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Abstract

For a general multirate SD (sampled-data) system, we characterize explicitly the set
of all causal, stabilizing controllers that achieve a certain Ho, norm bound; moreover, we
give explicitly a particular controller that further minimizes an entropy function for the
SD system. The characterization lays the groundwork for synthesizing multirate control
systems with multiple/mixed control specifications.
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matrix factorization, nest operators.

1 Introduction

Multirate systems are abundant in industry [17]; there are several reasons for this:

o In multivariable digital control systems, often it is unrealistic, or sometimes impossible,
to sample all physical signals uniformly at one single rate. In such situations, one is
forced to use multirate sampling.

e In general one gets better performance if one can use faster A/D and D/A conversions;
but this means higher cost in implementation. For signals with different bandwidths,
better trade-offs between performance and implementation cost can be obtained using
A/D and D/A converters at different rates.

*This research was supported by the Hong Kong Research Grants Council and the Natural Sciences and
Engineering Research Council of Canada.



e Multirate controllers are in general time-varying. Thus multirate control systems can
outperform single-rate systems; for example, gain margin improvement [26, 16], simul-
taneous stabilization [26], and decentralized control [2, 42].

The study of multirate systems started in late 1950’s [28, 24, 25]. Early studies were fo-
cused on analysis and were solely for purely discrete-time systems, see also [31]. A renaissance
of research on multirate systems has occurred since late 1980 with an increased interest in
multirate controller design, e.g., stabilizing controller design and parametrization of all stabi-
lizing controllers [11, 29, 34], LQG/LQR control [8, 1, 30], Hs optimal control [40, 41, 33], H,
control [40, 41, 10], ¢; optimal control [15] and the work in [3, 20, 36]. With the recognition
that many industrial control systems consist of an analog plant and a digital controller inter-
connected via A/D and D/A converters, direct optimal control of multirate systems has been
studied in this sampled-data setting [40, 10, 33]. The existing techniques for multirate H,
control allow for computation of one H., controller via a numerical convex optimization [41]
or more easily via an explicit design [10]. The purpose of this paper is to characterize in an
explicit way the set of all H., suboptimal controllers and to find a particular H., suboptimal
controller which minimizes an entropy function.

In this paper we shall treat a general multirate setup. For this, we define the periodic
sampler S; and the (zero-order) hold H, (the subscript denotes the period) as follows: S
maps a continuous signal to a discrete signal and is defined via

b =Sy = (k) = y(k7).
H, maps discrete to continuous via
w=Hv<= u(t)=v(k), kr<t<(k+1)r.

(The signals may be vector-valued.) Note that the sampler and hold are synchronized at
t=0.

The general multirate system is shown in Figure 1. We have used continuous arrows for
continuous signals and dotted arrows for discrete signals. Here, (G, is the continuous-time
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Figure 1: The general multirate sampled-data setup

generalized plant with two inputs, the exogenous input w and the control input u, and two



outputs, the signal z to be controlled and the measured signal y. & and H are multirate
sampling and hold operators and are defined as follows:

Smlh Hnlh
S = ‘. . s 7‘[ = .
Smph anh
These correspond to sampling p channels of y periodically with periods m;h, ¢ = 1,---,p,
respectively, and holding ¢ channels of v with periods n;h, j = 1,---,q, respectively. Here

m; and n; are different integers and h is a real number referred to as the base period. If we
partition the signals accordingly

Y1 23 U1 (51
y = b Qb = : b U=
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then

u;(t) = wv;(k), knjh<t<(k+1njh, j=1,---,q.

K, is a discrete-time multirate controller, implemented via a microprocessor; it is synchro-
nized with & and A in the sense that it inputs a value from the i-th channel at times km;h
and outputs a value to the j-th channel at £n;h.

In the general multirate setup of Figure 1, we assume throughout that G, and K,,, are
causal and linear. Furthermore, (G, is assume to be time-invariant and finite-dimensional,
and K,,, is assumed to satisfy certain periodic property and to be finite-dimensional.

For periodicity of K., let [ be the least common multiple of the sampling and hold
indices, {mq,- -, my,n1,---,ny}. Thus o := [h is the least common period for all sampling
and hold channels. The multirate controller K,,, can be chosen so that HK,,,S is o-periodic
in continuous time. For this, we need a few definitions.

Let £ be the space of sequences, perhaps vector-valued, defined on the time set {0, 1,2, ---}.
Let U be the unit time delay on £ and U* the unit time advance. Define the integers

m; = l/m27 7::1727"'71)
ﬁ] = l/n]7 ]:17277(]
We say K,,, is o-periodic in real time if
(U*)ﬁl UT7L1
Ko, .. =K, .
(U= U

This means shifting ¥; by m; time units (m;m;h = o) corresponds to shifting v; by n; units
(rjn;h = o). Thus HK,,,S is o-periodic in continuous time iff K, is o-periodic in real time.



Since GG, is LTI, it follows that the sampled-data system in Figure 1 is o-periodic if K, is
o-periodic in real time. We shall refer to o as the system period. We shall assume throughout
the paper that K,,, is o-periodic in real time. With all these assumptions, the controller K,
can be implemented via difference equations [10]

7

U(k + 1) = Z ¢2 kmz + S)

2

U](kﬁ]—l—f‘) = Z Ji rs¢z ka—I—S) j:1727---7(]7

where causality requires (Dj;),s = 0 if rn; < sm;.

