
NEST ALGEBRAS, CAUSALITY CONSTRAINTS, AND 
MULTIRATE ROBUST CONTROL* 

TONGWEN CHENt AND LI QIUt 

Abstract. Nest operators and nest algebras present a natural framework for study­
ing causality constraints in multirate control systems [8]. In this article, we first give 
a tutorial on this framework and then look at robust stabilization of analog plants via 
multirate controllers and provide an explicit solution to the problem. 

1. Introduction. The main advantage of a multirate sampling and 
hold scheme is to achieve better trade-off between performance and im­
plementation cost. Generally speaking, faster AID and DIA conversions 
improve performance in digital control systems; but these also mean higher 
cost in implementation. For signals with different bandwidths, better trade­
offs between performance and implementation cost are possible using AID 
and D I A converters at different rates. 

The study of multirate systems began as early as 1950's [24,21,22]; 
recent interests are reflected in the LQG/LQR designs [5,1,27]' the con­
troller parametrization [25,31]' and the work in [28,2,18,9,32]. The con­
troller parametrization in [25,31] provides a basis for designing optimal 
multirate systems. However, the special structure due to causality presents 
a constraint in design; treating this causality constraint is the new feature 
in multirate optimal design. 

Causality constraints also arise in discrete-time periodic control [23], 
where after lifting, the feedthrough terms in controllers must be block 
lower-triangular. Treatment of causality constraints in this setup is car­
ried out in [13,16,36,10]. 

Our objective in this article is to reflect our recent work on multirate 
sampled-data control systems [30,8] and to introduce a proposed framework 
for handling causality issues in multirate design. The framework is based 
on nset operators and nest algebras [3,12]. As an application, a multirate 
robust stabilization problem is solved explicitly. 

Before we attack the robust stabilization problem, it is beneficial to 
look at multirate systems from a general viewpoint and review some dis-
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cussions in [8] about properties of multirate systems. 
A general multirate sampled-data system is shown in Figure 1.1. We 

have used continuous arrows for continuous signals and dotted arrows for 
discrete signals. Here, G is the continuous-time generalized plant with two 
inputs, the exogenous input wand the control input u, and two outputs, 

z w 

G 

y u 

- s '~{~J~. 1{ -

FIG. 1.1. A general muitirate system 

the signal z to be controlled and the measured signal y. Sand 1i are 
multirate sampling and hold operators and are defined as follows: 

Here Sm;h and Hnjh are periodic samplers and zero-order holds with pe­
riods mih and njh respectively; all samplers and holds are synchronized 
at t = O. The setup in Figure 1.1 samples p channels of y with peri­
ods mi h, i = 1,· .. , p, respectively and holds q channels of v with periods 
nj h, j = 1, ... , q, respectively. If we partition the signals accordingly 

then 

'Ih(k) Yi(km;h), i = 1,···,p 

Uj(t) vj(k), knjh~t«k+l)njh, j=I,···,q. 

We shall allow each channel in y and v to be vector-valued. In Figure 1.1, 
Kd is the discrete-time multirate controller, implemented via a micropro­
cessor; it is synchronized with Sand 1i in the sense that it inputs a value 
from the i-th channel at times k(mih) and outputs a value to the j-th 
channel at k(njh). 
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Figure 1.1 gives a compact way of describing multirate systems. It is 
clear that this model captures all multirate systems in which the rates are 
rationally related, i.e., the ratio of any two rates is rational. Note that 
any common factor among mi and nj can be absorbed into hj thus we can 
assume without loss of generality that the greatest common factor among 
mi and nj is 1. With this condition, for any multirate system in which 
rates are rationally related, there exists a unique number h and a unique 
set of integers mi and nj so that the system can be put into the framework 
of Figure 1.1. For ease of reference, h is termed the base period. 

The article is organized as follows. In Section 2 we shall start by 
introducing the basic concepts and some results on nest operators and nest 
algebras. These form the groundwork for our subsequent study of causality 
issues in multirate systems. 

