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� Multirate controllers are in general time-varying. Thus multirate control systems canoutperform single-rate systems; for example, gain margin improvement [26, 16], simul-taneous stabilization [26], and decentralized control [2, 42].The study of multirate systems started in late 1950's [28, 24, 25]. Early studies were fo-cused on analysis and were solely for purely discrete-time systems, see also [31]. A renaissanceof research on multirate systems has occurred since late 1980 with an increased interest inmultirate controller design, e.g., stabilizing controller design and parametrization of all stabi-lizing controllers [11, 29, 34], LQG/LQR control [8, 1, 30], H2 optimal control [40, 41, 33], H1control [40, 41, 10], `1 optimal control [15] and the work in [3, 20, 36]. With the recognitionthat many industrial control systems consist of an analog plant and a digital controller inter-connected via A/D and D/A converters, direct optimal control of multirate systems has beenstudied in this sampled-data setting [40, 10, 33]. The existing techniques for multirate H1control allow for computation of one H1 controller via a numerical convex optimization [41]or more easily via an explicit design [10]. The purpose of this paper is to characterize in anexplicit way the set of all H1 suboptimal controllers and to �nd a particular H1 suboptimalcontroller which minimizes an entropy function.In this paper we shall treat a general multirate setup. For this, we de�ne the periodicsampler S� and the (zero-order) hold H� (the subscript denotes the period) as follows: S�maps a continuous signal to a discrete signal and is de�ned via = S�y ()  (k) = y(k�):H� maps discrete to continuous viau = H�� () u(t) = �(k); k� � t < (k + 1)�:(The signals may be vector-valued.) Note that the sampler and hold are synchronized att = 0.The general multirate system is shown in Figure 1. We have used continuous arrows forcontinuous signals and dotted arrows for discrete signals. Here, Ga is the continuous-timeGaKmr HSzy w u �� ��- p p p p- p p p p-Figure 1: The general multirate sampled-data setupgeneralized plant with two inputs, the exogenous input w and the control input u, and two2



outputs, the signal z to be controlled and the measured signal y. S and H are multiratesampling and hold operators and are de�ned as follows:S = 264 Sm1h . . . Smph 375; H = 264 Hn1h . . . Hnqh 375:These correspond to sampling p channels of y periodically with periods mih, i = 1; � � � ; p,respectively, and holding q channels of � with periods njh, j = 1; � � � ; q, respectively. Heremi and nj are di�erent integers and h is a real number referred to as the base period. If wepartition the signals accordinglyy = 264 y1...yp 375;  = 264  1... p 375; � = 264 �1...�q 375; u = 264 u1...uq 375;then  i(k) = yi(kmih); i = 1; � � � ; p;uj(t) = �j(k); knjh � t < (k + 1)njh; j = 1; � � � ; q:Kmr is a discrete-time multirate controller, implemented via a microprocessor; it is synchro-nized with S and H in the sense that it inputs a value from the i-th channel at times kmihand outputs a value to the j-th channel at knjh.In the general multirate setup of Figure 1, we assume throughout that Ga and Kmr arecausal and linear. Furthermore, Ga is assume to be time-invariant and �nite-dimensional,and Kmr is assumed to satisfy certain periodic property and to be �nite-dimensional.For periodicity of Kmr, let l be the least common multiple of the sampling and holdindices, fm1; � � � ; mp; n1; � � � ; nqg. Thus � := lh is the least common period for all samplingand hold channels. The multirate controller Kmr can be chosen so that HKmrS is �-periodicin continuous time. For this, we need a few de�nitions.Let ` be the space of sequences, perhaps vector-valued, de�ned on the time set f0; 1; 2; � � �g.Let U be the unit time delay on ` and U� the unit time advance. De�ne the integers�mi = l=mi; i = 1; 2; � � � ; p�nj = l=nj ; j = 1; 2; � � � ; q:We say Kmr is �-periodic in real time if264 (U�)�n1 . . . (U�)�nq 375Kmr264 U �m1 . . . U �mp 375 = Kmr:This means shifting  i by �mi time units ( �mimih = �) corresponds to shifting �j by �nj units(�njnjh = �). Thus HKmrS is �-periodic in continuous time i� Kmr is �-periodic in real time.3



Since Ga is LTI, it follows that the sampled-data system in Figure 1 is �-periodic if Kmr is�-periodic in real time. We shall refer to � as the system period. We shall assume throughoutthe paper that Kmr is �-periodic in real time. With all these assumptions, the controller Kmrcan be implemented via di�erence equations [10]�(k + 1) = A�(k) + pXi=1 �mi�1Xs=0 (Bi)s i(k �mi + s);�j(k�nj + r) = (Cj)r�(k) + pXi=1 �mi�1Xs=0 (Dji)rs i(k �mi + s); j = 1; 2; : : : ; q;where causality requires (Dji)rs = 0 if rnj < smi.Our goal in this paper is two-fold: (1) characterize all feasible multirate controllers whichinternally stabilize the feedback system shown in Figure 1 and make the L2 induced normless than a prespeci�ed value, such controllers are called H1 suboptimal controllers; (2)among all H1 suboptimal controllers, �nd one which further minimizes an entropy function.Used with other optimization techniques, such a characterization, like its LTI counterpart[14, 21], is essential in designing control systems with simultaneousH1 and other performancerequirements. The minimum entropy control, also like its LTI counterpart [32, 22, 23], givesa particular example of such multi-objective control problem in which an analytic solutionexists.Although the overall system shown in Figure 1 is hybrid (involving both continuous-timeand discrete-time signals) and time-varying, the recently developed lifting technique enables usto convert the problem into an equivalent LTI discrete-time problem. However, the resultingcontrol problem will have an undesirable and unconventional constraint on the LTI controllerdue to the causality requirement. This constraint is the main di�culty in designing optimalmultirate systems. The recent introduction of the nest operators has proven to be e�ective inhandling causality constraints in multirate design [10]. The results of this paper will be builton the nest operator technique.We would like to remark here that the results in this paper extend directly to periodicdiscrete-time systems, i.e., direct application yields a characterization of all H1 suboptimalsolutions which are periodic and causal; this result has not obtained before.The paper is organized as follows. The next section reviews some basic facts aboutcontinuous-time periodic systems, introduces the concept of entropy for such systems, andestablishes the connection between the entropy and a linear, exponential, quadratic, Gaussiancost function. Section 3 addresses topics on nest operators and nest algebra, which are themain tools to handle causality in this paper. Section 4 briey discusses the procedure ofconverting our hybrid problem into an equivalent LTI problem with a causality constraint.Section 5 gives a characterization of all H1 suboptimal controllers and the minimum entropycontroller. The appendices contain two long and involved proofs.Preliminary results in this paper have been presented at several conferences: the AsianControl Conference (Tokyo, 1994), the IEEE Conference on Decision and Control (Florida,1994), and the International Conference on Operator Theory and its Applications (Manitoba,4



