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Abs t r ac t .  This paper concerns general multirate systems and the constrained two- 
sided Nevanlinna-Pick interpolation problem. A general multirate system can be 
converted to an equivalent LTI system with a causality constraint which requires 
the feedthrough term of its transfer function to belong to a set of nest operators. 
Motivated by this fact, we propose a multirate version of two-sided Nevanlinna-Pick 
interpolation problem and give a necessary and sufficient solvability condition based 
on the matrix positive completion. This constrained interpolation problem is of 
interest mathematically and has potential applications in control, signal processing 
and circuit theory. 

3.1 I n t r o d u c t i o n  

Recently, much at tent ion has been paid on mul t i ra te  systems due to its 
wide applications in signal processing, communicat ion,  control and numeri-  
cal mathematics .  Multirate signal processing is now one of the most  v ibrant  
areas of research in signal processing, see recent books [24,25] and references 
therein. The driving force for s tudying mult i ra te  systems in signal process- 
ing comes from the need of sampling rate conversion, subband coding, and 
their ability to generate wavelets. In communicat ion community,  mul t i ra te  
sampling is used for multi-channel t ransmult iplexers  [19] and blind sys tem 
identification and equalization [18]. In control community,  there has recently 
considerable research devoted to mult i ra te  controller design, e.g., stabilizing 
controller design and various types of opt imal  control [6,23]. 

The s tandard  technique for t reat ing mult i ra te  systems is called lifting in 
control and blocking in signal processing. I t  is well-known tha t  a mul t i ra te  
system can be converted to an equivalent single rate  LTI system. This  LTI 
system, however, is not arbitrary,  but  satisfies a causali ty constraint  which is 
represented by the language of nests and nest opera tors  in a sys temat ic  way 
[4,23]. T h a t  is, the feedthrough t e rm of the equivalent LTI sys tem belongs 
to a set of nest operators.  In this paper,  we will s tudy  a mul t i ra te  version 
of a general analytic interpolation problem: constrained two-sided tangential  
Nevanlinna-Pick (N-P) interpolation problem. 

* This work is supported by the Hong Kong Research Grants Council 
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The theory of interpolation with analytic functions has a very rich history 
in mathematics [1,9]. Moreover, it is used in a variety of engineering fields 
such as control, circuit theory .and  digital filter design [7,14,15]. The N-P 
interpolation was first brought into system theory by Youla and Saito, who 
gave a circuit theoretical proof of the Pick criterion [28]. In the early stage 
of the development of 7-/~ control theory, the analytic function interpolation 
theory played a fundamental role [10,26]. A detailed review of this connec- 
tion can be found in [14,16]. Recently, some new methods in high resolution 
spectral estimation have been presented based on the N-P interpolation with 
degree constraint [17,11,2]. The analytic function interpolation problems are 
also used extensively in robust model validation and identification[3,13,20]. 

In this paper, we study the constrained two-sided tangential N-P inter- 
polation problem, which requires the value of the interpolating functions at 
the origin to belong to a prescribed set of nest operators. This constrained 
interpolation problem plays the same role to mult irate systems as the uncon- 
strained counterpart  do to single rate systems. The necessary and sufficient 
solvability conditions are given based on the matr ix  positive completion. The 
interpolation and distance problems involving analytic function with such 
structural constraint were first discussed in [14], but  the general problem 
considered in this paper was not given there. This paper is organized as fol- 
lows. In section II, we show how to convert a general mult irate system to 
its equivalent LTI system with a causality constraint described by the lan- 
guage of nests and nest operator.  In section III, we present some preliminary 
results on analytic interpolation problems and propose the constrained two- 
sided tangential N-P interpolation problem, which is a multirate version of 
the standard interpolation. The necessary and sufficient solvability conditions 
are then presented in Section IV. Finally, the paper is concluded in Section 
V. 

