
Proceedings of the mrd 
Conference on Decision and Control 
Lake Buena Vista, FL - December 1994 FP-2 3150 
Multirate Sampled-Data Systems: All 3.1, Suboptimal Controllers and 

the Minimum Entropy Controller* 

Li Qiu 
Dept. of Elect. & Electronic Engg. 
Hong Kong Univ. of Sci.  & Tech. 

Clear Water Bay, Kowloon, Hong Kong 
Email: eeqiu@ee.ust.hk 

Abstract 

For a general multirate SD (sampled-data) system, we 
characterize explicitly the set of all causal, stabilizing con- 
trollers that achieve a certain 31, norm bound; moreover, 
we give explicitly a particular controller that further min- 
imizes an entropy function for the SD system. The char- 
acterization lays the groundwork for synthesizing multi- 
rate control systems with multiple/mixed control specifi- 
cations. 

1. Introduction 

Multirate systems are abundant in industry [lo]; there 
are several reasons for this: (1) In multivariable digital 
control systems, often it is unrealistic to sample all phys- 
ical signals uniformly at one single rate. (2) For signals 
with different bandwidths, better trade-offs between per- 
formance and implementation cost can be obtained using 
A/D and D/A converters at different rates. (3) Multi- 
rate control systems can outperform single-rate systems; 
for example, gain margin improvement and simultaneous 
stabilization [18]. 

Since late 1950's [19], multirate systems have been stud- 
ied extensively. Recent interests are reflected in the 
LQG/LQR designs [l ,  221, the parametrization of all sta- 
bilizing controllers [21, 251, the work in [2, 14, 81, and 
among others. 

In this paper we shall treat a general multirate setup. Two 
basic elements in SD systems are S,, the periodic sampler, 
and H,, the (zero-order) hold, both with period T and 
synchronized at t = 0. The general multirate system is 
shown in Figure 1. Here, G, is a continuoustime, LTI 

Figure 1: The general multirate setup 

generalized plant; S and 31 are multirate sampling and 
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hold operators and are defined as follows: 

Hn, h 1' 
with mi and n, being integers and h the base period; 
and K,, is a discrete-time multirate controller satisfy- 
ing three properties: periodicity, causality, and finite- 
dimensionality [7]. (Such controllers are called admissi- 
ble.) 

Our goal here is two-fold: (1) to characterize all admis- 
sible Kmr which achieve a certain 31, norm bound; and 
(2) to find a particular K,, which further minimizes an 
entropy function. This characterization, like the LTI re- 
sult [ l l ,  91, is essential in designing control systems with 
multiple specifications, possibly using convex optimiza- 
tion [SI. The minimum entropy control, also like its LTI 
counterpart [23, 17, 161, is such a multi-objective control 
problem in which an analytic solution exists. 

The problem will be formulated in continuous time. Since 
the multirate system in Figure 1 is periodic, the well- 
known lifting technique is applicable to reduce the prob- 
lem to an LTI one. However, the difficulty lies in that 
lifted controllers have a causality constraint [21, 251. An 
effective framework based on nest operators is introduced 
recently in [7] to tackle this constraint. The results in this 
paper is based on further development in this framework. 

The paper is organized as follows. The next section 
gives background material on nest operators and nest al- 
gebra. Section 3 introduces the concept of entropy for 
continuous-time periodic systems. Section 4 discusses 
converting our SD problem into an equivalent LTI prob- 
lem with a causality constraint. The characterization of 
all 31, suboptimal controllers is given in Section 5 and 
the minimum entropy controller in Section 6. The details 
and proofs are contained in the full paper [24]. 

Now we introduce some notation. Given an operator K 
and two operator matrices 

the linear fractional transformation associated with P and 
K is denoted 
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and the star product of P and Q is 

Here, we assume that the domains and cedomains of the 
operators are compatible and the inverses exist. With 
these definitions, we have 

2. Prel iminary 

In this section we develop the necessary techniques to 
handle nest operators. The discussion in this section is 
intended to be general. 