1994).Finally, we introduce some notation. Given an operator K and two operator matricesP = " P11 P12P21 P22 # ; Q = " Q11 Q12Q21 Q22 # ;the linear fractional transformation associated with P and K is denotedF(P;K) = P11 + P12K(I � P22K)�1P21and the star product of P and Q isP ? Q = " P11 + P12Q11(I � P22Q11)�1P21 P12(I �Q11P22)�1Q12Q21(I � P22Q11)�1P21 Q21(I � P22Q11)�1P22Q12 + Q22 # :Here, we assume that the domains and co-domains of the operators are compatible and theinverses exist. With these de�nitions, we haveF(P;F(Q;K)) = F(P ? Q;K):2 Entropy of periodic systemsA multirate system as depicted in Section 1 is a continuous-time �-periodic system. In thissection, we review some basic concepts of periodic systems and introduce the concept ofentropy.Let X and Y be Hilbert spaces and f = ff(k) : k = 1; 2; : : :g be a sequence of boundedoperators from X to Y . Then F̂ (�) = 1Xk=0 f(k)�kis an operator-valued function on some subset of C. We say that F̂ belongs to H1(X ;Y) ifF̂ is analytic in D, the open unit disk, andsup�2D kF̂ (�)k <1:In this case, the left-hand side above is de�ned to be the H1 norm of F̂ , denoted by kF̂k1,the operator F̂ (ej!) is bounded for almost every ! 2 [��; �), andess sup!2[��;�) kF̂ (ej!)k = kF̂k1:Now let f = ff(k) : k = 1; 2; : : :g be a sequence of Hilbert-Schmidt operators from X toY . The set of Hilbert-Schmidt operators equipped with the Hilbert-Schmidt norm, k � kHS, isa Hilbert space [19]. Then F̂ (�) = 1Xk=0 f(k)�k5



is a Hilbert-space vector-valued function on some subset of C. We say that F̂ belongs toH2(X ;Y) if  1Xk=0 kf(k)k2HS!1=2 <1:In this case, the left-hand side above is de�ned to be the H2 norm of F̂ , denoted by kF̂k2,the operator F̂ (ej!) is Hilbert-Schmidt for almost every ! 2 [��; �), and12� Z ��� kF̂ (ej!)k2HSd! = kF̂k22:Assume F̂ 2 H1(X ;Y)\ H2(X ;Y) and kF̂ k1 < 1. Extending the entropy de�nition formatrix valued analytic functions [22, 23], we de�ne the entropy of F̂ asI(F̂ ) = � 12� Z ��� ln det[I � F̂ �(ej!)F̂ (ej!)]d!:This entropy is well de�ned. Since F̂ (ej!) is a Hilbert-Schmidt operator at almost every! 2 [��; �), its singular values form a square-summable sequence f�k(ej!)g. Hencedet[I � F̂ �(ej!)F̂ (ej!)] = 1Yk=1[1� �2k(ej!)];which converges to some number in (0; 1) due to square-summability of f�k(ej!)g and thefact that kF̂k1 < 1. This also shows that I(F̂ ) is nonnegative.Lemma 1 Assume F̂ 2 H1(X ;Y)\ H2(X ;Y) and kF̂k1 < 1. Then(a) kF̂k22 � I(F̂ );(b) for Û = " Û11 Û12Û21 Û22 # 2 H1(X � Y ;Y � X ) with Û�Û = I, U11 2 H2(X ;Y), andÛ�121 2 H1(X ;X ),I[F(Û; F̂ )] = I(F̂ ) + I(Û11) + 2 ln j det[I � Û22(0)F̂ (0)]j:The proof of Lemma 1 is similar to that for the �nite-dimensional, continuous-time case[32].Now let us return to periodic systems. Let Fa be a continuous-time, �-periodic, causalsystem described by the following integral operator(Faw)(t) = Z t0 fa(t; �)w(�) d�:6



We assume that fa, the matrix-valued impulse response of Fa, is locally square-integrable,i.e., every element is square-integrable on any compact subset of R2. The periodicity of Faimplies fa(t+ T; � + T ) = fa(t; �), and the causality implies that fa(t; �) = 0 if � > t.The local square-integrability of fa guarantees that Fa is a linear map from L2e to L2e,the space of locally square-integrable functions of t. Given an arbitrary, positive integer l, letK = Ll2[0; �l ):Denote the space of K-valued sequences by `(K). De�ne the lifting operator L�;l : L2e ! `(K)via! = L�;lw ()f!(0); !(1); : : :g = 8><>:264 w(t)...w(t+ (l� 1)�l ) 375;264 w(t+ �)...w(t+ � + (l� 1)�l ) 375; : : :9>=>; ; t 2 [0; �l ):This lifting L�;l gives an algebraic isomorphism between L2e and `(K) [40]. We use the obviousnorm in K: � = 264 �1...�l 375 2 K =) k�k =  lXi=1 k�ik2!1=2 ;where k�ik is the norm on L2[0; �l ). Denote by `2(K) the subset of `(K) consisting of allsequences ! with  1Xk=0 k!(k)k2!1=2 <1;and de�ne the norm on `2(K) to be the left-hand side of the above inequality. It is clear that! 2 `2(K) if and only if w 2 L2 and L�;l is a Hilbert-space isometric isomorphism from L2 to`2(K).Now we lift Fa to get F := L�;lFaL�1�;l . The lifted system F : `(K)! `(K) can be describedby � = F! () �(k) = kXi=0 f(k � i)!(i); k � 0;where f(k), k = 0; 1; : : :, map K to K via[f(k)�](t)= Z �l0 264 fa(t+ k�; �) � � � fa(t+ k�; � + (l� 1)�l )... ...fa(t+ k� + (l� 1)�l ; �) � � � fa(t+ k� + (l� 1)�l ; � + (l � 1)�l ) 375264 �1(�)...�l(�) 375 d�;t 2 [0; �l ): 7