3 . 2  G e n e r a l  M u l t i r a t e  S y s t e m s  

Consider a general MIMO multirate system shown in Fig. 3.1. Here ui, 
i = 1, 2 , . . .  ,p, are input signals whose sampling intervals are rnih respec- 
tively, and yj, j = 1, 2 , . . .  , q, are ou tput  signals whose sampling intervals are 
njh respectively, where h is a real number called base sampling interval and 
rni, nj are natural  numbers (positive integers). Such systems can result from 
discretizing continuous time systems using samplers of different rates or they 
can be found in their own right. Assume that  all signals in the system are 
synchronized at t ime 0, i.e., the t ime 0 instances of all signals occur at the 
same time. In this paper, we will focus on those multirate systems tha t  sat- 
isfy certain causal, linear, shift invariance properties which are to be defined 
below. 

Since we need to deal with signals with different rates, it is more conve- 
nient and clearer to associate each signal explicitly with its sampling interval. 
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Fig.  3.1. A general multirate system. 

Let  g~ (T) denote  the  space  of l~ ~ valued sequences:  

~ (~) = {{ . . .  ,x ( -~ ) ,  Ix (0) ,~ (~) ,x (2~) , . . .  }: x (k~) �9 s~} .  

P (rnih) to @q_l~(njh). I t  is said T h e  s y s t e m  in Fig. 3.1 is a m a p  f rom @i=lg 
to be  l inear if this m a p  is a l inear map .  

Let  l C N be a mul t ip le  of  mi and  nj,  i = 1 , 2 , . . .  ,p, j = 1 , 2 , . . .  ,q. 
Let  ~ ----- l/rn~ and ~j  = l /n j .  Deno te  the  sets {rni} and  {n j}  by  M and  
N respect ive ly  and  the  sets {~h~} and  {Sj} by M and  /V respect ively.  Le t  
S : g~(T) ) gr(~-) be the  forward  shift  ope ra to r ,  i.e., 

s { . . . ,  x( -r  tx(0), x(r  } = { . . . ,  x( -2r  Ix(-r x(0), x(r  }.  

Define 

S ~  = d i a g { S ~ l , . . .  , S m~ }, $ 2  ---- d i a g { S S 1 , . . .  S 5q }. 

T h e n  the  mul t i r a t e  sys tem in Fig. 3.1 is said to be  (57/, f i /)-shift  invar iant  or 
lh per iodic  in real  t ime  if FmrSM = Sf~Fm,.. Now let Pt : ~r(T) > ~(~-) be  
the  t r unca t i on  opera tor ,  i.e., 

Pt { . . .  , x ( (k  - 1 )T) , x (kT) , x ( (k  + 1 )T) , . . .  } 

= {. . .  , x ( (k  - 1)~-), x(kT-), 0 , . . .  } 

if k~- _< t < (k + 1)~-. E x t e n d  this  defini t ion to  spaces GP=ig(mih) and  
oq=]g(njh) in an obvious way. T h e n  the  mul t i r a t e  s y s t e m  is said to  be  causa l  
if 

Pt u = Pt  v ~ Pt  F . . .  u = Pt  Fm,~ v 

for all t E ]~. In  this paper ,  we will concen t r a t e  on causal  l inear  (2/~/, fiT)- 
shift  invar iant  sys tems.  Such genera l  mu l t i r a t e  sy s t em covers m a n y  famil iar  
classes of  sys t ems  as special  cases. I f  rni, n j ,  l are all the  same,  t hen  this  is 
an  LTI  single ra te  system�9 If  rni, nj are  all the  same  bu t  l is a mul t ip le  of  
them,  then  it is a single ra te  / -per iodic  s y s t e m  [22,12]. If  p = q = 1, this  
becomes  the  SISO dual  ra te  s y s t e m  s tudied  in [5]. I f  rni are the  s a m e  and  
nj  are the  same,  then  this becomes  the  M I M O  dual  r a t e  s y s t e m  s tud ied  
in [21]. For sys t ems  resul ted f rom discret izing LTI  cont inuous  t ime  sy s t ems  
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using multirate sample and hold schemes in [4,23], l turns out to be the least 
common multiple of mi and nj.  The  s tudy of mult irate systems in such a 
generality as indicated above, however, has never been done before. 