Our goal in this paper is two-fold: (1) characterize all feasible multirate controllers which
internally stabilize the feedback system shown in Figure 1 and make the £5 induced norm
less than a prespecified value, such controllers are called H., suboptimal controllers; (2)
among all H., suboptimal controllers, find one which further minimizes an entropy function.
Used with other optimization techniques, such a characterization, like its LTI counterpart
[14, 21], is essential in designing control systems with simultaneous #., and other performance
requirements. The minimum entropy control, also like its LTI counterpart [32, 22, 23], gives
a particular example of such multi-objective control problem in which an analytic solution
exists.

Although the overall system shown in Figure 1 is hybrid (involving both continuous-time
and discrete-time signals) and time-varying, the recently developed lifting technique enables us
to convert the problem into an equivalent LTI discrete-time problem. However, the resulting
control problem will have an undesirable and unconventional constraint on the LTI controller
due to the causality requirement. This constraint is the main difficulty in designing optimal
multirate systems. The recent introduction of the nest operators has proven to be effective in
handling causality constraints in multirate design [10]. The results of this paper will be built
on the nest operator technique.

We would like to remark here that the results in this paper extend directly to periodic
discrete-time systems, i.e., direct application yields a characterization of all H., suboptimal
solutions which are periodic and causal; this result has not obtained before.

The paper is organized as follows. The next section reviews some basic facts about
continuous-time periodic systems, introduces the concept of entropy for such systems, and
establishes the connection between the entropy and a linear, exponential, quadratic, Gaussian
cost function. Section 3 addresses topics on nest operators and nest algebra, which are the
main tools to handle causality in this paper. Section 4 briefly discusses the procedure of
converting our hybrid problem into an equivalent LTI problem with a causality constraint.
Section 5 gives a characterization of all H., suboptimal controllers and the minimum entropy
controller. The appendices contain two long and involved proofs.

Preliminary results in this paper have been presented at several conferences: the Asian
Control Conference (Tokyo, 1994), the IEEE Conference on Decision and Control (Florida,
1994), and the International Conference on Operator Theory and its Applications (Manitoba,



1994).
Finally, we introduce some notation. Given an operator K and two operator matrices

_ P Py _ Qi1 Q2
P_[Pm Pzz]7 Q_[Q21 sz]’

the linear fractional transformation associated with P and K is denoted
F(P,K)= P+ P2 K(I - PQQK)_IPgl
and the star product of P and Q is

P+ PoQii (1 — P22Q11)_1P21 Pio(1 - Q11P22)_1Q12
Qa1(I — P22Q11)_1P21 Qa1(I — P22Q11)_1P22Q12 + Q2 |

Here, we assume that the domains and co-domains of the operators are compatible and the
inverses exist. With these definitions, we have

P*Q:l

F(P,FQ,K)=F(PxQ,K).

2 Entropy of periodic systems

A multirate system as depicted in Section 1 is a continuous-time o-periodic system. In this
section, we review some basic concepts of periodic systems and introduce the concept of
entropy.

Let X and Y be Hilbert spaces and f = {f(k) : K = 1,2,...} be a sequence of bounded
operators from A to ). Then

FO) = fRA
k=0

is an operator-valued function on some subset of C. We say that F belongs to Ho, (X, ) if
Fis analytic in D, the open unit disk, and

sup HF(/\)H < 0.
AeD

In this case, the left-hand side above is defined to be the Ho, norm of F', denoted by ||F||o,
the operator I'(el*) is bounded for almost every w € [—7, 7), and

ess sup [|F(e)[| = | ).

wE[—7,m

Now let f = {f(k):k=1,2,...} be a sequence of Hilbert-Schmidt operators from X" to
Y. The set of Hilbert-Schmidt operators equipped with the Hilbert-Schmidt norm, || - ||jg, is
a Hilbert space [19]. Then

FO) = fRA
k=0



is a Hilbert-space vector-valued function on some subset of C. We say that F' belongs to

o 1/2
(Z Hf(k)HIQ{S) < 0.
k=0
In this case, the left-hand side above is defined to be the 3 norm of I, denoted by [|F||,
the operator I'(el*) is Hilbert-Schmidt for almost every w € [~7, 7), and

1

o [ IEE) rsd = 171

Assume F € Hoo (X, V) N Hy(X,Y) and ||F||ae < 1. Extending the entropy definition for
matrix valued analytic functions [22, 23], we define the entropy of F as

T(F) = —% /_7; Indet[I — F*(e) ()] doo.

This entropy is well defined. Since F(ej‘”) is a Hilbert-Schmidt operator at almost every
w € [—7, ), its singular values form a square-summable sequence {o(e))}. Hence

det[] — F* () F H [1— g2(el)]

which converges to some number in (0,1) due to square-summability of {o)(e/*)} and the
fact that ||F||oc < 1. This also shows that Z(F') is nonnegative.

Lemma 1 Assume F' € Hoo(X, V)N Hao(X, V) and |F||oo < 1. Then
(a) |1Fl3 < Z(F);

3 U U

b) for U = . .

t) 1 [ Un Uz

Uil € Hoo (X, 1),

] € Hoo X BV, Y B X) with U~U = 1, Uy € Ha(X,D), and

I[F(U, F)] = Z(F) + Z(U11) + 21n | det[T — Uy2(0) F(0)]).

The proof of Lemma 1 is similar to that for the finite-dimensional, continuous-time case
[32].

Now let us return to periodic systems. Let F, be a continuous-time, o-periodic, causal
system described by the following integral operator

= /Ot fa(t,T)w(T) dr



We assume that f,, the matrix-valued impulse response of F,, is locally square-integrable,
i.e., every element is square-integrable on any compact subset of R?. The periodicity of F,
implies f,(t + 71,7+ T) = fu(t,7), and the causality implies that f,(¢,7) =0if 7 > ¢.