The local square-integrability of fa(t; �) ensures that f(k), k � 0, are Hilbert-Schmidt oper-ators [44].For �-periodic Fa, the lifted system F is LTI in discrete time; its transfer function isde�ned as F̂ (�) = 1Xk=0 f(k)�k:So if F̂ 2 H1(K;K)\ H2(K;K) and kF̂k1 < 1, its entropy can be de�ned.We will de�ne the H1 norm, H2 norm, and entropy of Fa to be those of F̂ respectively.Actually, the H1 norm de�ned this way is indeed the L2-induced norm of Fa [7, 5, 38]; theH2 norm has natural interpretations in terms of impulse responses and white noise responses[6, 27]; the entropy not only provides an upper bound for the H2 norm as stated in Lemma 1,but also has a stochastic interpretation in terms of a linear, exponential, quadratic, Gaussian(LEQG) cost function, similar to the case of matrix-valued transfer functions [18].To avoid unnecessary technicality, we will concentrate on �nite-dimensional periodic sys-tems, i.e., those Fa with �nite-dimensional realizations, or equivalently, those Fa whose liftedtransfer functions F̂ have only a �nite number of poles. (The multirate systems to be studiedin Figure 1 fall in this class if both Ga and Kmr are �nite-dimensional.) Let w be a Gaus-sian white noise with zero mean and unit covariance on the time interval [0;1) and z thecorresponding response: z = Faw. De�ne an LEQG cost function for Fa as
T = 2T lnE (exp "12 Z T0 z0(t)z(t)dt#)where E(�) means the expectation. The proof of the following theorem is given in AppendixA.Theorem 1 Given a �nite-dimensional, �-periodic system Fa, assume its lifted transfer func-tion F̂ satis�es F̂ 2 H1(K;K)\ H2(K;K) and kF̂ k1 < 1. Then limT!1
T = I(F̂ )=�.Now we are ready to state our control problems associated with Figure 1 precisely:Given a continuous-time, �nite-dimensional, LTI plant Ga and sampling and holdschemes S and H,(1) characterize all feasible multirate controllers Kmr such that the feedback systemis internally stable and kF(Ga;HKmrS)k1 < 1;(2) �nd a particular controller from those obtained in (1) such that the entropyI[F(Ga;HKmrS)]is minimized.These problems will be solved explicitly in Sections 5 and 6. Next, we present the requiredmathematical tool based on nest operators. 8



3 Nest operatorsIn this section, we address some issues on nest operators and nest algebra [4, 12], which areuseful in the sequel. Our main purpose is to probe further the Arveson's distance problem,that is, we characterize explicitly all nest operators which are within a �xed distance froma given operator; we also give one such nest operator which minimizes an auxiliary entropyfunction. The same problems were also studied in the mathematical literature [43], but thesolutions are di�erent. Our results, based on the unitary dilation, provide further insightas well as certain numerical advantages; they take forms which are easily applicable to ourcontrol problems at hand.Let X be a vector space. A nest in X , denoted fXig, is a chain of subspaces in X , includingf0g and X , with the nonincreasing ordering:X = X0 � X1 � � � � � Xn�1 � Xn = f0g:(A nest may be de�ned to contain an in�nite number of spaces, but this generalization is notnecessary in the sequel.)Let X and Y be both Hilbert spaces. Denote by L(X ;Y) the set of bounded linearoperators X ! Y and abbreviate it as L(X ) if X = Y . Assume that X and Y are equipped,respectively, with nests fXig and fYig which have the same number of subspaces, say, n + 1as above. An operator T 2 L(X ;Y) is said to be a nest operator ifTXi � Yi; i = 0; 1; � � � ; n: (1)It is said to be a strict nest operator ifTXi � Yi+1; i = 0; 1; 2; � � � ; n� 1: (2)Let �Xi : X ! Xi and �Yi : Y ! Yi be orthogonal projections. Then the condition in (1) isequivalent to (I ��Yi)T�Xi = 0; i = 0; 1; � � � ; n;and the condition in (2) is equivalent to(I ��Yi+1 )T�Xi = 0; i = 0; 1; 2; � � � ; n� 1:Given the nests fXig and fYig, the set of all nest operators is denoted N (fXig; fYig) and ab-breviated N (fXig) if fXig = fYig; the set of all strict nest operators is denoted Ns(fXig; fYig)and abbreviated Ns(fXig) if fXig = fYig.If we decompose the spaces X and Y in the following wayX = (X0 	X1)� (X1 	X2)� � � � � (Xn�1 	Xn); (3)Y = (Y0 	 Y1)� (Y1 	 Y2)� � � � � (Yn�1 	 Yn); (4)9



then the associated matrix representation of T isT = 266664 T11 T12 � � � T1nT21 T22 � � � T2n... ... ...Tn1 Tn2 � � � Tnn 377775and T 2 N (fXig; fYig) means that this matrix representation is (block) lower triangular:Tij = 0 if i > j. The following useful lemmas can be proven readily by using the above matrixrepresentation.Lemma 2(a) If T1 2 N (fXig; fYig) and T2 2 N (fYig; fZig), then T2T1 2 N (fXig; fZig).(b) If T1 2 N (fXig; fYig) and T2 2 Ns(fYig; fZig), or if T1 2 Ns(fXig; fYig) and T2 2N (fYig; fZig), then T2T1 2 Ns(fXig; fZig).(c) N (fXig) forms an algebra, called a nest algebra.In the rest of this section, we restrict our discussion to �nite-dimensional spaces.Lemma 3(a) If T 2 Ns(fXig), then I � T is always invertible.(b) If T 2 N (fXig) and T is invertible, then T�1 2 N (fXig).Lemma 4 (Generalized QR factorization) Let T 2 L(X ).(a) There exist a unitary operator Q1 on X and R1 2 N (fXig) such that T = Q1R1.(b) There exist R2 2 N (fXig) and a unitary operator Q2 on X such that T = R2Q2.Lemma 5 (Generalized Cholesky factorization) Let T 2 L(X ) and assume T is selfadjointand nonnegative.(a) There exists C1 2 N (fXig) such that T = C�1C1.(b) There exists C2 2 N (fXig) such that T = C2C�2.The purpose of the rest of this section is to address the following two matrix problems:Given T 2 L(X ;Y), (1) characterize all N 2 N (fXig; fYig) such that kT +Nk < 1; (2) �nd,among all N characterized in (1), the one which minimizes I(T +N). Here the entropy of acontractive matrix T is obtained as a special case from the entropy de�nition of a contractiveHilbert-Schmidt operator-valued function:I(T ) = � ln det(I � T �T ):10