A standard way for the analysis of multirate systems is to use lifting or 
blocking. Define a lifting operator  Lr : g(7) - - *  ~r(r'r) by 

L ~ { . . . I x ( O ) , x ( T ) , . . . } ~  . . . I  " , " , . . .  

kx((2 - I)T)J 
and let 

LM----diag {Lrn l , . . .  ,Lmp} , LN = diag { L n i , . . .  ,Lnq} .  

Then the lifted system F = LgzFm~LM i is an LTI system in the sense tha t  

F S  = S F .  Hence it has transfer function fi" in A-transform. However, F is not 
an arbitrary LTI system, instead its direct feedthrough term F(0)  is subject 
to a constraint resulted from the causality of Fm~. This constraint is best 
described using the language of nests and nest operators [21,23]. 

Let 2d be a finite dimensional vector space. A nest in 2d, denoted {Xk} ,  
is a chain of subspaces in X, including {0} and X, with the non-increasing 
ordering: 

X=Xo 2 x 1  _~..._~ X~_l _~x~ = {0}. 

Let H, Y be finite dimensional vector spaces. Denote by /:(b/, y )  the set of 
linear operators H --* Y. Assume that  /4 and y are equipped respectively 
with nests {b/k} and {Yk} which have the same number of subspaces, say, 
1 + 1 as above. A linear map T E/:(/4,  Y) is said to be a nest operator  if 

Tb/k E_ Yk,  k = 0 , 1 , . . .  ,1. (3.1) 

L e t / / u k  :/4 --~ b/k and Fly k : 32 --* Yk be orthogonal projections. Then  (3.1) 
is equivalent to 

( I -  H y  k )THuk  = 0, k = 0 , . . .  , l -  1. (3.2) 

The set of all nest operators (with given nests) is denoted Af({b/k}, {Yk}). If 
we decompose the spaces b / a n d  y in the following way: 

/4 = (/40 eb/1)  @ (Hi Ob/2) 0 . . - |  (b/~-i eL/z) (3.3) 

Y = (3;0 O Yi) @ (Yi O 3;2) O . . -  �9 (Yt-i  E) Yt) (3.4) 

then a nest operator T E A/({b/k}, {Nk}) has the following block lower trian- 
gular form 

i .  . ETa Tz~ z 
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Wri te  u = LE4u, y = L~y .  T h e n  

u ( 0 )  = [ul ( 0 ) - . - u l  ((rhl - 1 ) m l h ) . . . U p  (O).. .Up ((rhp - 1)mph)]  T,  

y (0) = [Yl ( 0 ) - - - y l  ((nl  - 1 ) n l h ) . . . y q  (O) . . .yq  ((~tq - 1)nqh)]  T.  

Define for k = 0, 1 , . . .  , l, 

/4k = {u (0) :  ui (rmih)  = 0 if r m i h  < kh} 

Yk = {Y(0) :  yj (rnjh)  = 0 if r n j h  < kh}.  

T h e n  the  lifted plant  F satisfies 

fi" (0) �9 Af({/4k}, {Yk}). (3.6) 

Now we see tha t  each mul t i ra te  sys tem has an equivalent  single ra te  LTI  
sys tem with  a causal i ty  cons t ra in t  which is charac ter ized  by  a nest  ope ra to r  
constra int  as in (3.6) on its t ransfer  function.  

We end this section by showing an example.  Consider  the  sys tem shown 
in Fig. 3.1. Let  p = q = 2, m l  = 2, m2 -- 6, n l  -- 4, n2 -- 3 and l = 12. T h e n  
rhl = 6, rh2 = 2, n l  = 3 and n2 = 4. Let  u and y be the  lifted signals of  u 
and y respectively. Then  we have 

_~.(0) = [ n l ( 0  ) ~tl(2h ) Ul(4h) u l (6h )  Ul(8h) u , (10h )  us(0)  u 2 ( 6 h ) ] T  

y(0) = [y l (0)  y l (4h)  y l (8h)  y2(0) y2(3h) y2(6h) y 2 ( 9 h ) I T .  