Section 3 treats multirate controllers as, operators on the space of se­
quences and study three basic properties which are generalizations of the 
well-knQwn (single-rate) discrete-time concepts: time-invariance, causality, 
and finite dimensionality. The causality of multirate controllers is defined 
via operators between appropriate nests. This provides an effective way to 
handle causality in design. 

In Section 4, we present an application by looking at multirate robust 
stabilization: Perturbations are modeled naturally in continuous time and 
controllers are designed with causality constraints considered. 

Finally, some concluding remarks are given in Section 6. 
Now some words about notation. In this article, we choose to use in 

discrete time A-transforms instead of the more traditional z-transforms, 
where A = z-l j in this case, discrete-time Hardy spaces, 1i2 and 1i00 , are 
defined on the open unit disk. If G is a linear time-invariant (LTI) system, 
we use G for its transfer function. 

2. Nest operators and nest algebras. In this section we collect 
some concepts and facts about nests and nest algebras. Following [8], 
we shall restrict our attention to finite-dimensional spaceSj more general 
treatment can be found in [3,12]. 

Let X be a finite-dimensional space. A nest in X, denoted {Xi}, is 
a chain of subspaces in X, including {O} and X, with the nonincreasing 
ordering: 

X = Xo :2 Xl :2 ... :2 Xn- l :2 Xn = {O}. 

Let X and Y be both finite-dimensional inner-product spaces with nests 
{Xi} and {Yi} respectively. Assume the two nests have the same number 
of subspaces, say, n + 1 as above. A linear map T : X -+ Y is nest operator 
if 

(2.1) i = 0,1,···, n. 
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Let IIx. : X -+ Xi and IIy. : Y -+ Yi be orthogonal projections. Then the 
condition in (2.1) is equivalent to 

(I - IIy.)TIIx. = 0, i = 0,1,···, n. 

The set of all such operators is denoted N({Xd, {Yd) and abbreviated 
N ( {Xd) if {Xd = {Yd. The following properties follows easily. 

LEMMA 2.l. 
(a) If Tl E N({Xd, {Yd) and T2 E N({Yd, {Zd), then T2TI E 

N({Xd, {Zi}). 
(b) N ( {X;}) forms an algebra, called nest algebra. 

(c) IfT E N({Xd) and T is invertible, then T-I E N({X;}). 

It is a fact that every operator on X can be factored as the product of 
a unitary operator and an operator in N( {Xd). 

LEMMA 2.2. Let T be an operator on X. 
(a) There exist a unitary operator UI on X and an operator RI in 

N({Xd) such that T = UIRI. 

(b) There exist an operator R2 in N({Xi}) and a unitary operator U2 
on X such that T = R2U2. 

Computing such factorizations can be done as follows. Consider part 
(a) in the lemma: Since Xi ;2 Xi+l, we write (Xi+d~i as the orthogonal 
complement of Xi+l in Xi. Decompose X into 

It follows that under this decomposition any operator R belongs toN( {Xi}) 
iff its matrix is block lower-triangular, all the diagonal blocks being square. 
Do a QR type of factorization for square matrices: T = UIR1 with UI 
orthogonal and RI lower-triangular. This factorization serves our purpose 
under the decomposition of X described above. 

Let X and Y be finite-dimensional inner-product spaces with nests {Xi} 
and {Yi}. It is readily seen that N ( {Xi}, {Yd) is a subspace in the normed 
space of operators mapping X to y. What is the distance (via induced 
norms) from an operator T : X -+ Y to N({Xd, {Y;}), abbreviated N? 
Or how to compute: 

(2.2) dist (T,N):= inf liT - QII. 
Qe.N 

It is clear that 

dist(T,N) ~ m~lI(I - IIy.)TIIxill· 
~ 
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THEOREM 2.3. 

dist (T,N) = maxll(I - IIy.)TII.dl . 
• 

This is Corollary 9.2 in [12] specialized to operators on finite-dimensional 
spaces; it is an extension of a result in [29,11] on norm-preserving dilation 
of operators, which is specialized to matrices below. We denote the Moore­
Penrose generalized inverse of a matrix by (.) t . 