These two matrix problems are closely related to and are actually simple special cases ofthe main problems of this paper: Characterize all H1 suboptimal controllers and �nd theminimum entropy controller.We shall need some more notation. With X and Y as before, introduce two more �nite-dimensional inner-product spaces Z and W . A linear operator T 2 L(X � Y ;Z � W) ispartitioned as T = " T11 T12T21 T22 # ;with T11 2 L(X ;Z), T21 2 L(X ;W), etc. For nests fXig, fYig, fZig, fWig in X , Y , Z , W ,respectively, all with n+ 1 subspaces, the nests fXi � Yig and fZi �Wig are de�ned in theobvious way. Hence writing" T11 T12T21 T22 # 2 N (fXi � Yig; fZi�Wig);means T11 2 N (fXig; fZig), T21 2 N (fXig; fWig), etc.Theorem 2 Let T 2 L(X ;Y). The following statements are equivalent:(a) There exists N 2 N (fXig; fYig) such that kT +Nk < 1.(b) maxi k(I � �Yi)T jXik < 1.(c) There exists P = " P11 P12P21 P22 # 2 N (fXi � Yig; fYi �Xig)with P12 and P21 both invertible and P22 2 Ns(fYig; fXig) such that" T + P11 P12P21 P22 #is unitary.The proof of Theorem 2 is given in Appendix B. This theorem can be used to solve our�rst matrix problem.Theorem 3 Let T 2 L(X ;Y) and assume condition (c) in Theorem 2 is satis�ed. Then theset of all N 2 N (fXig; fYig) such that kT +Nk < 1 is given byfN = F(P; U) : U 2 N (fXig; fYig) and kUk < 1g: (5)11



Proof: Since " T + P11 P12P21 P22 #is unitary and P12, P21 are invertible, it follows from [35] that the mapU 7! F  " T + P11 P12P21 P22 # ; U! = T + F(P; U)is a bijection from the open unit ball of L(fXg; fYg) onto itself. What is left to show is thatF(P; U) 2 N (fXig; fYig) i� U 2 N (fXig; fYig). The \if" part follows from Lemma 2 by not-ing P 2 N (fXi�Yig; fYi�Xig). For the \only if" part, assumeN := F(P; U) 2 N (fXig; fYig)for some U 2 L(fXg; fYg); we need to show that U too belongs to N (fXig; fYig). FromN = P11 + P12U(I � P22U)�1P21;we obtain after some algebraP�112 (N � P11)P�121 = [I + P�112 (N � P11)P�121 P22]U: (6)Since I + P�112 (N � P11)P�121 P22 = I + P�112 P12U(I � P22U)�1P21P�121 P22]= I + U(I � P22U)�1P22= (I � UP22)�1;it follows that I + P�112 (N � P11)P�121 P22 is invertible. Hence from (6)U = [I + P�112 (N � P11)P�121 P22]�1P�112 (N � P11)P�121Therefore U belongs to N (fXig; fYig) by Lemma 2. 2The characterization in Theorem 3 also renders an easy solution to the second matrixproblem.Theorem 4 Let T 2 L(X ;Y) and assume condition (c) in Theorem 2 is satis�ed. Then theunique N which satis�es kT +Nk < 1 and minimizes I(T +N) is given by N = P11.Proof: According to Theorem 3, all N satisfying kT +Nk < 1 are characterized by (5).Consequently, all resulting T +N are given by(F  " T + P11 P12P21 P22 # ; U! : U 2 N (fXig; fYig) and kUk < 1) :By Lemma 1, we obtainI(T +N) = I(U) + I(T + P11) + 2 ln j det(I � P22U)j:Notice that the second term is independent of U and P22U 2 Ns(fYig; fYig, which impliesthat the third term is zero. Therefore the minimizing U is 0 and hence N = P11. 2One implication of Theorem 4 is that although P in condition (c) of Theorem 2 is notunique, P11 is uniquely determined. 12



4 Equivalent LTI systemsOur main problems deal with hybrid time-varying systems. Following [10] and [40], we canreduce the control problem to an equivalent one involving only �nite-dimensional LTI systems.In this section we briey review the reduction process. The detailed justi�cation is referredto [10], [40], and [5]. Our emphasis here is on the relationship between the entropy of theoriginal system and the equivalent LTI system.We start with a state model of Ga:Ĝa(s) = 264 Aa Ba1 Ba2Ca1 0 Da12Ca2 0 0 375:For an integer m > 0, de�ne the discrete lifting operator Lm viaLmf (0);  (1); � � �g = 8><>:264  (0)... (m� 1) 375;264  (m)... (2m� 1) 375; � � �9>=>; :Denote LM = 264 L �m1 . . . L �mp 375; LN = 264 L�n1 . . . L�nq 375:and recall the continuous lifting operator L�;l in Section 2: Here we take � = lh. We lift Gaand Kmr by de�ning ~G = " L�;l LMS #Ga " L�1�;l HL�1N #and K = LNKmrL�1M :It is easy to check that ~G and K are LTI systems, so they have transfer functions ~̂G(�)and K̂(�). By de�nitions, kF(Ga;HKmrS)k1 = kF( ~̂G; K̂)k1I[F(Ga;HKmrS)] = I[F( ~̂G; K̂)]:A state-space realization of ~G can be computed:~̂G(�) = 264 ~A ~B1 ~B2~C1 ~D11 ~D12~C2 ~D21 ~D22 375:Due to the causality of Ga and Kmr, the lifted systems ~G and K have some special structureswhich can be easily characterized using nest operators.13