Denote  the  i th  column of 8 x 8 ident i ty  ma t r i x  by ei. T h e n  the  nests {/4k} 
are as follows 

/'/12 ---- 

/410--- 

/4s= 
/46 = 

/ 4 4 =  

/ 4 o =  

Similarly, 
follows 

:1;12 = 

3:9= 
Ys= 
Y6= 
Y4= 
Ya= 
3:0= 

Ull ={0} 
/ 49=  span{e6} 

/ 4 7 = s p a n { e 5 ,  e6} 

/45----span{e4, e5,e6, es}, 

/43=span{e3,  ea, e5, e6, e8} 

/41 -=span{e2, e3, e4, e5, e6, es} 
~s. 

denote  j t h  column of 7 x 7 ident i ty  m a t r i x b y d j ,  we get {Yk} as 

Yll =3:10={0} 
span{d7} 

YT--  span{d3,dT} 

Y5 = span{d3,d6, dT}, 

span{d2,d3,d6, d7} 

3;2=3;1  =span{d2,d3,d5,d6,  d7} 
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Then H({~}, 

- , 0 0 0 0  
* * * 0 0  

* 0 0 0 0  
* * 0 0 0  
* * * * 0  

{Yk}) consists of matrices of the form 

0 . 0 -  
0 . 0  
0 . *  
0 . 0  
0 . 0  
0 . *  
0 . *  

where " ."  represents an arbitrary number. Note that  such matrices are not 
block lower triangular, but can be turned into block lower triangular matrices 
by permutations of rows and columns. 

3.3 Constrained Analytic Interpolation Problems 

In this section, we will formulate the two-sided tangential N-P interpolation 
problem with a nest operator constraint, which can be viewed as a multirate 
version of the standard interpolation problem. 

Let 2di and Zj be finite dimensional Hilbert spaces for i = 1 , . . .  , M, and 
j -- 1 , . . .  , N. Also l e t /4  and y be finite dimensional Hilbert spaces with 
nests {/gk} and {Yk} respectively. Consider the linear bounded operators 

Ui : X~ ---~ ld, Yi : Xi ---+ Y , i  = I , ' "  , M  

Vj :bt---~ Z j ,  Wj  : y---~ Z j , j =  I , . . .  , N .  

Given two sets of complex numbers {a~} and {~j} on the open unit disc 
D, where ai  # 3j for every i and j. Denote ~ ( b / , y )  the Hardy class of 
all uniformly bounded analytic functions on D with values in/ :( /4,  y ) .  The 
constrained two-sided tangential N-P interpolation problem for the da ta  A~, 
Ui,j, and Y~,j is to find (if possible) a function G in 7-/oo(/4, y )  which satisfies 

(i) the interpolation conditions 

G(a )Ui = (3.7) 
%d(Zj )  = Yj (3.S) 

for i = 1 , . . .  , M  and j = 1 , . . .  ,N, 
(ii) IIGII~ < 1, and 

(iii) the nest operators constraint 5(0) E Af({b/k}, {Yk}). 

Requiring only conditions (i) and (ii) accounts to the s tandard two-sided 
tangential N-P interpolation, the solvability condition of which is well-known 
[1,9]. We present it here as a lemma for completeness. 
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L e m m a  1. Given the data ai ,  Ui, Y~, fly, Wj  and Vj for  i = 1 , . . .  , M and 
j = 1 , . . .  , N ,  where ai  7 ~ /3j for  every i and j .  The standard two-sided 
tangential N - P  interpolation problem has a solution i f  and only i f  

[Q11Q~l]  > O, (3.9) 
Q = LQ21 Q22J 

where 

= - - -  ( 3 . 1 0 )  
Q l l  - ~ OLm i , m = l  

@~=L , 2 j - ~  ,~=1 ..... N (3.11) 
z .1 i=1,... ,M 

= . (3.12) 

The right and left tangential N-P interpolation problems can be con- 
sidered as a two-sided one with only one of the conditions ( 3 . 7 )  and (3.8) 
respectively. In such cases, Q n  and Q22 in Lemma 1 are the so-called Pick 
matrices. 