LEMMA 2.4. Assume that A, B, C are fixed matrices of appropriate 
dimensions. Then 

Moreover, a minimizing X is given by 

X = -BA*(aJ - AA*)tC. 

It will be of interest to us how to compute a Q to achieve the infimum 
in (2.2); this can be done by sequentially applying Lemma 2.4: 

Step 1 Decompose the spaces X and Y: 

X (Xdt EB (X2)t EB ... EB (Xn)t_l 

Y (Yd~o EB (Y2)~1 EB ... EB (Yn)~n_l . 

We get matrix representations for T and Q: 

[ 

Tll T12 

T21 T22 
T= . . 

Tni Tn2 

: :: ~~: 1 [ ~~~ . ,Q= . 

Tnn Qni 

Q being block lower-triangular. 

Step 2 Define Xij = Iij - Qij, i 2: j, and 

[ Xu 
T12 Tin 

1 
X2i X 22 T 2n 

p= 

Xni X n2 Xnn 

The problem reduces to 

minllPII, 
Xij 
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where Iij, i < j, are fixed. Minimizing Xij can be selected as 
follows. First, set Xll,X21,,,,,Xnl and Xn2,,,,,Xnn to zero. 
Second, choose X 22 be Lemma 2.4 such that the norm ofthe matrix 
(I - llyJPllx 1 (obtained by retaining the first 2 block rows and 
the last n - 1 block columns in P) is minimized: 

II(I - llY2)Pllxlll = max{lI(I - lly,) Tll x, II, II(I - llY2)Tllx211}· 

Fix this X 22 . Third, choose [X32 X 33] again by Lemma 2.4 to 
mllllmlze 

II(I - llyJPllx2 11 = max{ll(I - lly,)Tllxlll, II(I - llY3)Tllx311}· 

In this way, we can find all Xij such that 

3. Multirate systems. In this section we shall discuss desirable prop­
erties for multirate controllers and then look at internal stability of Fig­
ure 1.1. The materials are taken from [8]. 

The first topic to be examined is periodicity of [(d. Define 

where LCM means least common multiple. Thus rr := lh is the least time 
interval in which the sampling and hold schedule repeats itself. [(d can be 
chosen so that 1{[(dS is rr-periodic in continuous time. For this, we need a 
few definitions. 

Let e be the space of sequences, perhaps vector-valued, defined on the 
time set {O, 1,2"'l Let U be the unit time delay on e and U* the unit 
time advance. Define the integers 

in; I z= 1,2,·· .,p mi' 

iij -L j = 1,2, .. ·, q. nj' 

We say [(d is (m;, nj )-periodic if 

[ (U')fi. 

This means shifting the i-th input channel by in; time units (inim;h = rr) 
corresponds to shifting the j-th output channel by iij units (iijnjh = rr). 

Now we lift [(d to get an LTI system. For an integer m > 0, define the 
discrete lifting operator Lm via!!. = Lm v: 

{ [ 
v(O) 1 [ v(m) 1 } {v(O),v(1), .. ·}>-+ . , : , .... 

v(m - 1) v(2m - 1) 
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Lm maps £ to £m, the external direct sum of m copies of £. Define the lifted 
controller K d by 

LEMMA 3.1. 
(a) 1iKdS is O"-periodic in continuous time iff Kd is (mj, nj )-periodic. 

(b) Kd is time-invariant iff Kd is (mj, nj )-periodic. 

The proof is straightforward. Part (b) was stated in [26]. Normally, we 
assume G is LTI. Then the closed-loop system in Figure 1.1 is O"-periodic 
if Kd is (mj, nj )-periodic. We shall call 0" the system period. 

