systems 

The first issue in robust cont.rol is the description of 
the uncertainty. The most natural way to  describe sys- 
tem uncertainty is by using a metric in the set of all 
systems under consideration and an uncertain system 
is then simply a ball defined by this metric centered at  
a nominal system with certain radius. In this paper, 
the v-gap metric is used for h lP  systems due to  the fact 
that the v-gap metric is more advantageous over other 
metrics as shown in 1241. We will see that the treat- 
ment in 1271 can help us to  generalize the definition of 
the v-gap metric to MP systems. 

Given two M-periodic MP systems G,, and G,,, the 
graphs of G,, and e,, are defined as 

respectively. Here i!; means the direct sum @&X(k) 
withCr=P=,z2(k+nM) < m f o r a n y k = 0 , 1 ,  ..., M-1. 
Clearly O(G,,) and G(Gmp)  are subspaces off: @ft. 
A subspace G of !: @!: is said to be M-shift-invariant 
if S"'g c B. It is easy to see that the graph of Gmp 
is AI-shift-invariant. A subgraph of an M-periodic VIP 
system is defined as an M-shift-invariant subspace of its 
graph. We denote the set of all subgraphs as &(G,,). 
To define the v-gap between two MP systems, we need 
the notion of the index of a subgraph V with respect 
to O(G,,), defined as 1271 

ind(V) := dim (O(G,,) e V) 

The v-gap between two plants G,, and e,, is then 
defined by 

where IIv and n, are the orthogonal projections from !: @Pi onto V and D respectively. The v-gap metric 
ball centered at  Gmp with radius r is defined by 

BU(Gmp,?) = {Gmp : bU(Gmp, Cmp) < 7) 

By the following lemma, the u-gap between two M- 
periodic MP systems can be computed from that be- 
tween their equivalent LTI systems, for which efficient 
methods are available 1241. 

Lemma 1 Let G,, and E,, be two M-periodic MP 
systems and their equivalent LTI systems be G and 6 
respectively, that is 

G = LQG,,L;~, d = LoC,,L;'. 

Then we have b,(Gmp,~mp) = 6 , ( G , 8 ) .  

Proof: Note that V a subgraph of Gmp if and only if 

VL = [ 2 :o ] V is a subgraph of G. Similar result 

holds for a subgraph v of G,,. Denote 

V L  = [ L", 3 v. 
Since the lifting operator LQ is unitary, we then have 

In the following, we discuss the robust stabilization 
problem for LIP uncertain systems with the v-gap met- 
ric. First, some notation is needed. Define the set of 
block matrices: { [ T'l ... T1y ] ;Rrnxn},  

J b q P x n ) : =  I'= 
T.wi ' . .  TM A1 

The block lower triangular subset of M(WmX"), de- 
noted by T(Rmxn), consists of all matrices with T,? = 
0, i < j ,  and the strictly block lower triangular subset, 
7 , ( W n x n ) ,  consists of matrices with & = 0, i 5 j .  

Figure 2: A general MP feedback control system. 

Consider the feedback system shown in Fig. 2. 
Here we assume that Gmp and Kmp are M-periodic 
MP systems with M-periodic timevarying signal 
spaces fBP=-&(k) and eir="=_,Y(k). Assume that 
dimU(k) = p ( k )  and dimY(k) = q ( k ) .  Denote p = 
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C&'p(k)  and q = CL;' q(k). Let G = LoG,,L,' 
and K = LoK,,L~', then G and K are LTI and 
hence have transfer functions G(X) and k(A) respec- 
tively. Due to  causality constrain;, G(0) and k(0) are 
block lower triangular, that is, G(0) E 7 ( W q x P )  and 
I? E 7(WP"q). For fixed Gmp and K,,, the stabil- 
ity robustness of the feedback system is given by the 
following lemma: 