The local square-integrability of f, guarantees that F, is a linear map from Ly, to Lo,
the space of locally square-integrable functions of t. Given an arbitrary, positive integer [, let

g

Denote the space of K-valued sequences by £(K). Define the lifting operator L,; : Lo. — £(K)
via

w=L,jw <+
w(t) w(t + o) U
{w(0),w(1),...} = : , : e g tG[O’T)'
w(t+({-17) w(t+o+(=1)7)

This lifting L, ; gives an algebraic isomorphism between Lq, and ((K) [40]. We use the obvious

norm in K:
K1

) 1/2
k=] 1 | ekL= ] = (Z HHiHQ) :
=1

K

where ||x;]| is the norm on £3[0
sequences w with

;7). Denote by £3(K) the subset of {(K) consisting of all

o 1/2
(Z Hw(k)Hz) < 00,
k=0

and define the norm on (3(K) to be the left-hand side of the above inequality. It is clear that
w € (5(K) if and only if w € L9 and L, is a Hilbert-space isometric isomorphism from £y to
5(K).

Now we lift F, to get F' := LUJFGL;}. The lifted system F : £(K) — £(K) can be described
by

k
(= o () = 32 Flk = i)o(i), k20,
=0
where f(k), k=0,1,..., map K to K via
[f(k)r](t)
/g fa(t + ko, T) Jfalt + ko, 7+ (1-1)%) K1(T)
= | : : L |
" Lt kot (=D o Sl kot (- D5+ (0-1F) ] L)
tE[O,%).



The local square-integrability of f, (¢, 7) ensures that f(k), k& > 0, are Hilbert-Schmidt oper-
ators [44].
For o-periodic F,, the lifted system F' is LTI in discrete time; its transfer function is

defined as -
=" flk)A
k=0

So if F € Moo (K,K) N Hy(K,K) and ||F||e < 1, its entropy can be defined.

We will define the Ho norm, #, norm, and entropy of Fj, to be those of F' respectively.
Actually, the H,, norm defined this way is indeed the Lo-induced norm of F, [7, 5, 38]; the
‘Ho norm has natural interpretations in terms of impulse responses and white noise responses
[6, 27]; the entropy not only provides an upper bound for the Hs norm as stated in Lemma 1,
but also has a stochastic interpretation in terms of a linear, exponential, quadratic, Gaussian
(LEQG) cost function, similar to the case of matrix-valued transfer functions [18].

To avoid unnecessary technicality, we will concentrate on finite-dimensional periodic sys-
tems, i.e., those F, with finite-dimensional realizations, or equivalently, those F, whose lifted
transfer functions I’ have only a finite number of poles. (The multirate systems to be studied
in Figure 1 fall in this class if both Gy and K, are finite-dimensional.) Let w be a Gaus-
sian white noise with zero mean and unit covariance on the time interval [0,00) and z the
corresponding response: z = F,w. Define an LEQG cost function for F, as

Qr = %ln E {exp [% /OT Z’(t)z(t)dt] }

where E(-) means the expectation. The proof of the following theorem is given in Appendix

A.

Theorem 1 Given a finite-dimensional, U-pemodw system F,, assume its lifted tmnsferfunc-

tion I satisfies F' € Hoo (K, K) N Ha (K, K) and ||F||ee < 1. Then limg_oo Qr = Z(F) /0.

Now we are ready to state our control problems associated with Figure 1 precisely:

Given a continuous-time, finite-dimensional, LTI plant G, and sampling and hold

schemes § and H,

(1) characterize all feasible multirate controllers K,,, such that the feedback system
is internally stable and

| F(Gay HE 1 S) oo < 15
(2) find a particular controller from those obtained in (1) such that the entropy
I[F(Gay HE 1y S)]
is minimized.

These problems will be solved explicitly in Sections 5 and 6. Next, we present the required
mathematical tool based on nest operators.



3 Nest operators

In this section, we address some issues on nest operators and nest algebra [4, 12], which are
useful in the sequel. Our main purpose is to probe further the Arveson’s distance problem,
that is, we characterize explicitly all nest operators which are within a fixed distance from
a given operator; we also give one such nest operator which minimizes an auxiliary entropy
function. The same problems were also studied in the mathematical literature [43], but the
solutions are different. Our results, based on the unitary dilation, provide further insight
as well as certain numerical advantages; they take forms which are easily applicable to our
control problems at hand.

Let X be a vector space. A nestin X, denoted {A;}, is a chain of subspaces in X', including
{0} and X, with the nonincreasing ordering:

X:X02X12“‘2Xn—12Xn:{0}'

(A nest may be defined to contain an infinite number of spaces, but this generalization is not
necessary in the sequel.)

Let & and Y be both Hilbert spaces. Denote by L(X',)) the set of bounded linear
operators X — Y and abbreviate it as £L(X) if X' =Y. Assume that X" and ) are equipped,
respectively, with nests {X;} and {);} which have the same number of subspaces, say, n + 1
as above. An operator T' € L(X,Y) is said to be a nest operator if

TX; CY;, i=0,1,---,n. (1)
It is said to be a strict nest operator if
TX; CYiy1, t=0,1,2,--- n—1. (2)

Let Iy, : & — A&} and Iy, : Y — ); be orthogonal projections. Then the condition in (1) is

equivalent to
(I —ly)T1ly, =0, ¢=0,1,---,n,

and the condition in (2) is equivalent to
(I =Ty, )Ty, =0, i=01,2-n—1

Given the nests {X;} and {);}, the set of all nest operators is denoted N ({X;},{};}) and ab-
breviated N ({;}) if {X;} = {Vi}; the set of all strict nest operators is denoted N ({X;},{V:})
and abbreviated N;({X;}) if {X;} = {V:}.