Next is causality. For Kd to be implementable in real time, 1iKdS 
must be causal in continuous time. This implies that K d , as a single-rate 
system, must be causal; and moreover, the feedthrough term D in Kd must 
satisfy a certain constraint, that is, some blocks in D must be zer~5,31]. 
Now let us characterize this constraint on D using nest operators. 

Write :!L = Kd '!k; then :!L(O) = D'!k(O), where by definitions 

'!k(0) 
([ D,,,, 1 [ j: ]) (0) 

[7J;l(O), ... 7J;l(ml - 1)' ... 7J;p(O)' ... 7J;p(mp - 1)' ]' 

Note that 7J;j(k) is sampled at t = kmjh. Similarly, 

:!L(O) = [Vl(O)' ... vl(ih - 1)' ... vp(O)' ... vp(nq - 1)' ]' 

and vj(k) occurs at t = knjh. Let:E be the set of sampling and hold 
instants in the interval [0,0") (modulo the base period h), i.e., 

This is a finite set of, say, n + 1 elements (not counting repetitions); order 
:E increasingly (0" r < 0" r+1): 

:E={O"r: r=O,l,···,n}. 

Let 7J;(0) and :!L(O) live in the finite-dimensional spaces .:t' and Y respectively. 
For r = 0, 1,·· ., n, define 

.:t'r span {'!k(0) : 7J;j(k) = 0 if kmj < O"r} 

Yr span {:!L(O): vj(k) = 0 if knj < O"r}. 
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Xr and Yr correspond to, respectively, the inputs and outputs occurred 
after and including time urh. It is easily checked that {Xr} and {Yr} 
are nests and that the causality condition on D (the output at time urh 
depends only on inputs up to urh) is exactly 

DXr ~ Yr, r = 0,1,·· ·,n. 

Thus we define D to be (mi' nj)-causal if DE N( {Xr }, {Yr}). This is the 
same causality constraint in [25,31] defined in terms of the elements of D. 

For later benefit, we define D to be (mi' nj )-strictly causal if 

DXr ~ Yr+l, r = 0,1,·· ·,n-1. 

This means that the output at time Ur+1h depends only on inputs up to 
time urh. 

The following lemma, which is straightforward to prove, justifies our 
use of terminology from a continuous-time viewpoint. 

LEMMA 3.2. 
(a) 1{[{dS is causal in continuous time iff [{d is causal and D is 

(mi' nj )-causal. 
(b) 1{[{dS is strictly causal in continuous time iff [{d is causal and D 

is (mi' nj )-strictly causal. -

Some conclusions on causality issues [25] are transparent under this 
new formulation. 

LEMMA 3.3. 
(a) If Dl is (mi,Pk)-causal and D2 is (pk,nj)-causal, then D2Dl is 

(mi, nj )-causal; furthermore, if Dl or D2 is strictly causal, then 
D2Dl is also strictly causal. 

(b) If D is (mi' mj )-causal and invertible, then D- 1 is (mj , mi )-causal. 

(c) If D is (mi' mi)-strictly causal, then (I - D)-l exists and is 
(mi' mi)-causal. 

The proof is easy under the current framework, see, e.g., [8]. Let us 
define [{d to be (mi,nj)-causal if [{d is causal and D is (mi,nj)-causal. 

We assume [{d is (mi,nj)-periodic and -causal. Then [{d is LTI and 
causal. To get finite-dimensional difference equations for [{d, we further 
assume [{d is finite-dimensional. Thus [{d has a state model 

Du 

Dql 
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Let the state for Kd be 'fJ. The corresponding equations for Kd (Q = Kd t) 
are 

p 

'fJ(k + 1) A'fJ(k) + L Bit;(k) 
;=1 

p 

Qj(k) Cj'fJ(k) + L Djit;(k), j = 1,2"", q. 
;=1 

Note that t; = Lmi'!f;; and Qj = LfijVj. Partitioning the matrices accord­
ingly 

B; [ (B;)o (Bi )mi-1 ], 

[ (Gj)' 1 [ ,(Dj;)" (Dji)0,mi- 1 

1 
Cj 

(Cj)~j-1 
Dj; = : 