It is natural  in the study of multirate systems to require tha t  the inter- 
polating function satisfies the condition (iii) since a multirate system can be 
converted to an equivalent LTI system with a constraint tha t  its feedthrough 
term belongs to Af({Uk}, {Yk}). We end this section by introducing some 
notations. For the constrained two-sided tangential N-P interpolation data,  
denote 

a = d i a g ( a l , . . .  , a M )  , 

/3 = diag(/31,... ,/3N), 
v=[v, v2...vM], 
g =  [ Y1Y2 . .  g M ] ,  

W =  , V =  . 

3 .4  S o l v a b i l i t y  C o n d i t i o n s  

The purpose of this section is to obtain the necessary and sufficient solvability 
condition of the constrained two-sided tangential N-P interpolation problem. 
First, we need a result on matr ix  positive completion. The matr ix  positive 
completion problem is as follows [8]: Given Bij,  IJ - i l  -< q, satisfying B g  = 
B2~, find the remaining matrices B~j, [j - i I > q, such that  the block matr ix  
B = [Bij]inj=l is positive definite. The matr ix  positive completion problem 
was first proposed by Dym and Gohberg [8], who gave the following result: 
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L e m m a  2. 
only if  

Bi~ . . .  B~,~+q 
: 

B i + q , i ' "  Bi+q,i+q 

The matrix positive completion problem has a solution if  and 

> o, i -- 1 , . . .  , n - q .  (3.13) 

Reference [27] gave a detailed discussion of such problem and presented 
an explicit description of the set of all solutions via a linear fractional m a p  
of which the coefficients are given in te rms of the original data.  However, 
Lemma  2 is enough for us. We are now in a position to s ta te  the main result 
of this section. 

T h e o r e m  1. Given the data ai, Ui, Yi, ~j, Wj  and Vj for i = 1 , . . .  , M and 
j = 1 , . . .  ,N ,  where ai 7 s ~j for every i and j. In the case when ~j 7 s 0 for 
all j, the constrained two-sided tangential N-P  interpolation problem has a 
solution if  and only if  

Q21 Q22J -t- ]~_lw Uy k [Y (~-lN)*] 

- r 1-Iuk [ U ( ~ - l V ) *  ] > 0 (3 .14)  

for all k = 1 , . . .  , l. In the case when ai 7s 0 for all i, it has a solution if and 
only if  

021 O22 J + U *  

[:1 - r/y  [g -i w ' ]  _> 0 (3.15) 

for all k = 0 , . . .  ,l - 1. 

Proof." We first give the proof  for the ease when t3j 7s 0 for all j .  The  nest 
operator  constraint  can be viewed as an additional interpolation condition 

G(0 ) I  = T 

for some T �9 H({Uk},  {Yk}). Set so  = 0, U0 = I and Yo = T. By L e m m a  1, 
the constrained interpolation problem has a solution if and only if there exists 
T �9 JV({Hk}, {Yk}) such tha t  

>0, 
Q21 Q22 J - 

where 

[ I - T * T  U - T * Y ]  

Q n  = IN* - Y * T  Ql l  J 

Q2~ = [ Z - l ( v  - W T )  Q2: ] , 
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i.e., 

I - T * T  U - T * Y  (V* - T*W*)t3 *-1 ] 
U* - Y * T  Qll  Q~I J -> 

/3-1(V - W T )  Q21 Q22 
0. (3.16) 

Note that  the left-hand side of (3.16) can be rewritten as 

I U V*/~ *-1 ] 
U* Ql l  + Y * Y  Q~I + Y * W * ~  *-1 ] /~-IV Q21 + / 3 - 1 W Y  Q22 + ~ - I W W * 3  *-1 

_ y*  [ T Y W * ~ * - I ] .  
/3 -1W 

By schur complement, inequality (3.16) is equivalent to 

I U V*3  *-1 T* 
U* Ql l  + Y * Y  Q~I + Y*W*f l  *-1 Y* 

• - l v  Q21 + / 3 - 1 W y  Q22 + J3 -1ww*t3  *-1 t 3 - 1 W  
T Y W*3 *-1 I 

> 0. (3.17) 