If we decompose the spaces X' and Y in the following way

X = (HoX)adXod)d @ (X1 0X,), (3)
Y = Q) aeWed)d & V18, (4)



then the associated matrix representation of T is

Tll T12 o Tln

T21 T22 o T2n
T= ) . .

Tnl Tn2 e Tnn

and T € N({A;},{);}) means that this matrix representation is (block) lower triangular:
T;; = 0if ¢ > j. The following useful lemmas can be proven readily by using the above matrix
representation.

Lemma 2
(a) If Ty € N({X;},{V:}) and Ty € N{V:},{2:}), then ToTy € N{X:},{Z:}).

(b) If Ty € NH{X:},{V:}) and Ty € N;({V:i},{2:}), or if Ty € N;({X:},{Vi}) and Ty €
N Vi3, A2:}), then ToyTy € Ns({X:},{2:}).

(¢) N({X;}) forms an algebra, called a nest algebra.
In the rest of this section, we restrict our discussion to finite-dimensional spaces.

Lemma 3
(a) If T € N;({X;}), then I — T is always invertible.
(b) If T € N({X:}) and T is invertible, then T=* € N ({X;}).
Lemma 4 (Generalized QR factorization) Let T € L(X).
(a) There exist a unitary operator Q; on X and Ry € N({X;}) such that T = Q1 R;.

(b) There exist Ry € N({X;}) and a unitary operator Q on X such that T = RyQ)s.

Lemma 5 (Generalized Cholesky factorization) Let T' € L(X') and assume T is selfadjoint
and nonnegative.

(a) There exists Cy € N({A;}) such that T = C7Cy.
(b) There exists Cy € N({X;}) such that T = CyC5.

The purpose of the rest of this section is to address the following two matrix problems:
Given T' € L(X,)), (1) characterize all N € N({A;},{V;}) such that ||T + N|| < 1; (2) find,
among all N characterized in (1), the one which minimizes Z(1T 4+ N). Here the entropy of a
contractive matrix 7" is obtained as a special case from the entropy definition of a contractive
Hilbert-Schmidt operator-valued function:

Z(T) = —Indet(I = T7T).

10



These two matrix problems are closely related to and are actually simple special cases of
the main problems of this paper: Characterize all H., suboptimal controllers and find the

minimum entropy controller.
We shall need some more notation. With X and Y as before, introduce two more finite-
dimensional inner-product spaces Z and W. A linear operator ' € L(X & YV, Z W) is

partitioned as
T Th2
T= )
[ Tor Ta2

with Th1 € L(X, 2), To € L(X, W), etc. For nests {A;}, {V;}, {Zi}, Wi} in X, Y, 2, W,
respectively, all with n + 1 subspaces, the nests {X; @ Y;} and {Z; & W;} are defined in the
obvious way. Hence writing

DTl o v o vy {200 W),
T21 T22

means 111 € N({ X}, {Z2:}), To1 € N{X}, {W:}), etc.

Theorem 2 Let T € L(X,Y). The following statements are equivalent:
(a) There exists N € N({X;},{V;}) such that ||T + N|| < 1.
(1) mass (1 = Ty, )| < 1.
(c) There exists

_ | Pin Pro . Y
P= [ P Dy ] eN{X oV} {ViaX})

with Piy and Py both invertible and Pyy € Ns({Vi}, {X;}) such that

T+ Py P
Py Py

18 unitary.

The proof of Theorem 2 is given in Appendix B. This theorem can be used to solve our

first matrix problem.

Theorem 3 Let T € L(X,Y) and assume condition (c) in Theorem 2 is satisfied. Then the
set of all N € N({X;},{):}) such that ||T + N|| < 1 is given by

{N=F(P,U): Ue N{X:},{V:}) and ||U|| < 1}. (5)

11



Proof: Since

T+ Py P
Py Py

is unitary and Pjo, Py are invertible, it follows from [35] that the map

v (| T e g g rp
P21 P22

is a bijection from the open unit ball of L({X'},{Y}) onto itself. What is left to show is that
F(P,U) e N {VH) iff U e N{A;},{V:}). The “if” part follows from Lemma 2 by not-
ing P € N{X;:0Y;}, {VidA;}). For the “only if” part, assume N := F(P,U) € N({X;},{V:})
for some U € L({X},{V}); we need to show that U too belongs to N'({X;},{V:}). From

N=P11+P12U(I—P22U)_1P217

we obtain after some algebra

PLHN — PPyt = [I+ PLH(N — Pyy) Pyt Py)U. (6)
Since
I+ PLNN — PPy Py = 14 PREPLU(I — PyU) ' Py Pyt Py
I+ U - PpU) ' Py
= (I-UPy)™,

it follows that I + P (N — Pyp)Py;' Pay is invertible. Hence from (6)
U=[I+ P, (N — Pu) Py Pp] ' PR (N — Piy) Py
Therefore U belongs to N ({X;},{Y;}) by Lemma 2. 0

The characterization in Theorem 3 also renders an easy solution to the second matrix
problem.

Theorem 4 Let T € L(X,Y) and assume condition (c) in Theorem 2 is satisfied. Then the
unique N which satisfies ||T' + N|| < 1 and minimizes (T + N) is given by N = Pyy.

Proof: According to Theorem 3, all N satisfying ||T'+ N|| < 1 are characterized by (5).
Consequently, all resulting 7'+ N are given by

sl TEo B U ) Ue NEXY{)) and ||U|| < 1¢.
Py P
By Lemma 1, we obtain
I(T+ N)=Z(U)+Z(T + P11) + 21In |det(I — PpU)|.