(Dj;)fij-1,0 (Dj;)fij-1,mi- 1 

(some blocks in Dji must be zero for causality), we get the difference equa­
tions for Kd (v = Kd'!f;): 

P mi- 1 

'fJ(k + 1) A'fJ(k) + L L (B;)8'!f;i( kmi + s) 

(3.1) 
;=1 8=0 

P mi-1 
(Cj )r'fJ(k) + L L (Dji)rs'!f;i(kmi + s), 

;=1 8=0 

where the indices in (3.1) go as follows: j = 1,2"", q and r = 0,1"", 
iij - 1. These are the equations for implementing Kd on microprocessors 
and they require only finite memory. Note that the state vector 'fJ for Kd 
is updated every system period (J. 

In summary, we are interested in the class of multirate Kd which are 
(mi' nj )-periodic and -causal and finite-dimensional; this class is called the 
admissible class of Kd and can be modeled by difference equations (3.1-
3.1) with D (mi' nj )-causal. The corresponding admissible class of Kd 
is characterized by LTI, causal, and finite-dimensional Kd with the same 
constraint on D. 

Finally, we conclude this section by looking at internal stability of Fig­
ure 1.1. We assume the continuous G is LTI, causal, and finite-dimensional; 
partition G as follows: 

[ ~ ] [ G11 G12 ] [ ~ ] . G21 G22 

G has a state model 

[ A B1 B2 ] O(s) = C1 D11 D12 
C2 D21 0 
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Let the plant state be x and the controller state be TJ (J{d is admissible). 
Note that the system in Figure 1.1 is o--periodic. Define the continuous­
time vector 

[ x(t) ] 
Xsd(t):= TJ(k) , ko- :::; t < (k + 1)0- . 

The (autonomous) system in Figure 1.1 is internally stable, or J{d internally 
stabilizes G, if for any initial value Xsd(tO), 0 :::; to < 0-, Xsd(t) -+ 0 as 
t -+ 00. 

This stability notion can be related to stability of the discrete-time 
system in Figure 3.1, where 

G22d := [ 
Lml 

Because G22 is LTI and strictly causal, SG221{, the multirate discretization 
of G22 , is (nj, mi )-periodic and -strictly causal. Thus G22d is LTI and causal 
with D 22d (nj, mi)-strictly causal. So Figure 3.1 gives an LTI discrete 
system. In fact, a state model for G22 d can be obtained [26]; its state being 
e := Su x, or e(k) = x(ko-). 

: .............. [822d ............. : 
· . · . · . · . 

· . ·0· · . · . 
:............. I(d .............. : 

FIG. 3.1. The lifted system for stability 

Let us see that Figure 3.1 is well-posed, i.e., the matrix 1- D22dD 

is invertible, where D is the feedthrough term of J{d. This follows from 
Lemma 3.3: D22dD is (mi,mi)-strictly causal [Lemma 3.3 (a)] and so 1-
D22dD is invertible [Lemma 3.3 (c)]. This also implies that the multirate 
system of Figure 1.1 is well-posed. 

The system in Figure 3.1 is internally stable, or J{d internally stabilizes 
G22d if for any initial states e(O) and TJ(O), 

[ e( k) ] TJ(k) -+0 as k-+oo. 

THEOREM 3.4. J{d internally stabilizes G iff J{d internally stabilizes 
G22d. 
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A proof of this result is contained in [8]. Sufficient conditions for the 
internal stability to be achievable are that (A, B2 ) and (C2 , A) are stabi­
lizable and detectable respectively and that the system period ~ is non­
pathological in a certain sense, see, e.g., [15,30]. 