Let X be a vector space. A nest in XI denoted { X i } ,  is 
a chain of subspaces in X, including {0} and X, with the 
nonincreasing ordering: 

X = XO _> Xi _> 0 . .  2 Xn-1 2 Xn = {O}. 

Let X and y be both Hilbert spaces. Denote by t ( X ,  y )  
the set of linear operators X -+ y and abbreviate as C ( X )  
if X = y .  Assume that X and y are equipped respectively 
with nests { X i }  and {yi} which have the same number of 
subspaces, say, n + 1. A linear map T E C ( X , y )  is said 
to be a nest opemtot if 

TXi c y , ,  i=O, l , . . . ,n ,  (1) 

TX, C yi+ll i= 1 , 2 , * * * , n .  (2) 

and a strict nest operator if 

Let n x ,  : X 4 Xi and llyi : Y + Yi be orthogonal 
projections. Then the condition in (1) is equivalent to 

(I -IIy,)TIxi = 0 ,  i = O , l , . . . , n ,  

and similarly for the condition in ( 2 ) .  Given nests 
{ X i }  and {y ; } ,  the set of all nest operators is denoted 
N({Xi),  {Y;} )  and abbreviated N({Xi}) if { X i }  = {Yi}; 
similarly for strict nest operators and the symbol Afa. 

Lemma 1: 

If TI E N ( { X } , { Y i } )  and T2 E N({Yi} , {Zi}) ,  
then T2T1 E N({Xi}, (2i)). 

If Tt E N( X.} {Yi})  and TZ E N({Yi} , {Zi } ) ,  
or if Ti E Jpi}, {Yi}) and T2 E N({Yi},  { Z i } ) ,  
then T2Ti E ( { X i } ,  {2i}). 
N({Xi}) forms an algebra, c d e d  nest algebm. 

If T E Na({X;}),  then (I - T)-' exists. 

If T E N({X;})  and T is invertible, then T-' E 
.N( tx; 1). 

Lemma 2: Let T E L ( X ) .  

(a) There exist a unitary operator U1 on X and an o p  

(b) There exist an operator RZ in N({Xi}) and a uni- 
erator R1 in N({Xi}) such that T = UiR1. 

tary operator U2 on X such that T = R2U2. 

If we decompose the spaces X and y in the following way 

X = (XoeXi)@(Xi e X 2 ) @ . . . @ ( X n - i 8 X n ) ,  
Y = (Yo 8 Yi)  @ (YI 6 Y2) @ - .  @ (Yn-18 Yn), 

then the associated matrix representation of T E C ( X ,  y )  
ia 

T E N({Xi} , {y i})  means that this matrix repreaen- 
tation is (block) lower triangular: Tij = 0 if a > j. 
T E Na({Xi},{Yi}) means that this matrix representa- 
tion is strictly (block) lower triangular: Zj = 0 if i 2 j. 

Now we restrict our discussion to finite-dimensional 
spaces. We shall give a result which strengthens Arve- 
son's distance formula. For this, we need some more nu- 
tation. With X and y as before, introduce two more 
finite-dimensional Hilbert spaces 2 and W .  A linear o p  
erator T E C(X @ y ,  2 @ W )  is partitioned as 

with T11 E L ( X ,  Z), 2-21 E L ( X ,  W), etc. For nests {Xi}, 
{yi} ,  { Z i } ,  {Wi} in X ,  y ,  2, W respectively, d with 
n + 1 subspaces, the nests {Xi @ Yi} and {Zi @ Wi} are 
defined in the obvious way. Hence writing 

means Ti1 E N({Xi},  {Zi} ) ,  T21 E N({Xi},  {Wi}), etc. 

Theorem 1: Let T E C ( X ,  Y ) .  The following statements 
are equivalent: 

(a) maxi Il(1- nyi)Tlx, 11 < 1. 
(b) There exists N E N({Xi},{Yi})  such that llT + 

NI[ < 1. 
(c) There exists 

with A 2  and 4 1  both invertible such that 

P2 1 

is unitary. 