Notice that the second term is independent of U and PaU € N ({Vi}, {V:}, which implies
that the third term is zero. Therefore the minimizing U is 0 and hence N = Py;. a

One implication of Theorem 4 is that although P in condition (¢) of Theorem 2 is not
unique, Py is uniquely determined.

12



4 Equivalent LTI systems

Our main problems deal with hybrid time-varying systems. Following [10] and [40], we can
reduce the control problem to an equivalent one involving only finite-dimensional LTI systems.
In this section we briefly review the reduction process. The detailed justification is referred
to [10], [40], and [5]. Our emphasis here is on the relationship between the entropy of the
original system and the equivalent LTI system.

We start with a state model of G:

[ Aa ‘ Bal Ba2
Ga (S) = Cal 0 Da12
| Ca| 00

For an integer m > 0, define the discrete lifting operator L,, via

[ (0) (m)
L {(0), 61, = N
L ¥(m - 1) P(2m —1)

Denote

me Lﬁ

and recall the continuous lifting operator L,; in Section 2: Here we take o = [h. We lift G,

and K,,, by defining
5 _ | Loy L7
6= s |

K=LNKy. Ly

q

and

It is easy to check that G and K are LTI systems, so they have transfer functions é(/\)
and K (A). By definitions,

|1F (Gas HE e S) oo = IF(GL K)o
I[F(Gay HK wrS)] = I[F(G,K)).
A state-space realization of (¢ can be computed:
A il B B
G(A) = Ql 1?11 1?12
Cy | Da1 Do

Due to the causality of G, and K,,,, the lifted systems G and K have some special structures
which can be easily characterized using nest operators.

13



Write

w=L,w, C:Lcr,lzv €= Lyv, ¢:LM¢

Then ,
6(0)= [ 1(0) - wi(mi—1) oo B (0) - gl — 1) |
Note that 1;(k) is sampled at t = km;h. Similarly,
0)= [ 00y o (i =1 w0 vyl - 1)

and v;(k) occurs at t = knjh. For r =0,1,...,[, define

W, = (60 1) =50) == ) =0}
2, = {{(0):¢i(0) = (3(0) = - —Cr( ) =0},
U = {e(0): v;(k) =0if kn; < r},
Yo = {o(0): (k) =0if km; < r}.
Then the D-blocks in the lifted plant satisfy
?11 € N({Wr}v {Ngr})v (7)
?12 € N({ui}v {Zr})7 (8)
?21 € NS({Wr}v {yr})v (9)
D22 € NS({Ur}v {yr})v (10)
and for K,,, to be causal, )
K(0) e V{3 {4 }). (11)
e I
.......... GN
i o

Figure 2: The lifted system

Hence we have arrived at an equivalent LTI problem, shown in Figure 2, with plant G and
controller K. Note that equations (7)-(10) give special structures of  that can be exploited,
whereas (11) is a design constraint on K that has to be respected in order for K to correspond
to a causal K,,,.

14



The signals @ and ¢ in Figure 2 take values in infinite-dimensional spaces. In other
words, Bl,él,f)u,f)lg,f)gl are operators with either domain or co-domain being infinite-
dimensional spaces. To overcome this difficulty, we observe that all these operators except
ﬁu have finite rank.

Due to the particular choice of decomposition of W and Z, the operator Dy takes a
lower-triangular Toeplitz form:

(Dn)o 0
Dy = :
(D11)i-1 -+ (Do

The only block with infinite rank is (Du)o- Our next step is to get rid of this by a linear
fractional transformation. Since Dy € Ns({W, },{V:}), the diagonal blocks of

F(G, K)(0) = FIG(0), K(0)] = Diy + DisK (0)[I + Dys K (0)] " Doy

are invariant for any K satisfying (11). Therefore ||(Dy1)o|| < 1 is a necessary condition for
the solvability of our H, control problem. From now on we assume this condition is satisfied.
Define a diagonal operator matrix

—(D11)o
U =
—(D11)o
and a Julian operator matrix
1
U= l U U ] B l Un (I = UnUp)?
= = 1
Ui Us (I — U Up)? -Uty
Let - R
G=UxG.

Then it is well-known [35] that H]—'(é, K)||oo < 1 iff H]—'(é, K)||oo < 1. The relationship
between the entropies is given in the following lemma.

Lemma 6

I[}'(é, K)] = I[}'(é, K)]+ {Indet[I — (D1)5(D11)o]-
Proof: By Lemma 1,
I[F(G, K)] = TIF (G, K)] + T(Un) + 21n | det{T — U, F[G(0), K(0)]}].
Since Uy is a constant operator function,

I(Ull) = — lIl det[[ — Ul*lUll] = — lIl det[[ — (Dll)é(Dll)o]l = —lln det[[ — (DII)S(DII)O]-
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Note that Uy € N({Z,},{W,}) and

FIG(0), K(0)] = D1y 4 D12 K (0)[I — Doy K (0)]7' Dy,

whose first term is in A/({W,}, {Z,}) and second term in N,(W,},{Z,}). Hence

In | det{I — Uy F[G(0), K(0)]}| = In|det(] — UsyyDyy)]
= Indet[I — (Dy1)5(D11)o)
= llndet[I — (BH)S(BH)O]-

The result then follows. O

A state-space model of G can again be computed:

[éll(A) @12(/\)] A ‘ B1 B2

= 01 Dll D12
Gar(A) Gaa(N) Cay | Da1 Dao

Since Uy is diagonal, i.e., Uy € N({W,},{Z,}) and Uy, € N({Z,}, {W,}), it follows