4. Multirate robust stabilization. The sampled-data robust sta­
bilization problem was treated in the single-rate setting in [7,20]; though 
the problem is a special case of the general 1£00 control problem 
[19,35,4,33,34,20]' the reduction to discrete-time problem requires no it­
eration on the performance bounds; this greatly simplifies computation of 
near optimal solutions. 

Our goal in this section is to extend the single-rate result in [7] to a 
general multirate setup. In this case, the design of robust controllers is 
subject to the causality constraints discussed in the preceding section. 

The multirate setup is shown in Figure 4.i. Here, P is the analog plant 

P 

u y 

;---

- 1£ ~"'G'" s l+- F --
FIG. 4.1. A multirate system 

modeled by a nominal plant Pn with an additive perturbation 

P=Pn+AW, 

where A is an unknown perturbation due to unmodeled dynamics or pa­
rameter variations and W is a fixed frequency weighting system. We shall 
assume that Pn and Ware both LTI, causal, and finite-dimensional and 
that A is linear and bounded £2 -jo £2. The multirate sampling operator S, 
hold operator 1£, and controller J{d in Figure 4.1 are as before and we shall 
require that J{d be admissible. F in Figure 4.1 is the (analog) anti-aliasing 
filter and is assumed to be LTI, strictly causal, and finite-dimensional. 

For any positive number I, define the set of perturbed plants 

P-y:= {Pn +AW: 

So 1 is a measure of the size of the perturbation A. The following question 
will be considered: Given a positive number I, how to design an admissible 
controller J{d to stabilize all the plants in P-y ? 

For J{d to stabilize all the plants in P-y, it must stabilize the nominal 
plant Pn . Putting Figure 4.1 into the general setup of Figure 1.1 with 
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Ll = 0, we obtain that the (2,2) block in the plant is F P n . Define J{d as 
in Section 3 and 

It follows as before that J{d and Pnd are both LTI, causal, and finite­
dimensional with the feedthrough term in Pnd being (nj, mi )-strictly causal 
(since F is strictly causal). Thus by Theorem 3.4, J{d internally stabilizes 
P n iff J{d internally stabilizes Pnd in discrete time. 

Introduce the discrete sampling operator Sm : £ --+ £ defined via 

'Ij; = Sm<P ~ 'Ij;(k) = <p(km) 

and the discrete hold operator H n : £ --+ £ via 

v=Hn<p~v(kn+r)=<p(k), r=0,1,···,n-1. 

It is easily checked that Sm;h = Sm;Sh and Hnjh = HhHnj' Defining the 
discrete multirate sampling and hold operators 

we have that the multirate S and 'Ii can be factored as 

Now bring in the two useful factorizations studied in [6]: 

(WHh)*(WHh) 

(ShF)(ShF)* 

with the operators G1 and G2 both LTI, causal, and finite-dimensional in 
discrete time. Define 

[ LC' n, 

G1 .- LIG1'lid 

LC' J nq 

G2 

[ L,n, 
J SdG,L,' 

L iftp 

Let Td be the discrete map 1!. f-+ ( in Figure 4.2. It is not hard to see that 
both G1 and Gz are LTI, causal, ;;:-nd finite-dimensional because G1 and Gz 
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····~··0···1···~······~·····~····~··~ 
· . · . · . · . 
. ~. · . · . 
: ...... Pnd ..... : 

FIG. 4.2. A lifted discrete-time system 

are. So Figure 4.2 represents an LTI system in discrete time and moreover, 
Td belongs to 'R1loo if Kd internally stabilizes Pnd. We are set up to state 
the main result. - -

THEOREM 4.1. The multirate Kd stabilizes all the plants in P-y if Kd 
internally stabilizes Pnd in discrete time and achieves IITdiloo ~ Ih. 