The equivalence of (a) and (b) is actually given by Arve- 
son's distance formula. The proof of the equivalence of 
(c) and (a) is rather involved and is left in [24]. The exis- 
tence of P in (c) is proven constructively and hence P can 
be computed if condition (a) in Theorem 1 holds, which 
is easily verifiable. With Theorem 1, we can easily char- 
acterize all N E N({Xi},  { y i } )  such that IIT + Nil < 1. 
This is done in [24] but is not needed in the following. 
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3. Entropy for Periodic Systems 

With reference to Figure 1, let 1 be the least common 
multiple of the integers, {ml,. . * , mp, nl , . . . , nq} and U = 
lh. If Kmr is admissible, the control path 31KmrS is 
u-periodic in continuous time [7] and hence the system 
mapping w to z in Figure 1, F(Go,31KmrS), is also u- 
periodic. This periodicity allows an entropy function to be 
defined for the SD system. For this, we need to lift the u- 
periodic system F(G,, 31Km,S) as in [3, 51 to get an LTI 
discrete-time system, say, Fi. T@s lifted system has an 
operator-valued transfer function Fi(X): For every X in the 
region of convergence, Ft(X) is a bounded operator Ec + 
Ec, where IC = &[O,u). (Here we used the Xtransforms 
instead of the z-transforms, where X = z- ' . )  

For a general discussion, let X and y be Hilbert spaces 
and f = { f ( k )  : k = 0,1,2, . . a }  be a sequence of bounded 
operators from X to y .  Then 

P(X) = f(k)Xk 
k=O 

defines an operator-valued function on some subset of C, 
the complex plane. We say that P belongs to 31m(X, Y )  
if P is analytic in V, the open unit disk of C, and 

SUP IIP(M < 00. 
X V  

In this case, the left-hand side is defined to be the 31, 
norm of E,  denoted by IIEllm, the operator E(ejw) is 
bounded for almost every w E [ -A ,  A) ,  and 

ess SUP IIE(ejW)II = IIPllm. 
WE[-"*") 

Now let f be a sequence of Hilbert-Schmidt operators 
from X and y .  The set of Hilbert-Schmidt operators 
equipped with the Hilbert-Schmidt norm, 11 .  I I H S ,  is a 
Hilbert space [13]. Then 

m 

P(X) = f(k)Xk 
k=O 

is a Hilbert-space vector-valued function on some subset 
of C. We say that F belongs to %(X,  Y )  if 

/ m  

In this caw, the left-hand side is taken t? be the 312 norm 
of P ,  denoted by IIPllz, the operator F(ejw) is Hilbert- 
Schmidt for almost every w E [ -A, *), and 

Assume P E 'H,(X, y)n.fi2(X, y )  and IIPlloo < 1. Define 
the entropy of P to be 

This entropy is well-defined: Since P(ej") is a Hilbert- 
Schmidt operator at almost every w E [-R, A),  its singular 
values form a square summable sequence {uk(ejw)} with 
uk(ejw) 5 IlI'll < 1; hence 

00 

det[I- P'(eiw)P(ejw)] = n[l - u:(e'")] 

and it converges to some number in (0,l). This also shows 
that Z(P) is nonnegative. The following lemma can be 
shown in a similar way as its continuous-time matrix- 
valued counterpart [23]. 

k = l  

Lzmma 3: Assume P E X H , ( X , Y )  n 312(X,Y) and 
IlFllm < 1. Then 

Returning to the multirate SD system in Figure 1, the 
lifted map tu I+ z has an operator-valued transfer function 
Pt(X). If the closed-loop SD system is internally stable [q, 
then under a mild condition, I? E &,(Ec, Ec) n 312(Ec, Ec) ;  
moreover, llRllm equals the t2-induced1norm of the 
continuous-time system F(Go, 'HKmrS); 11Fil12 equals the 
312 norm of the same system, which is introduced in 
[4] in terms of impulse responses of SD systems; and 
the 312 norm is bounded above by the entropy Z(ft), 
which will be referred to as the entropy for the system 
F(Go, 'HKmrS). 