Write ~! = L�;lw; ~� = L�;lz; � = LN�; � = LM :Then �(0) = h  1(0)0 � � �  1( �m1 � 1)0 � � �  p(0)0 � � �  p( �mp � 1)0 i0 :Note that  i(k) is sampled at t = kmih. Similarly,�(0) = h �1(0)0 � � � �1(�n1 � 1)0 � � � �q(0)0 � � � �q(�nq � 1)0 i0and �j(k) occurs at t = knjh. For r = 0; 1; : : : ; l, de�ne~Wr = f~!(0) : ~!1(0) = ~!2(0) = � � �= ~!r(0) = 0g;~Zr = f~�(0) : ~�1(0) = ~�2(0) = � � � = ~�r(0) = 0g;Ur = f�(0) : �j(k) = 0 if knj < rg;Yr = f�(0) :  i(k) = 0 if kmi < rg:Then the D-blocks in the lifted plant satisfy~D11 2 N (f ~Wrg; f ~Zrg); (7)~D12 2 N (fUrg; f ~Zrg); (8)~D21 2 Ns(f ~Wrg; fYrg); (9)~D22 2 Ns(fUrg; fYrg); (10)and for Krm to be causal, K̂(0) 2 N (fYrg; fUrg): (11)~GK~�� ~! �p p p p p p p p p p p p p p p p p p� p p p p p p p p p p p p p p p p p p�p p p p p p p p�p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p-pppppppppppppppppppp ppppppppppppppppppppFigure 2: The lifted systemHence we have arrived at an equivalent LTI problem, shown in Figure 2, with plant ~G andcontroller K. Note that equations (7){(10) give special structures of ~G that can be exploited,whereas (11) is a design constraint on K that has to be respected in order forK to correspondto a causal Kmr. 14



The signals ~! and ~� in Figure 2 take values in in�nite-dimensional spaces. In otherwords, ~B1; ~C1; ~D11; ~D12; ~D21 are operators with either domain or co-domain being in�nite-dimensional spaces. To overcome this di�culty, we observe that all these operators except~D11 have �nite rank.Due to the particular choice of decomposition of W and Z , the operator D11 takes alower-triangular Toeplitz form:~D11 = 2664 ( ~D11)0 0... . . .( ~D11)l�1 � � � (D11)0 3775:The only block with in�nite rank is ( ~D11)0. Our next step is to get rid of this by a linearfractional transformation. Since ~D21 2 Ns(f ~Wrg; fYrg), the diagonal blocks ofF( ~̂G; K̂)(0) = F [ ~̂G(0); K̂(0)] = ~D11 + ~D12K̂(0)[I + ~D22K̂(0)]�1 ~D21are invariant for any K satisfying (11). Therefore k( ~D11)0k < 1 is a necessary condition forthe solvability of our H1 control problem. From now on we assume this condition is satis�ed.De�ne a diagonal operator matrixU11 = 2664 �( ~D11)0 . . . �( ~D11)0 3775and a Julian operator matrixU = " U11 U12U21 U22 # = " U11 (I � U11U�11) 12(I � U�11U11) 12 �U�11 # :Let �G = U ? ~G:Then it is well-known [35] that kF( ~̂G; K̂)k1 < 1 i� kF( �̂G; K̂)k1 < 1. The relationshipbetween the entropies is given in the following lemma.Lemma 6 I[F( �̂G; K̂)] = I[F( ~̂G; K̂)] + l ln det[I � (D11)�0(D11)0]:Proof: By Lemma 1,I[F( �̂G; K̂)] = I[F( ~̂G; K̂)] + I(U11) + 2 ln j detfI � U22F [ ~̂G(0); K̂(0)]gj:Since U11 is a constant operator function,I(U11) = � ln det[I � U�11U11] = � ln det[I � ( ~D11)�0( ~D11)0]l = �l ln det[I � ( ~D11)�0( ~D11)0]:15



Note that U22 2 N (f ~Zrg; f ~Wrg) andF [ ~̂G(0); K̂(0)] = ~D11 + ~D12K̂(0)[I � ~D22K̂(0)]�1 ~D21;whose �rst term is in N (f ~Wrg; f ~Zrg) and second term in Ns( ~Wrg; f ~Zrg). Henceln j detfI � U22F [ ~̂G(0); K̂(0)]gj = ln j det(I � U22 ~D11)j= ln det[I � ( ~D11)�0( ~D11)0]l= l ln det[I � ( ~D11)�0( ~D11)0]:The result then follows. 2A state-space model of �G can again be computed:�̂G(�) = " �̂G11(�) �̂G12(�)�̂G21(�) �̂G22(�) # = 264 �A �B1 �B2�C1 �D11 �D12�C2 �D21 �D22 375:Since U11 is diagonal, i.e., U11 2 N (f ~Wrg; f ~Zrg) and U�11 2 N (f ~Zrg; f ~Wrg), it follows�D11 = U11 + U12 ~D11(I � U22 ~D11)�1U21 2 Ns(f ~Wrg; f ~Zrg)�D12 = U12(I � ~D11U22)�1 ~D12 2 N (fUrg; f ~Zrg)�D21 = ~D21(I � U22 ~D11)�1U21 2 Ns(f ~Wrg; fYrg)�D22 = ~D21(I � U22 ~D11)�1U22 ~D12 + ~D22 2 Ns(fUrg; fYrg):Note that the diagonal blocks of ~D11 has been cancelled by the linear fractional transforma-tion, resulting in a strictly (block) lower-triangular �D11. Then the advantage of �G over ~G isthat all operators �B1, �C1, �D11, �D12, and �D21 are of �nite rank. Therefore, if we de�neZ = Im[ �C1 �D11 �D12]; W = 0B@Ker264 �B1�D11�D21 3751CA?and G = " �Z �G11jW �Z �G12�G21jW �G22 # ;then G has �nite-dimensional input and output spaces andkF(Ĝ; K̂)k1 = kF( �̂G; K̂)k1I[F(Ĝ; K̂)] = I[F( �̂G; K̂)]:The nests f ~Wrg and f ~Zrg induce nests in W and Z in a natural way:Wr =W \ ~Wr; Zr =W \ ~Zr:16