Proof. Suppose Kd internally stabilizes Pnd, or equivalently, Kd in­
ternally stabilizes Pn . The perturbed system configuration is shown in 
Figure 4.3. Reconfigure the diagram in Figure 4.3 into that in Figure 4.4, 
where T can be read as 

F 

FIG. 4.3. The perturbed system 

Since S = SdSh and 1l = Hh1ld, by some algebra 

(4.1) 
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Thus the perturbed system is stable if the small-gain condition is satisfied: 

11b.11 . IITII < 1. 

Therefore J{d stabilizes all the plants in P,",! if IITII ::; Iii, the norm being 
on £2. 

FIG. 4.4. Reconfigured diagram 

Define the discrete operator 

Then the continuous-time operator T becomes (via (4.1)) 

Thus by Proposition 1 in [6], IITII equals the £2 induced norm of Td 
G1 GdG2 . Now it can be verified from the definitions that 

which is time-invariant as we commented before. Since the lifting operator 
L is norm-preserving, 

The proof is completed. D 

To solve the multirate robust stabilization problem, from Theorem 4.1 
we arrive at an LTI discrete-time 1ioo problem; but the feedthrough term 
in the controllers must be (mi' nj )-causal. Such problems can be solved 
using the results in Section 2 [8]; this will be discussed later. 

Note that the discrete system in Figure 4.2 does not depend on 'Y. If 
one wants to compute near optimal controllers, one needs to iterate on 
the achievable 'Y; but the fixed parts in Figure 4.2, namely, G 1 , G2 , and 
Pnd, remain the same in each iteration. To compute the lifted systems in 
Figure 4.2, we need the following useful lemma. 
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Let G be a discrete-time system with state ~ and transfer function 

G(A) = [ ~ I ~ ] 
Let m, n, m, n, t be positive integers such that 

mm = nn = t. 

Define 

G := LmSmGHnL;;l 

and the characteristic function on integers 

X[p,q)(r) = { ~: p"::;'r<q 
else. 

LEMMA 4.2. A state model for G is 

c 
Q(A)= 

where 

",n-l A1-l-r B ",2n-l A 1- l - r B 
~r-O ~r-n 

DO~ 

D,D 

Dm-I,D 

DOl 

Dll 

Dih-1,1 

(j+1)n-1 

",1-1 A 1- l - r B 
Dr-l 

DO,ii-l 

D1,n-l 

Dih-1,fi-l 

Dij = DXfjn,(j+1)n)(im) + L CAim - 1- r BX[O,im)(r). 
r=jn 

The corresponding state vector is 5. = SI~. 

15 

All the lifted systems in Figure 4.2, namely, Pnd, G 1 , and G 2 , can be 
computed from this lemma. For example, let us see how to compute Pnd. 
We start with a state model for F Pn : 

~ ~ [AlB] F(s)Pn(s) = CTO . 
Compute the single-rate discretization Pndh := ShFPnHh: 

Then by definition of Pnd and the factorizations S = SdSh and 1i = Hh1id, 
we have 
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The transfer function ?nd is a p x q block matrix; each block can be com­
puted exactly by Lemma 4.2. Let us note that the feedthrough term Dnd of 
Pnd is (nj, mi )-strictly causal and therefore the feedback loop in Figure 4.2 
is well-posed. 

Now we use the controller parametrization [25,31] to reduce the prob­
lem further to a model-matching problem. 

Bring in a doubly-coprime factorization for ?nd: 

with the conditions: 

• • • -1 ~ -1 ~ 
Pnd=NM =M N 

[_XiV tj[% 1]=1 

M(O) =!, M(O) = 1, 

N(O) = N(O).= i2nd , 
X(O) =!, X(O) = 1, 

Y(O) = Y(O) = O. 

The standard procedure in [14] yields such a factorization. Since i2nd is 
(nj, mi)-strictly causal, it follows from [25,31] that the set of admissible Kd 
that provide internal stability is parametrized by 

Kd=(Y-MQ)(X-NQ)-l, QE'R1ico , Q(O) (mi,nj)-causal. 