4. Reduction to a Matrix-Valued Problem 

Now we are ready to state our problems precisely: Given 
Go, S and 31 in Figure 1, (1) characterize all admissi- 
ble, stabilizing Kmr to achieve ~~F(G~,31KmrS)~~m < 1 
(such controllers are called suboptimal ones); (2) find a 
particular K,, from those in (1) to minimize the entropy 
Z[T(Go, 31KmrS)I. 

For motivation of the minimum entropy control, see [23]. 
If only the first problem is concerned, one can use the 
results in [27] or [7] to reduce the problem into an LTI 
disnete-time problem involving matrix-valued transfer 
functions only. But these results may not preserve the 
entropy. To tackle the two problems at  the same time, a 
different reduction process is developed based on lifting, 
the details being given in [24]. This can be summarized 
below. 

(A) Start with a state model of Go: 
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Lift Go and perform certain mathematical oper- 
ation to the lifted system. This will result in 
a discretetime LTI system G with matrix-valued 
transfer function G. 

(B) Define K to be the lifted Kmr as in [7] and then 
Kmr is admissible iff K is finitedimensional, LTI 
and causal with the direct feedthrough term being 
a nest operator, namely, R(o) E N({Yr},{Ur})* 
where the nests {Yr} and {Ur} are defined similarly 
as in [7]. 

This becomes our equivalent LTI system in the following 
sense. Let F ( G , K )  be the closed-loop system w C) C 
in Figure 2; then internal stability of F(Ga,XKmrS) is 

.................. ................. 
.......... I-qw ........ 

+ ;  : U  

............ 1 - q  .............. 

Figure 2: The equivalent LTI system 

Our equivalent problems for the setup in Figure 2 are now: 
(1) characterize all proper, stabilizing K with k(0) E 
N({Yr},{Ur}) to achieve ~ ~ F ( & , R ) ~ ~ ~  < 1; (2) find a 
particular K from those in (1) to minimize the entropy 
Z[T(&,R)]. These problems are standard except the 
causality condition on @o), which is OUT main concern in 
the next two sections. 

Note that a state space model of in G can be computed 
based on that of Go, see [27, 71; by some special consid- 
eration [24], G has the following causality structures: 

&11(0) = E Na({Wr}, {A}), 
612(0)  = E N({Ur}, {2r}), 
&1(0) = E Na({Wr}, {Yr}), 
&(o) = E Na({Ur}, {Yr}), 

where the nests {Wr} and {Zr} are defined appropriately 
in [24]. Also note that under mild conditions, is stabi- 
lizable and 6 1 2 ,  6 2 1  have no zeros on the unit circle. 

5. All 31, Subopt imal  Controllers 

In this section, we tackle the constrained X, problem: 
Find all 31, suboptimal controllers in Figure 2 which are 
proper, stabilizing and satisfy the causality condition. We 
remark here that one such controller can be computed by 
results in [28, 71. 

First we characterize all stabilizing controllers. Instead 
of using the traditional Youla parameterization, we use a 
result in [20]: There exists 

pH p12 E 'R'H,. 
f'=[ T21 0 ] 

Clearly 

Now let us put aside the c a e t y  constraint on Q 
temteryily and characterize all Q E 'RXw such that 
11F(T, Q)llw < 1. This is a standard 'H, model-matching 
problem. If this unconstrained problem is solvable, its sc- 
lution is given by [12, 151 

{Q = F(L,&) : & E a%,, lltqlw < l}, 

with e12,  e 2 1  invertible over RXw and IIe2211w < 1. 

Define the Julian matrix 

I .  [z - e;2(0)e22(0)]1~2 

v =  1 [I - e2~(0)e;2(0)]1~2 -e22  (0) 

and perform the factorizations by Lemma 2 

~%2(0)[Z - &1L22(0)]-'&2 = RlUt, 

VZl[I- L2(0)K1]-'&21(0) = U2R2 

80 that U1 and U2 are unitary matrices and RI E 
N({Ur)), R2 E N({Yr}). Let 

U=[.: 0 U: 0 1  
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Since V and U are unitary, so is V * U. Hence the set of 
0 solving the unconstrained problem can be ale0 charac- 
terized by 

{Q = F(&,&) : 4 E 'R31,, 11q1, < l}, 

where M = L*V*U. I t  is easy to check that &12(0) and 
&1(0) are invertible and 

&12(0) E N({Ur}), 

621(0) E N({Yr}), 
&22(0) = 0. 