Assume that a state-space model of G is:Ĝ(�) = " Ĝ11(�) Ĝ12(�)Ĝ21(�) Ĝ22(�) # = 264 A B1 B2C1 D11 D12C2 D21 D22 375:The following structure of G is inherited from that of �G:D11 2 Ns(Wrg; fZrg) (12)D12 2 N (fUrg; fZrg) (13)D21 2 Ns(fWrg; fYrg) (14)D22 2 Ns(fUrg; fYrg): (15)GK�� ! �p p p p p p p p p p p p p p p p p p� p p p p p p p p p p p p p p p p p p�p p p p p p p p�p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p-pppppppppppppppppppp ppppppppppppppppppppFigure 3: The equivalent �nite-dimensional LTI systemIn summary, our original hybrid time-varying control problem with plant Ga and con-troller Kmr can be converted into a �nite-dimensional LTI control problem with plant G andcontroller K, as shown in Figure 3, in the sense that the system in Figure 3 is internally stablei� the system in Figure 1 is internally stable,kF(Ĝ; K̂)k1 < 1 () kF(Ga;HKmrS)k1 < 1;and I[F(Ĝ; K̂)] = I[F(Ga;HKmrS)] + l ln det[I � (D11)�0(D11)0]:A state-space model of G can be computed from that of Ga using the techniques developed in[5]. Any K satisfying (11) resulted from the design can be converted into a feasible multiratecontroller Kmr. We would like to emphasize, however, that the �nite-dimensional LTI problemhas a nonconventional constraint on the controller K given by (11). This constraint is thecausality constraint. Also, the LTI plant G obtained from Ga will automatically satisfy (12){(15). 17



5 All H1 suboptimal controllers and the minimum entropycontroller.In this section, we �rst characterize all K̂ satisfying the causality constraint (11) such thatthe system shown in Figure 3 is internally stable and kF(Ĝ; K̂)k1 < 1. This problem di�ersfrom the standard H1 problem only in the causality constraint on K̂ and is hence called aconstrained H1 problem. Our strategy in solving this problem is �rst to characterize all K̂such that the system in Figure 4 is internally stable and kF(Ĝ; K̂)k1 < 1 without consideringthe causality constraint (this is a standard H1 problem) and then choose, if possible, fromthis characterization all those satisfying the causality constraint.Several solutions to the standard H1 problem exist in the literature. Here we adoptthe solution in [21]. Note that it is assumed in [21] that D�12D21 > 0 and D21D�21 > 0;these assumptions are not satis�ed for the equivalent LTI system G. However, they are notessential and the solution in [21] can be modi�ed accordingly by following, e.g., the ideain [37]. Assume the solvability conditions are satis�ed, then all stabilizing controllers Ksatisfying kF(Ĝ; K̂)k1 < 1 are characterized by(K̂ = F  " 0 II �D22 # ? M̂; �̂! : �̂ 2 RH1; k�̂k1 < 1; I +D22F [M̂(0); �̂(0)] is invertible) ;(16)where M̂ = " M̂11 M̂12M̂21 M̂22 # is not uniquely given in [21] and by using Lemma 5 we can alwayschoose M̂ so that M̂12(0) 2 N (fUrg);M̂21(0) 2 N (fYrg);M̂22(0) = 0;and furthermore, M̂12(0) and M̂21(0) are invertible.Theorem 5 The constrained H1 problem is solvable i� the corresponding unconstrainedproblem is solvable andmaxr k(I � �Ur)M̂12(0)�1M̂11(0)M̂21(0)�1jYrk < 1: (17)Proof: Obviously, the corresponding unconstrained problem has to be solvable in order forthe constrained problem to be solvable. Assume that the unconstrained problem is solvable.Since D22 2 Ns(fUrg; fYrg), it follows that K̂(0) 2 N (fYrg; fUrg) i�F [M̂(0); �̂(0)] = M̂11(0) + M̂12(0)�̂(0)M̂21(0) 2 N (fYrg; fUrg):18



Pre- and post-multiply this by M̂12(0)�1 and M̂21(0)�1 respectively to getM̂12(0)�1F [M̂(0); �̂(0)]M̂21(0)�1 = M̂12(0)�1M̂11(0)M̂21(0)�1 + �̂(0):It follows from Theorem 1 that in order to have F [M̂(0); �̂(0)] 2 N (fYrg; fUrg) and k�̂(0)k <1, we must have (17). Conversely, if (17) is true, then there exists a constant matrix � withk�k < 1 such that M̂12(0)�1M̂11(0)M̂21(0)�1 +� 2 N (fYrg; fUrg):Hence K̂ = F  " 0 II �D22 # ? M̂;�!achieves K̂(0) 2 N (fYrg; fUrg). 2If the conditions in Theorem 5 are satis�ed, then there existsP = " P11 P12P21 P22 # 2 N (fYr � Urg; fUr � Yrg)with P22 2 Ns(fUrg; fYrg) and P12 and P21 invertible such thatU = " �M̂�112 (0)M̂11(0)M̂�121 (0) + P11 P12P21 P22 #is unitary. De�ne N̂ = " 0 II �D22 # ? M̂ ? U:It is easy to check that N̂(0) 2 N (fYr � Urg; fUr � Yrg), N̂12(0) and N̂21(0) are invertible,and N̂22(0) 2 Ns(fUrg; fYrg). By setting �̂ = F(U; 	̂), the set (16) can be rewritten asfK̂ = F(N̂; 	̂) : 	̂ 2 RH1; k	̂k1 < 1; I � N̂22(0)	̂(0) is invertibleg:Now we can state the main result of this paper.Theorem 6 Assume the solvability of the constrained H1 problem. Then the set of allcontrollers solving the problem is given byfK̂ = F(N̂; 	̂) : 	̂ 2 RH1; k	̂k1 < 1; 	̂(0) 2 N (fYrg; fUrg) g: (18)Proof: First notice that I � N̂22(0)	̂(0) is always invertible if 	̂(0) 2 N (fYrg; fUrg).Since N̂(0) 2 N (fYr � Urg; fUr � Yrg) and N̂12(0) and N̂21(0) are invertible, it follows thatK̂(0) 2 N (fYrg; fUrg) i� 	̂(0) 2 N (fYrg; fUrg). Then the result follows immediately. 219