If we decompose the space as (3.3-3.4), then a nest operator T E Af({L/k}, {Yk}) 
has a block lower triangular form shown in (3.5). Therefore, the constrained 
two-sided tangential N-P interpolation problem has a solution if and only if 
(3.17) holds for a block lower triangular matrix T. This is a matrix positive 
completion problem. By Lemma 2, there is a block lower triangular matrix 
T satisfying (3.17) if and only if 

17u~ V /~ 0 I HukU �9 . -1  

(//Uk U)* Qll  + Y * Y  Q~I § r * w * f l  *-1 ( U y ~ r ) *  
(/-/b/kV*/~*-l) * Q21 §  Q22 §  ( g y ~ w * f l * - x )  * 

0 IIy~ Y rr , ~ , ~ , - 1  

is positive semi-definite for k = 0 , . . .  , I. It follows from Schur complement 
that this is equivalent to that  inequality (3.14) holds for k = 0 , . . .  ,l. We 
claim that (3.14) when k -- l implies (3.14) when k ---- 0. In fact, when k ---- l, 
inequality (3.14) gives (3.9). When k = 0, inequality (3.14) gives 

Q21 Q22[ § 3 - 1 W  [Y W*/~*-l] - /~- lV [U y*/~ *-1] _> 0. 

(3.18) 

By some algebra manipulations, we have (3.18) is equivalent to 

[o',L] rQ,1 [o,?-1] o. 
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I t  is obvious tha t  (3.9) implies (3.19). Hence, the constrained two-sided tan-  
gential N-P interpolation problem has a solution if and only if (3.14) holds 
f o r k = l , . . .  ,l. 

On the other hand, assume a~ ~ 0 for all i. Note tha t  the nest opera tor  
constraint can also be viewed as an addit ional interpolation condition 

I 8 ( 0 )  = T 

for some T C J~({/gk}, {Yk}). Set /30 = 0, W0 = I and V0 ---- T. A similar 
argument  can show tha t  there is a solution if and only if (3.15) holds for 
k = 0 , . . .  , l - 1. This completes the proof. [] 

The solvability condition for the s tandard  two-sided tangential  interpola- 
tion problem without  constraint  s ta ted  in L e m m a  1 is recovered when l ---- 1. 

C o r o l l a r y  1. There exists a solution to the right tangential N-P interpo- 
lation problem with constraint Af({Hk}, {Yk}) for the data a~, Ui, Yi, i = 
1 , . . .  , M ,  i f  and only if  

l 1 -- a--i*a--~ - U*llukUm + Yi*IlykYm >_ 0 (3.20) 
i ,  r n =  l 

for all k = 1 , . . .  ,l. 

P r o o f :  Note that  the left-hand side of (3.20) is exactly 

Q n  + Y* IIyk Y - U* IIuk U, 

where Q n  is given by (3.10). The result is then obvious from Theorem 1. [] 

C o r o l l a r y  2. There exists a solution to the left tangential N-P interpolation 
problem with constraintAf({blk}, {Yk}) for the data ~j, Wj ,  Vj, j = 1 , . . .  , N ,  
if and only if 

[ 
+ v :  - >_ o 

for all k = O, 1 , . . .  , 1 -  1. 

3 . 5  C o n c l u s i o n  

In this paper,  we s tudy mult i rate  systems and related analytic function in- 
terpolat ion problems. We show tha t  each mult i ra te  system has an equivalent 
LTI system with a causali ty constraint  which can be formulated in a unified 
framework via nest operators  and a nest algebra. We then propose a mul- 
t irate version of the two-sided tangential  N-P interpolation problem, which 
requires the value of the interpolating function at the origin to be in a pre- 
scribed set of nest operators.  A necessary and sufficient solvability condition 
is given based on the mat r ix  positive completion. This constrained interpo- 
lation problem proposed in this paper  has potential  applications in a variety 
of issues in control, signal processing, circuit theory and communicat ion.  
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