Dy = Un+ U12D11(I - U22B11)_1U21 € Ns({wr}v {gr})
Diy = Upa(I = D11Ux») 'Diy e N{U. }, {2, })
Dy = Do (I - U22D11)_1U21 € N;(IW, 1,40}
Dyy = Dy (I - U22D11)_1U22D12 + Dyy € No({U:},{D:}).
Note that the diagonal blocks of ﬁu has been cancelled by the linear fractional transforma-

tion, resulting in a strictly 7(blocl<) lower-triangular Dyy. Then the advantage of G over G is
that all operators By, C1, D11, D12, and Dy are of finite rank. Therefore, if we define

B
Zz = Im[C’l Dll D12]7 W = | Ker ?11
Dy
and - -
- | HzGulw HzGi
Gailw Gla2 7
then G has finite-dimensional input and output spaces and
IF (G Bl = 1IF(G K)o

I[F(G,K)] = I[F(G,K)).
The nests {W,} and {Z,} induce nests in W and Z in a natural way:

W, =WnW,, Z.=Wn2Z,.
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Assume that a state-space model of G is:

) . A| B B
Gy = | Gul) G cl‘Dfl D
Ga1(A) Gaa(X) Cy | Da1 Do

The following structure of (' is inherited from that of G

Dy € NV {2} (12)
Dy € NU{UDY{ZD) (13)
Dy € N;(iW. 1, {0} (14)
Dyy € N,({th},{V.})- (15)

S Y

G
e |

Figure 3: The equivalent finite-dimensional LTI system

In summary, our original hybrid time-varying control problem with plant G, and con-
troller K,,, can be converted into a finite-dimensional LTI control problem with plant G and
controller K, as shown in Figure 3, in the sense that the system in Figure 3 is internally stable
iff the system in Figure 1 is internally stable,

I1F (G K)o <1 <= || F(Gay HE 1rS)||oo < 1,

and

I[F (G, K)] = I[F (G, MK 1, S)] + n det[T — (Dy1)5(D11)o)-

A state-space model of G can be computed from that of GG, using the techniques developed in
[5]. Any K satisfying (11) resulted from the design can be converted into a feasible multirate
controller K,,,.. We would like to emphasize, however, that the finite-dimensional LTI problem
has a nonconventional constraint on the controller K given by (11). This constraint is the
causality constraint. Also, the LTI plant G obtained from G, will automatically satisfy (12)—
(15).
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5 All H. suboptimal controllers and the minimum entropy
controller.

In this section, we first characterize all K satisfying the causality constraint (11) such that
the system shown in Figure 3 is internally stable and ||F (G, K)||lo < 1. This problem differs
from the standard H. problem only in the causality constraint on K and is hence called a
constrained H., problem. Our strategy in solving this problem is first to characterize all K
such that the system in Figure 4 is internally stable and || F (&, K)|ls < 1 without considering
the causality constraint (this is a standard H., problem) and then choose, if possible, from
this characterization all those satisfying the causality constraint.

Several solutions to the standard H., problem exist in the literature. Here we adopt
the solution in [21]. Note that it is assumed in [21] that D},Dy; > 0 and Dy D3, > 0;
these assumptions are not satisfied for the equivalent LTI system . However, they are not
essential and the solution in [21] can be modified accordingly by following, e.g., the idea
in [37]. Assume the solvability conditions are satisfied, then all stabilizing controllers K
satisfying || F (G, K)||o < 1 are characterized by

{R’ _r (l 0 I ] *M@) D € RMoo, || D)oo < 1, T+ Doy FIM(0), ®(0)] is invertible},

(16)
where M = [ MH MIQ ] is not uniquely given in [21] and by using Lemma 5 we can always
My Ma
choose M so that
Mi2(0) € N({U}),
Mar(0) € NI,
M22 (0) — 07

and furthermore, M4(0) and Ma; (0) are invertible.

Theorem 5 The constrained H., problem is solvable iff the corresponding unconstrained
problem is solvable and

max |1 — Ty, ) Mi2(0) ™ My (0) Mar (0) |y, || < L. (17)

Proof: Obviously, the corresponding unconstrained problem has to be solvable in order for
the constrained problem to be solvable. Assume that the unconstrained problem is solvable.

Since Dy € N, ({4}, {),}), it follows that K(0) € N({V.}, {U4,}) iff

FIM(0), ®(0)] = M11(0) + Mi2(0)9(0) M21(0) € N({¥,}, {th:}).
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Pre- and post-multiply this by Mlz(())_l and le(O)_l respectively to get
M2(0) " F[M(0), @(0)]Ma1(0) ™" = Mi2(0) = My (0) M1 (0) =" + @(0).

It follows from Theorem 1 that in order to have F[M(0), ®(0)] € N ({V,}, {i4,}) and ||®(0)|| <
1, we must have (17). Conversely, if (17) is true, then there exists a constant matrix ¢ with
||®|] < 1 such that

Mlz(o)_an(O)le(O)_l + @ e N{V, ), {Uh}).

A 0 I A
cr ([0 5 ] o)

achieves K (0) € N({),}, {U4.}). O

Hence

If the conditions in Theorem 5 are satisfied, then there exists

Pll P12
P =
lPZI P22

] EN{Y, U} {U, BV, })

with Py € N;({U-},{V-}) and Pi3 and Py invertible such that

U — | MR O M (0) M5 (0) + Puy P
P21 P22

is unitary. Define
. 0o I .
N_ll _DZQ]*M*U.

It is easy to check that NO) e N({), & Ut AU DV }), N12(0) and Ny (0) are invertible,
and Ni3(0) € Ns({U-},{Y}). By setting ® = F(U, V), the set (16) can be rewritten as

{K = F(N,U) : U € RUoo, ||¥]]0s < 1,1 — Noz(0)F(0) is invertible}.
Now we can state the main result of this paper.