In the rest of this section, we show that the central controller obtained by setting 	̂ = 0in (18) is the controller which minimizes I[F(Ĝ; K̂)].Now let us go back to the characterization given in [21]. It is known (see [32] for thecontinuous-time case) that if all H1 suboptimal controllers are characterized by (16), thenall H1 suboptimal closed loop transfer function is characterized byF(Ĝ; K̂) = (F  R̂; " �̂ 00 0 #! : �̂ 2 RH1; k�̂k1 < 1; I +D22F [M̂(0); �̂(0)] is invertible)where R̂ = 264 R̂11 R̂12 R̂13R̂21 R̂22 R̂23R̂31 R̂32 R̂33 375 2 RH1is para-unitary satisfying " R̂21R̂31 #�1 2 RH1. Clearly we have" R̂11 R̂12R̂21 R̂22 # = " 0 II �D22 # ? M̂and R̂22(0) = 0. Because of this, the H1 controller without the causality constraint whichminimizes the entropy I[F(Ĝ; K̂)] is conveniently given by K̂ = F(M̂; 0) = M̂11.Notice that �̂ = F(U; 	̂) gives" �̂ 00 0 # = F  V; " 	̂ 00 0 #!where V = 26664 �M̂�112 (0)M̂11(0)M̂�121 (0) + P11 0 P12 00 0 0 IP21 0 P22 00 I 0 0 37775 :Consequently, if we characterize the controller using (18), then all H1 suboptimal closed-looptransfer functions areF(Ĝ; K̂) = (F  Ŝ; " 	̂ 00 0 #! : 	̂ 2 RH1; k	̂k1 < 1; 	̂(0) 2 N (fYr)g; fUrg))where Ŝ = 264 Ŝ11 Ŝ12 Ŝ13Ŝ21 Ŝ22 Ŝ23Ŝ31 Ŝ32 Ŝ33 375 = R̂ ? V 2 RH1:20



Since R̂ is para-unitary and V is unitary, it follows that Ŝ is para-unitary. It can be checkedthat " Ŝ21Ŝ31 #�1 2 RH1 and S22(0) 2 Ns(fYrg). By Lemma 1,I[F(Ĝ; K̂)] = I  " 	̂ 00 0 #!+ I(Ŝ11) + 2 lndet I � " Ŝ22(0) Ŝ23(0)Ŝ32(0) Ŝ33(0) # " 	̂(0) 00 0 #!= I(	̂) + I(Ŝ11) + 2 ln j det[I � Ŝ22(0)	̂(0)]j= I(	̂) + I(Ŝ11):The last equality is due to the fact Ŝ22(0)	̂(0) 2 Ns(fYrg). Therefore, the minimum ofI[F(Ĝ; K̂)] is achieved at 	̂ = 0. The following theorem is thus obtained.Theorem 7 The minimum entropy controller is given by K̂ = N̂11.Appendix A: Proof of Theorem 1The proof of Theorem 1 follows from the idea in [18] but has two complications: (1) operator-valued transfer functions are treated, which requires dealing with random variables in Hilbertspaces [39]; (2) signals are de�ned on time [0;1) instead of (�1;1), which requires treatingnonstationary stochastic processes. Since Fa is linear, it follows that z is a Gaussian process.De�ne zT as the stochastic process on [0; T ] such that zT (t) = z(t) for t 2 [0; T ]. Then zT canbe considered as a Gaussian random variable in the Hilbert space L2[0; T ]. The covarianceoperator VT : L2[0; T ]! L2[0; T ] is then given by (t 2 [0; T ])(VTx)(t) = E "zT (t) Z T0 z0T (~t)x(~t)d~t#= Z T0 E[zT (t)z0T (~t)]x(~t)d~t= Z T0 E "Z T0 fa(t; �)w(�)d� Z T0 w0(~�)f 0a(~t; ~�)d~�# x(~t)d~t= Z T0 Z T0 Z T0 fa(t; �)E[w(�)w0(~�)]f 0a(~t; ~�)x(~t)d�d~�d~t= Z T0 Z T0 Z T0 fa(t; �)�(� � ~�)f 0a(~t; ~�)x(~t)d�d~�d~t= Z T0 Z T0 fa(t; �)f 0a(~t; ~�)x(~t)d�d~t= (FaF �ax)(t):This shows that VT = �L2[0;T ]FaF �a jL2[0;T ]. Since �L2[0;T ]FajL2[0;T ] is a contractive Hilbert-Schmidt operator and Fa is causal, it follows that VT is a selfadjoint contractive nuclear21



operator. Let the Schmidt expansion of VT beVT = 1Xi=1 �ih�; viivi:Then zT can be expressed as zT = 1Xi=1 �iviand �i, i = 1; 2; : : :, are independent scalar Gaussian random variables with covariance �i.HenceE(exp "12 Z T0 z0(t)z(t)dt#) = E�exp �12hzT ; zTi�� = E (exp "12 1Xi=1 �2i #)= 1Yi=1Efexp�2i =2g = 1Yi=1(1� �i)�1=2 = [det(I � VT )]�1=2:Now lift w to get ! and lift z to get �. Then z = Faw is equivalent to � = F! and F has amatrix representation F = 2666664 f(0) 0f(1) f(0) 0f(2) f(1) f(0) . . .. . . . . . . . . 3777775 :Let FK be the leading K �K submatrix of F . ThenE (exp "12 Z K�0 z0(t)z(t)dt#) = det(I � FKF �K)�1=2:Since F̂ has only �nite number of poles, the in�nite Hankel matrixH = 266664 f(1) f(2) f(3) � � �f(2) f(3) f(4) � � �f(3) f(4) f(5) � � �... ... ... � � � 377775has �nite rank. Let HK be the �rst K block rows of H and de�neWK = FKF �K +HKH�K :Notice that WK is a selfadjoint Toeplitz matrixWK = 26666664 w(0) w(�1) w(�2) � � � w(�K + 1)w(1) w(0) w(�1) � � � w(�K + 2)w(2) w(1) w(0) � � � w(�K + 3)... ... ... . . . ...w(K � 1) w(K � 2) w(K � 3) � � � w(0) 3777777522



and w(i) is the i-th Fourier coe�cient of F̂ F̂�, where F̂�(�) = F̂ (���1)�. Denote by �i(WK)and �i(FKF �K), i = 1; 2; : : :, the singular values of WK and FKF �K respectively assumingordered nondecreasingly. Then1Xi=1 j�i(WK)� �i(FKF �K)j � trHKH�K � trHH� <1:Since �i(WK) and �i(FKF �K) are all contained in [�kF̂ k21; kF̂k21], it follows thatj ln det(I � FKF �K)� ln det(I �WK)j = ����� 1Xi=1 ln[1� �i(FKF �K)]� 1Xi=1 ln[1� �i(WK)]�����= ����� 1Xi=1 �11� �i [�i(FKF �K)� �i(WK)]�����for some �i 2 [�kF̂ k21; kF̂k21]. This shows thatj ln det(I�FKF �K)�ln det(I�WK)j � 11� kF̂k21 1Xi=1 j�i(WK)��(FKF �K)j � 11� kF̂ k21 trHH�:Hence by using the operator-valued strong Szego-Widom limit theorem [9, Theorem 6.4],limK!1
K� = � limK!1 1K� ln det(I � FKF �K) = � limK!1 1K� ln det(I �WK)= � 12�� Z ��� ln det[I � F̂ (ej!)F̂ �(ej!)]d! = 1�I(F̂ ):Notice that for K� < T < (K + 1)�,KK + 1
K� � 
T � K + 1K 
(K+1)�:Therefore, limT!1 
T = I(F̂ )=�.Appendix B: Proof of Theorem 2The equivalence of (a) and (b) follows from the Arveson's distance formula [12]. That (c)implies (a) is obvious. It remains to show that (b) implies (c). For this, we need a technicallemma.Lemma 7 Assume the matrices E, F , and H, of appropriate dimensions, satisfy the condi-tions: h E F i " E�F � # = I; k " FH # k < 1:23