Now let us return to the constrained 31, problem. 

Theorem 2: The constrained 31, problem is solvable iff 
the corresponding unconstrained problem is solvable and 

maxll(I - ~~~)&f12(0)-'&11(0)&21(0)-'I~~II < 1. (3) 

Proof: 
gives 

Pre- and post-multiply this by &12(0)-' and &21(0)-' 
respectively to get 

The direct feedthrough term of Q = F(&,&) 

Q(0) = klI(0) + h312(0)&(0)h321(0). 

A212(0)-1Q(0)&21 (O)-l 
= A212(0)-1~11(0)A221(0)-~ + Q(0).  

I t  follows from Theorem 1 that in order to have Q(0) E 
N({Yr},{Ur}) and llB(O)ll < 1, we must have (3). Con- 
versely, if (3) is true, then there exists a constant matrix 
0 with ll@ll < 1 such that 

&12(0)-'~11(0)&21(0)-' + a  E N({Yr}, {Ur)). 

Hence Q = T(&, @) achieves Q(0)  E N({Yr}, {Ur}). 
0 

For solvability of the constrained 31, problem, by Theo- 
rem 2, we need to check the solvability of the correspond- 
ing unconstrained problem and the condition (3). Solv- 
ability of the unconstrained problem is standard and is 
given in, e.g., [12, 151; condition (3) involves only matrix 
norm computations. 

If the conditions in Theorem 2 are satisfied, then there 
exists 

with P12 and P21 invertible such that 

4 2  p12 1 w = [ -~i1(O)~11(0)&2?(O) + Pl1 
P 2  1 

is unitary. Define fi = P * &f * W. It is easy to check 

are invertible. 
that A(0) f N({Yr@Ur},{Ur@Yr}) and A12(0), R1(0) 

Theorem 3: Assume solvability of the constrained 31, 
problem. Then the set of all controllers solving the prob- 
lem is given by 

Proof: Since A(O) E N({Yr Ur}, {Ur @ Yr))-and 
fi12(0), &1(0) are invertible, it follows that F(N,cP) E 
N({Yr}, {Ur}) iff 4 E N({Yr}, {Ur}). Then the result 
follows immediately. 0 

This theorem lays the groundwork for design of multirate 
control systems involving multiple/mixed design specifica- 
tions, with one of them being a certain ?lw norm bound. 

6. Minimum Entropy Control 

Under certain solvability conditions, we have shown in the 
preceding section that all 31, suboptimal controllers are 
characterized by 

{R = @,&) : & E RZ,, 11&lIw < 1, 

&(o) E N({YrI, WrI) 1, 
where 

A(o) E N({Yr e Ur}, {Ur @ Yr}). 

Hence all 31, suboptimal closed-loop transfer functions 
are 

{F(&, R) = F(.3,&) : 6 E 723100, 11411, c 1, 

+(o) E N({YrI, {UrI) 1, 
where 

and 
.322(0) = X({Ur}, {Yr}). 

Because of internal stability and the norm requirement, j 
belongs to 2?lw and is contractive. 

The purpose of this section is to choose one particular 31, 
suboptimal controller which minimizes the entropy of the 
closed-loop transfer function. 

Since .f is-conFactive, we can find R31, functions j13, 
123, j31, 532, 333 such that 

is para-unitary. Then another way to characterize the 31, 
suboptimal closed-loop transfer functions is 
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= I(&) + Z(&I) + 2lndet(I  - &(0)&(0)). 

The last equality is due to 322(0)&(0) E A/,({&}). There- 
fore, the minimum of Z[F(&,&)] is achieved at & = 0. 
The following theorem is thus obtained. 

T h F r e m  4: The minimum entropy controller is given 
by K =  fill. 
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