Theorem 6 Assume the solvability of the constrained H., problem. Then the set of all
controllers solving the problem is given by

{K =F(N,0): ¥ € R, [|¥]|oo < 1,¥(0) € NV} {14 }) 3. (18)
Proof: First notice that I — Ny(0)W(0) is always invertible if B(0) € NEY 1 {UD).

Since N(0) e N({V, @ U}, U $ Y, }) and N12(0) and Ny (0) are invertible, it follows that
K(0) e N{Y. },{U,.}) iff U(0) e N({V,},{U,.}). Then the result follows immediately. a

19



In the rest of this section, we show that the central controller obtained by setting U =0
in (18) is the controller which minimizes Z[F (G, K)].

Now let us go back to the characterization given in [21]. It is known (see [32] for the
continuous-time case) that if all #., suboptimal controllers are characterized by (16), then
all H. suboptimal closed loop transfer function is characterized by

F(GK) = {}' (1%, [ ¢ 0 D 1D € R, || 9|00 < 1, T+ Do FIM(0), ®(0)] is invertible}

0 0
where . . .
R 1?11 1?12 1?13
R=1| Ryi Ry R | € R
Rz R3z Rss

-1
is para-unitary satisfying [ gm ] € R'H~. Clearly we have
31

Ry Ry 0 I .
~ ~ = * M
l Ry Rao ] l I =D ]
and ]%22(0) = 0. Because of this, the H,, controller without the causality constraint which

minimizes the entropy I[]—'(G, R)] is conveniently given by K = f(M, 0)= M.
Notice that & = F(U, V) gives

o)

where R ) )
— M 0) M1 (0)M;' (0)+ Py 0 Py 0
0 0o o0 I
V= P21 0 P22 0
0 I 0 0

Consequently, if we characterize the controller using (18), then all H., suboptimal closed-loop
transfer functions are

reiy ={7 (5| 4 §]) e mmn i < b0 e v ]
where . . .
R ‘5:11 5:12 5:13 R
S=1 8931 Sy S53 | =RxVeERH.
531 532 533

20



Since R is para-unitary and V is unitary, it follows that S is para-unitary. It can be checked

. —1
that [ gm ] € RHo and S22(0) € Ns({V-}). By Lemma 1,
31

o = 1([) 5 ]) e eman (- [0 S0 ][ 4])
= Z(U)+Z(S11) + 21n | det[] — S50 (0)F(0)]|

= Z(W)+Z(S1).

The last equality is due to the fact Sa2(0)W(0) € N,({),}). Therefore, the minimum of
I[F (G, K)] is achieved at W = 0. The following theorem is thus obtained.

Theorem 7 The minimum entropy controller is given by K = Ny;.

Appendix A: Proof of Theorem 1

The proof of Theorem 1 follows from the idea in [18] but has two complications: (1) operator-
valued transfer functions are treated, which requires dealing with random variables in Hilbert
spaces [39]; (2) signals are defined on time [0, o) instead of (—o0, o), which requires treating
nonstationary stochastic processes. Since Fy is linear, it follows that z is a Gaussian process.
Define zr as the stochastic process on [0, 7] such that zr(t) = z(t) for t € [0,7]. Then 27 can
be considered as a Gaussian random variable in the Hilbert space £[0,7]. The covariance
operator Vi : £3]0,T] — L£2[0, 7] is then given by (¢ € [0,T])

T
Vea) = B |artt) [ 5 0o
= [ Bl ey
= [ B[ e [ i

- /OT /OT /OT fa(t,7) Elw(r)w' ()] f3 (£, 7)a (f)drd7dt

_ /T/T/Tfa(m)(S(r—f)f;(f, (i) drd7di

— / / Fults T fLE P () drdi

= (FuFe )()

This shows that Vg = g0 FuFy | c,0,1)- Since g o 1Fulz,j0,) is @ contractive Hilbert-
Schmidt operator and F, is causal, it follows that Vr is a selfadjoint contractive nuclear
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operator. Let the Schmidt expansion of Vi be

o0

Vi =Y o, vi)vi.

=1

Then z7 can be expressed as
o0
ar =) o
=1

and oy, ¢ = 1,2,..., are independent scalar Gaussian random variables with covariance o;.

Hence
= ool

E{exp [%/()Tz’(t)z(t)dt]} = E{exp ;

S{zr, 27)
- ﬁ E{expa}/2} = [[(1 = 0,)7/* = [det(1 — V)] 7V/2,

=1

Now lift w to get w and lift z to get (. Then z = F,w is equivalent to { = Fw and F has a
matrix representation

Let Fy be the leading K x K submatrix of F. Then
1 [Ke * N —1/2
E < exp 5/ 2 (t)z(t)dt| p = det(I — Fr Fr )™=,
0

Since F has only finite number of poles, the infinite Hankel matrix

FO) F2) F3)
F2) F3) F4)
=\ r3) f4) f05)

has finite rank. Let Hy be the first K block rows of H and define
Wk = FrFi + HxHp.