Then there exists a matrix G satisfyingk " E FG H # k � 1; h G H i " E�F � # = 0; k h G H i k < 1:An explicit formula for such a matrix is: G = �HF �(EE�)�1E.Proof: It follows from [13] that there exists a matrix G such thatk " E FG H # k � 1:Among all such G characterized in [13] in terms of a free contractive matrix, the \central"one obtained by setting the free contractive matrix to zero isG = �HF �(I � FF �)�1E = �HF �(EE�)�1E:Using this G, we haveh G H i " E�F � # = �HF �(EE�)�1EE�+HF � = 0:and h G H i " G�H� # = HF �(EE�)�1FH� +HH� = H(I � F �F )�1H� < I:The last inequality follows from k " FH # k < 1. 2To avoid awkward notation in the proof of Theorem 2, we rede�ne" A BC D # := " P11 P12P21 P22 # :Under the decompositions of X and Y in (3)-(4), we get the matrix representation" T +A BC D # = 2666666666666664 T11 + A11 T12 � � � T1n B11 0 � � � 0T21 + A21 T22 + A22 � T2n B21 B22 � � � 0... ... . . . ... ... ... . . . ...Tn1 + An1 Tn2 + An2 � � � Tnn +Ann Bn1 Bn2 � � � BnnC11 0 � � � 0 0 0 � � � 0C21 C22 � � � 0 D21 0 � � � 0... ... . . . ... ... ... . . . ...Cn1 Cn2 � � � Cnn Dn1 Dn2 � � � 0 3777777777777775 :24



Statement (b) becomes maxi k2664 T1(i+1) � � � T1n... ...Ti(i+1) � � � Tin 3775 k < 1:We need to decide Aij , Bij , Cij, for i � j, and Dij for i > j. This will be done in the followingorder: In the i-th step, determine those blocks in the (n+ i)-th row and the i-th row.Step 1:Set C11 = I , T11 + A11 = 0, and choose B11 so thath T12 � � � T1n B11 iis a co-isometry. Statement (b) implies that any B11 chosen in this way is nonsingular.Step i, i = 2; : : : ; n� 1:Set Ci1 = 0 and choose the rest of the (n + i)-th row so that it is a co-isometry and isorthogonal to all of the previously determined rows. This requiresh Ci2 � � � Cii Di1 � � � Di(i�1) i�to be an isometry onto the kernel of26666666664 T12 � � � T1i B11 � � � 0... ... ... . . . ...T(i�1)2 +A(i�1)2 � � � T(i�1)i B(i�1)1 � � � B(i�1)(i�1)C22 � � � 0 D21 � � � 0... ... ... ...C(i�1)2 � � � 0 D(i�1)1 � � � 0 37777777775 :Then set Ti1 + Ai1 = 0 and chooseh Ti2 + Ai2 � � � Tii + Aii Bi1 � � � Bi(i�1) iin such a way so that26666666666664 T12 � � � T1i T1(i+1) � � � T1n B11 � � � 0... ... ... ... ... . . . ...T(i�1)2 +A(i�1)2 � � � T(i�1)i T(i�1)(i+1) � � � T(i�1)n B(i�1)1 � � � B(i�1)(i�1)Ti2 +Ai2 � � � Tii + Aii Ti(i+1) � � � Tin Bi1 � � � Bi(i�1)C22 � � � 0 0 � � � 0 D21 � � � 0... . . . ... ... ... ... . . . ...Ci2 � � � Cii 0 � � � 0 Di1 � � � Di(i�1) 3777777777777525



is a contraction and it is orthogonal to all previously determined block rows. This is possiblefollowing Lemma 7, condition (c), and the fact that26666666664 T12 � � � T1i T1(i+1) � � � T1n B11 � � � 0... ... ... ... ... . . . ...T(i�1)2 + A(i�1)2 � � � T(i�1)i T(i�1)(i+1) � � � T(i�1)n B(i�1)1 � � � B(i�1)(i�1)C22 � � � 0 0 � � � 0 D21 � � � 0... . . . ... ... ... ... . . . ...Ci2 � � � Cii 0 � � � 0 Di1 � � � Di(i�1) 37777777775is a co-isometry. Finally determine Bii so thath Ti2 +Ai2 � � � Tii + Aii Ti(i+1) � � � Tin Bi1 � � � Bii iis a co-isometry. By Lemma 7, any Bii chosen in such a way is nonsingular.Step n:Set Cn1 = 0 and choose the rest of the 2n-th row so that it is orthogonal to all thepreviously determined rows. This requiresh Cn2 � � � Cnn Dn1 � � � Dn(n�1) i�to be an isometry onto the kernel of26666666664 T12 � � � T1n B11 � � � 0... ... ... . . . ...T(n�1)2 + A(n�1)2 � � � T(n�1)n B(n�1)1 � � � B(n�1)(n�1)C22 � � � 0 D21 � � � 0... ... ... ...C(n�1)2 � � � 0 D(n�1)1 � � � 0 37777777775 :Finally set h Tn1 +An1 � � � Tnn +Ann Bn1 � � � Bn(n�1) i = 0and Bnn = I .The above construction guarantees that the matrix" T +A BC D # (19)is unitary, B is invertible, and D 2 Ns(fYig; fXig). The invertibility of C follows from thatof B and the fact that the matrix in (19) is unitary.Acknowledgement: The authors would like to thank Andrew Heunis and Victor Solo forhelpful discussions. 26
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