Define 

1'1 ChYMG2 

1'2 G1M 

1'3 MG2. 
It follows that 

Td = 1'1 - T2QT3 . 

Recall in Section 3 that Q(O) is (mi,nj)-causal iff Q(O) E N({Xr}, 
{Yr }), where the nests {Xr} and {Yr} were defined in Section 3. In this way 
we arrive at the constrained 1ico model-matching problem: Find Q E'R1ico 
with Q(O) E N( {Xr}, {Yr}) such that 

(4.2) 111'1 - T2QT311co < 1, 

where 'Y is absorbed into 1'1 and 1'2' 
This latter problem is studied in detail in [30,8]; the solution is sum­

marized below. 
For regularity, we need the following assumption: 
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For every>. on the unit circle, iH>') and TS(>.-l)' are both injec­
tive. 

Dropping the causality constraint on 0(0), we get a standard unconstrained 
1i00 problem: Find a 0 E R1ioo such that 

(4.3) 

Assume this unconstrained problem is solvable; this is necessary for the 
solvability of the constrained problem in (4.2). Then we can parametrize 
all 0 in R1ioo achieving (4.3) via a powerful result in [17]: There exists an 
R1ioo matrix 

k = [~ll ~12] 
K21 K22 < 

with kil, k:;/ E R1ioo and IIk221100 < 1 such that all 0 E R1ioo satisfy­
ing (4.3) are characterized by 

0= kll + k 1201(I - k 220t}-1 k 21 , 01 E R1ioo , 11011100 < 1. 

We refer to [17] for the details of checking the solvability condition for the 
unconstrained problem and the expression of k. 

By an argument used in [30,8], we can assume without loss of generality 
that k 22 (0) = O. Thus 

(4.4) 

This is an affine function 01(0) I--> 0(0). 
Now we bring in the causality constraint on 0(0). Our goal is to find a 

01 E R1ioo with 11011100 < 1 such that 0(0) in (4.4) lies in N( {Xr}, {Yr}). 
Since 0(0) depends only on 01(0) and in general 1101/100 ~ 1101(0)11, the 
equivalent problem is to find a constant matrix 01(0) with 1101(0)11 < 1 
such that 0(0) E N( {Xr}, {Yr}). 

Using Lemma 2.2, we can reduce the problem to a distance problem. 
Introduce matrix factorizations (Lemma 2.2) 

k 12(0) = R1U1, k 21 (0) = -U2 R2 , 

where R1,R2,U1,U2 are all invertible, U1,U2 are orthogonal, and Rl,R2 
belongs to the nest algebras N({Yr}),N({Xr}) respectively. Substitute 
the factorizations into (4.4) and pre- and post-multiply by Rl1 and R"21 
respectively to get 

Define 
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It follows that Q(O) E N( {Xr}, {Yr}) iff V E N( {Xr}, {Yr}) (Lemma 2.1) 
and IIQI (0)11 < 1 iff IIZII < 1. Therefore, we arrive at the following 
equivalent matrix problem: Given E, find Z with IIZII < 1 such that 
V = E - Z E N( {Xr}, {Yr}); or equivalently, find V E N( {Xr}, {Yr}) 
such that liE - VII < 1. This can be solved via the distance problem stud­
ied in Theorem 2.3: There exists a matrix V E N( {Xr}, {Yr}) such that 
liE - VII < 1 iff 

jj := max{lI(I - IIYr)EIIxrll} < 1. 
r 

Moreover, a V achieving lIE - VII = jj can be computed by the procedure 
given at the end of Section 2. 

5. Conclusions. We have introduced a framework based on nest al­
gebras for treating causality issues in multirate design. The usefulness of 
this framework is illustrated by solving a robust stabilization problem via 
multirate digital controllers. 112 and 1ioo control designs in multirate sys­
tem's can also be studied using this framework, yielding explicit solutions 
to the problems [30,8]. 
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