Notice that Wy is a selfadjoint Toeplitz matrix

w(0) w(—1) w(=2) - w(-K+1)

w(l) w(0) w(-1) - w(-K+2)

Wi = w(2) w(l) w(0) o w(—=K +3)
w(K:— 1) w(K:— 2) w([("— 3) - w(O)
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and w(7) is the i-th Fourier coefficient of FF~, where F™~(\) = F(A~1)*. Denote by o;(Wg)
and o;(FrF5), 1 = 1,2,..., the singular values of Wy and Fg Fj respectively assuming
ordered nondecreasingly. Then

> loi(Wi) — oi(Fr Fie)| < trHg Hy; < trHH™ < oo.
Since 0;(Wx) and o;(Fi Fj) are all contained in [—||F||2,, | F||%.], it follows that

|Indet( — FxF5) — Indet(I — Wg)| =

Zln oi(FrFg)] = > In[l — Ui(WK)]‘
=1

Z: 1__ 3 [Ui(FKF};') — UZ'(WK)]‘

for some & € [=||F||2,, || F]|2,]. This shows that

1
|lndet(I—FKFI*()—lndet(I—WK)|_ HF\P Z| (Wi)—o(Fx B)|SWHHH*.

oo 1=1

Hence by using the operator-valued strong Szego-Widom limit theorem [9, Theorem 6.4],

I}l_r}noo Qre = —ﬁl_r}noozln det(l — FFy) = — }E}noozln det (I — W)
1 o Jw 1o (L Jw _ l -
_ —%/_W Indet[] — F(eb) P (e)]deo = —T(F).

Notice that for Ko < T < (K + 1)o,

K K+1
—— Qs <Qr <
K+ 1 Re=731

QK 11)0-

Therefore, limyp_ Qr = I(F)/O‘.

Appendix B: Proof of Theorem 2
The equivalence of (a) and (b) follows from the Arveson’s distance formula [12]. That (c)
implies (a) is obvious. It remains to show that (b) implies (c). For this, we need a technical

lemma.

Lemma 7 Assume the matrices E, F, and H, of appropriate dimensions, satisfy the condi-
tions:
E* F

23

|| < 1.




Then there exists a matriz G satisfying

E F
e

<1 [a H}[?]:o e u])<t.

An explicit formula for such a matriz is: G = —HF*(EE*)71E.
Proof: It follows from [13] that there exists a matrix G such that

E F
H[ <1

G H

Among all such G characterized in [13] in terms of a free contractive matrix, the “central”
one obtained by setting the free contractive matrix to zero is

G=-HF(I-FF)'E=-HF(FE"'E.

Using this G, we have
[ E* * o —1 * *
G H | e | = —HF(EE)'EE + HF" = 0.

and

G H ] l g ] = HF*(EE")"\FH*+ HH* = H(I — F*F)"'H" < 1.

| < 1. O

The last inequality follows from || [ IZ

To avoid awkward notation in the proof of Theorem 2, we redefine
A B L P11 P12

Under the decompositions of X and Y in (3)-(4), we get the matrix representation

[ Ty + A Ty T, By, 0 -+ 0
Tor+ Ay Too+ Asp - T, By By -+ 0
T + A B _ Tnl + Anl Tn2 + An2 e Tnn + Ann Bnl Bn2 e Bnn
C D | Ch 0 . 0 0 o --- 0
Cot Clo e 0 Doy 0O --- 0
L Cnl Cn2 ttt Cnn Dnl Dn2 ttt 0 1
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Statement (b) becomes

max ||
K3

Ty

Tiiy1)
We need to decide A;;, B;;, (5, for i > j, and D;; for + > j. This will be done in the following

Tln
|| < 1.
T;

order: In the i-th step, determine those blocks in the (n + ¢)-th row and the i-th row.

Step 1:

Set Cy1 =1, T11 + Ayr = 0, and choose By so that

e

Ti, Bu |

is a co-isometry. Statement (b) implies that any By; chosen in this way is nonsingular.

Stepi,1=2,...,n—1:

Set C;1 = 0 and choose the rest of the (n + ¢)-th row so that it is a co-isometry and is

orthogonal to all of the previously determined rows. This requires

|G
to be an isometry onto the kernel of

T12

Tic1y2 + Agicrye
Caz

L Cliz1)2

Then set T;; + A;1 = 0 and choose

Tio + Agz
in such a way so that
| Ty T
T2 + Ap—1)y2 Tiz1y
Tia + Asg Ty + Ay
Clyo e 0
I Cia Cii

Ciyi Di

Ty

Tizays
0

T+ Aii

Ty

Tio1)(iv1)
Tiiy1)
0
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D1y
By .. 0
Bii_in Bii_1yi-1)
Dy --- 0
Di_pyr -+ 0
Biy Bi(i-1)

0 Dy
0 Dy

B _1yi-1
By

D1y




is a contraction and it is orthogonal to all previously determined block rows. This is possible
following Lemma 7, condition (c), and the fact that

Ty R AT Tigry - T By - 0 1
T2t A2 - Te—ne Te-ve+y 0 Te-ve Be—in - Ba—ne-
Cag e 0 0 ce 0 Doy ... 0
L Ci e Oy 0 0 Dy -+ Doy

is a co-isometry. Finally determine B;; so that
Tin+ Az -+ Ti+Ai Tigyry -+ Tin Ba -+ Bi

is a co-isometry. By Lemma 7, any B;; chosen in such a way is nonsingular.
Step n:

Set Cp,1 = 0 and choose the rest of the 2n-th row so that it is orthogonal to all the
previously determined rows. This requires

*

Cn2 Tt Cnn Dnl T Dn(n—l)

to be an isometry onto the kernel of

Ty e Ty, Biy . 0 7
T2t Am-12  Tiocyn Bcin - B
Clo . 0 Doy . 0
i Cln-1)2 e 0 Dyiyr - 0 |
Finally set
Toi+Au - T+ Ay By -+ Bn(n—l) =0
and B, = 1.
The above construction guarantees that the matrix
T+A B
[ e ] (19)

is unitary, B is invertible, and D € N({V;},{Ai}). The invertibility of C' follows from that
of B and the fact that the matrix in (19) is unitary.
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