Lemma 2 (124, 191) For a given plant Gmp and a given 
stabilizing controller K,,, let G and K be the LTI 
equivalence of G,, and Kmp respectively. For any 
positive real-numbers TI  and 7-2, the feedback system 
with plant G,, and controller K,, is stable for all 
GAP E &(G,,,,,TI) and all K,, E &(K,,,Tz) if and 
only if 

1 
2 

arcsinrl + arcsinrz + arccosbG,K 5 --li 

where 

The proof is straightforward by slightly modifying the 
procedure given in [24]. The quantity bG,K is defined 
as the robust stability margin. The robust stabilization 
problem is to find the optimal robust stability margin 

bopt = SUP bG,K . (1) 
K, a ( 0 ) € T ( W x V )  

for a given G and also find a K with k(0)  E 7(RPxq), 

called a suboptimal controller, such that bG,K 2 y for 
any < b,t. 

Hence our robust stabilization problem becomes a s p e  
cia1 discrete-time 71, optimal control problem. Since 
the causality of G,, and Kmp is equivalent to  that 
G(0)  E 7 ( W q X P )  and k(0) E I ( W P " q ) ,  we need to 
respect the structural constraint K(0) and possibly 
to utilize the structural constraint G(0) in solving 
the special discretetime 71, optimal control problem. 
The continuous-time counterpart of such an 71, opti- 
mal control problem (without causality constraint) has 
been explicitly solved in 191. 

4 Robust Stabilization of MP Systems 

Now we return to  the robust stabilization problem 
stated in section 3: Given a nominal LTI model G 
resulted from the lifting of G,,, find the optimal 
bust stability margin b, defined in (1) and a subop 
timal controller K with k(0) E 7(R'x'J) such that 
bc,x 2 y for any given y < b,. To solve this problem, 
we need some assumption and notation. Assume that 

G has a stabilizable and detectable state space realiza- 

tion [q] with D E 'T(WqxP). Let X and Y he 

the stabilizing solutions of Riccati equations 
C D  

X = A ' X A + C ' C - ( A ' X B + C * D )  
. ( B * X B  + I + D*D)-'(B*XA + D'C) 

.(CY(? + I  + DD*)-'(CYA* + DB'). 

(2) 

(3) 

Y = AYA' + BB' - (AYC'  + BD') 

Denote 

F = - (B 'XB  + I + D'D)-~(B 'xA + D*C) (4) 
L = - (AYC'+ BD*)(CYC' + I  + LID*)-'. ( 5 )  

Here ( A  + B F )  and (A + LC) are stable since X and Y 
are stablilizing solutions. The following equation [Z, 91 
gives a relationship between A + B F ,  A + LC, X and 
Y , which will be used later. 

( A  + LC)(I  + Y X )  = ( I  + Y X ) ( A  + B F ) .  ( 6 )  

Using Cholesky factorization, we can get constant ma- 
trix S E I ( W q x q )  satisfying 141, 

SS' = CYC' + I + DD'. 

a = (1 - y2)1. 

T i '  = UZI + (a2 - 1)YX .  

(7) 

(8) 

(9) 

Denote 

and 

Let N I  E 7 ( W q x q )  he a constant matrix satisfying 

N I N ;  = I + S-'C(I + YX)IV-'YC*s'- '  ' (10) 

I + B * X ( I  + YX)IY-'B 
-L'X(I + Yx)w-'B N;Nz = [ 

-B 'X( I  + Y X ) W ' L  

We know that there are normalized left coprime fac- 
torizations G = &'fi with M ( 0 )  E I (R'Jxq)  and 
fi(0) E I (RqxP) .  One particular realization of such 
factorization is as follows: 

Now we are ready to present the main results of this 
paper. 
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Theorem 1 Given a lifted LTI plant G(X) = [*I with, D E I(WqXP), let X and Y be the 

stabilizing solutions of Riccati equations (2) and (3), 
and let F, L,  S be defined as in (4)-(7). Then the opti- 
mal robust stabilization margin is b,, where 

U, =U(O) e.. . (13) 
Y, = Y(0)  CE ' ' . f2 Y (7)  (14) 

1 .  r =  [ 9 - 1  L * ( x - ' +  Y ) - i  
-D*s'-' -(B* + D*L*)(X-' + Y ) - ?  

y)C'S'-'  Y i ( A + L C ) * ( X - ' +  Y ) - +  
(15) 

Theorem 1 tells us the optimal robust stability mar- 
gin. The next theorem provides us an observer-form 
suboptimal controller. 

Theorem 2 Given a lifted LTI plant G = 

with D E T(WxP) and y < bopt, let X ,  Y, F, L, S, W, a, 
NI and N2 be defined as in (2)(5) and (7)-(11). Then a 
suboptimal controller K exists if and only if there exists 
a constant matrix RO E M(W(P+q)Xq) with IIfill, 5 1 
such that El E 'T(RPx*) and E2 E T(Wqxq), where 

[+I 

Furt.hermore, if such Ro is found, a subopt,imal con- 
troller IC is given by 

where 

A K  = A+LC+ (B+LD)(F--HC- HDF)W-' (18) 

BK = B H + L D H ~ - L  (19) 

H = E'E;'. (21) 

CK = ( F - H C - H D F ) W - '  (20) 

This controller can be written in the following general 
observer form 

i(k + 1) = A i ( k )  + B u ( k )  
+ L [ C i ( k )  + Du(k)  - y(k)] (22) 

(23) 
where H = -(I - HD)-'H and FK = (I - 
HD)-'(CK + H C ) .  

~ ( k )  = F~i(k) + B [ C i ( k )  + Du(k)  - ~ ( k ) ]  

The proof of these two theorems is omitted here, please 
refer to [SI for detail. 

Remark  1 If there is no causality constraint, we can 
simply take & = 0. Assume the plant G is strictly 
proper, it can be shown that 

H = B'X(W + BB*X)-'L 

Then the controller is given by 

?(k + 1) = A i ( k )  + Bu(k) + L[C?(k) - y ( k ) ]  

u(k) = [(F - HC)W-' + H C ] i ( k )  
- H [ C i ( k )  ~ y(k)l. 

This is exactly the same as the controller of (2.5)-(2.6) 
in 1121. 

Remark  2 The problem to design a strictly proper 
suboptimal controller for an LTI strictly proper plant 
studied in [12] is a special c ~ s e  of Theorem 2. Actually, 
if there exists RO such that El = 0, then the suboptimal 
controller is given by 

b(k + 1) = A i ( k )  + Bu(k)  
+ L [ C i ( k )  + D 4 k )  - y ( k ) J  

u(k) = FW-'b(k).  

The above controller is the same as Theorem 5 of [12]. 

Remark  3 The extra burden to design a robust con- 
troller for an hfP system is to solve a contractive matrix 
completion problem. A unique central solution can be 
obtained following the method in 1171. In this way, we 
can get a unique central controller. 

Remark  4 For the general 'H, optimization problem 
of LIP systems, a two-step design procedure is given in 
[25]: the first step is to compute the feedthrough term 
of the controller satisfying the causality constraint and 
the next step is to solve a high order 'H- optimization 
problem. For the robust stabilization problem with 
the u-gap metric, however, Theorem 2 presents us a 
method to obtain a general observer form controller 
with the same order as the plant. 

5 Conclusion 

In this paper, we present a state space solution to the 
robust stabilization problem of discrete-time periodic 
and multirate systems. First, we give a general setup 
of MP systems and show how the robust stabilization 
problem of multirate systems with the u-gap metric un- 
certainty can be converted to a constrained 'H- opti- 
mal control problem. The optimal robust stabilization 
margin is explicitly computed and an observer form 
suboptimal controller is presented. The cornputat.iona1 
burden is to solve two Riccati equations and an con- 
tractive matrix completion problem. 
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