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Abstract 

In this  paper,  the  problem of robust  stability of linear 
timeinvariant  systems in state  space models is considered. 
Explicit  bounds on  linear timeinvariant  perturbations which 
do  not  destabilize  the  system  are given for both  unstructured 
and  structured  perturbations.  These  bounds  are  superior  to 
those  reported in the recent literature in two senses: i) they 
are less conservative  and ii) they  can  be  applied  to  a  more 
general  class of systems  and  perturbations.  The  bounds  are 
easy to compute  numerically. Several  simple  examples are 
given to  demonstrate  the new bounds  and  compare  them 
with  results  previously  reported. 

The following notation  shall  be used throughout  the 
paper. 

Notation 
eigenvalues of a square  matrix 
singular values of a  matrix 
largest  singular  value 
smallest  singular  value 
matrix  norm  induced  from Holder p-norms of vectors 
spectral  norm which is equal to 4.1 
modulus  matrix, i.e. matrix formed by  taking  moduli 
of elements of 1.1 
symmetric  part of a  matrix = I ( . ) + ( . ) '  11/' 
determinant of a  square  matrix 
perron  eigenvalue of a  non-negative  square  matrix 
set of eigenvalues of a  square  matrix 

1. Introduction 
In the  analysis  and  synthesis of robust  control  systems,  a 

fundamental  problem  that arises is the recognition that  the 
mathematical model assumed for the  system is always inex- 
act,  and  that  the  parameters of the  system  may  deviate  away 
from  their  nominal values. Thus  it is desirable to  be able  to 
determine  to  what  extent  a  nominal  system  remains  stable 
when  subject  to  a  certain class of perturbations.  This is 
called the  robust  stability  problem, e.g. see jl]-[9]. 

There  are  two  main  approaches which have been applied 
to  this  problem in the  literature: ( i )  the frequency domain 
approach, e.g. !2], (31, !7] which is based  on the  transfer func- 
tion  representation of a  system,  and (ii) the  time  domain 
approach, e.g. [4 , [8], [g] ,  [IO] which is based on  a  state  space 
representation o I a  system.  This  paper will study  the  robust 
stability  problem for a state  space  representation of a system 
using  a frequency domain  approach. 

2. Development  
Assume  that  a linear time-invariant model of a physical 

system is described by the following state  equation  with 
linear  timeinvariant  perturbations: 

This work has been supported by the Natural Sciences and Enpneering Researcb Council 
of Canada under grant n o  ,44386. 
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Z = ( A + A A ) Z  (1) 
where zER is the  state,  A ER" X n  is the  nominal  state 
matrix which is assumed  to  be  asymptotically  stable,  and 
AA is a  perturbation  matrix. 

It is assumed  that AA may be classified into  two  types 
of perturbations,  namely: 
( i )  Unstructured  perturbations 

tion  matrix AA is given. 
(ii) Structured  perturbations 

In this case, the  structure of perturbations in  AA is 
specified and  the  bounds on such  structured  perturbations  are 
given. 

Given either (i or (ii), it is desired to  determine if the 
perturbed  system (1 1 remains  stable. 

The  above  problem  has been extensively studied. For 
example,  the following  recent  results have been obtained for 
the  unstructured case. 

In this case, only  a  bound on the  norm of the  perturba- 

Result 1 [SI: The  system (1) is stable if 

~ A A )  < -A 1 

,7P)  =ppwl  
or if A is diagonalizable if 

where P satisfies the  Lyapunov  equation 
A'P +PA = - 2 1  (3) 

and T satisfies T-'AT=diag(X,,X2, . . . , in). 

Result 2 \el: Assume  that  the  orthogonal  matrix U in the 
polar  decomposition of A 

A = UHR or A = HL U 
is stable.  Then  the  system (1) is stable if 

~ A A )  < - ~ p ) c o s ( ~ , ~ , )  ApLw (4) 
where Omin is the  smallest  principal  phase of .4 measured 
counter-clockwise from  the positive real axis. 

Reault 3 [lo]: Assume that A,  is negative definite. Then 
the  system (1) is stable if 

q A A )  < & P y w  (5)  

Rault  4 101: Assume  that  the elements  of AA are res- 
tricted so t 6 at  
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I AAij I  5 6, )  

and let &ax c i j .  Then  the  system (1) is stable if 
I ,I 

where P satisfies (3) and CJ is a  matrix  with  elements 

This  paper will consider both  the  structured  and 
unstructured case of AA perturbations.  The new bounds 
obtained  are  better  than  the  above results  in two senses: (i) 
they  are  tighter  and (ii) they  encompass  a wider class of sys- 
t e m  and  perturbations. In the  unstructured case, the new 
bound requires no conditions on the  system  matrix A and for 
a  normal A ,  it gives the exact bound. In the  structured case, 
a  characterization of permissible perturbations is given  which 
includes the  results of [lo] as a special case. 

3. Main Results 
First  two  lemmas which form  the  foundation of the  later 

development will be given. Then  the  stability  robustness will 
be discussed  for both  the  unstructured  and  structured  pertur- 
bation cases. 

Lemma 1: Let A E@" x and A A  a" x n .  Let s @sp(A ) be 
a point in the complex plane such that  there  exists  a  non- 
singular  matrix R @" x so that 

1 p - l ~ ~  (sz-A)-'R I I p  < l o r  I I R - ' ( ~ z - A ) - ' A A R  I / p  < I  
Then s cannot  be  an eigenvalue of A  +AA . 
Proof: See Appendix 1. 

Lemma 1 can be called an eigenvalue exclusive lemma. 
For given A ,   A A ,  R ,  it is easy to  compute such an exclusive 
region in the complex plane. 

Lemma 2: Let A ER X n  be  stable  and  assume  that 
AA ER x belongs to  a  set S which has  the  property  that if 
A A E S  then  this implies that crAAES, Ya€[O,l]. Then 
A  +AA is stable '$AA ES if for  some nonsingular 

] ~ R A A ( ~ w Z - A ) - ' R - ' ] ~ ~ < ~ ~ ~ ~ ~ R ( ~ W I - A ) - ' A A R ~ ~ ~ < ~  
VAA ES, 'Vw20.  

Proof: See Appendix 2. 

R ( j w ) E R " X n  

3.1 Unstructured Perturbations 
Consider  the  system (1). In  this case, only  the  norm of 

AA is known.  Suppose  it is llAA / I p .  The following result is 
obtained. 

Theorem 1: The  perturbed  state  matrix A  -AA is stable if 

Proof: Let R =I and use lemma 2 direct'ly. Then A +AA 
is stable if 

w 2 0  
sup IlAA (juZ-A)-']Ip < 1 

which is satisfied if 

llAA I lp . ;"2po l l b - A ) - l l l p  < 1 

from which the result immediately follows. 

Remarks 
1. As w+m, / I ( ~ W Z - A ) - ' / I ~ + O  which implies that  the 

supremum in ( 7 )  only needs to be determined in a finite 

interval.  When p = 2 ,  the  supremum  can  be  taken in the 
frequency interval wE(0,2$A )I .  

2. There  are no extra  requirements for A needed in 
theorem 1, unlike  the case for  the  bounds p p w 2 ,  p L w ,  
p y w ,  and  the  computations required  in theorem 1 are 
numerically well defined. 

3. If the  spectral  norm is used in theorem 1 (i.e. p=2) ,  the 
condition becomes 

W Z O  
~ A A )  < inf & b J - A ) & p Q w  (8) 

T i e  following result shows that  the  bound pQw is 
tighter  than p p w  when the  spectral  norm is used. 

Theorem 2: Let P be the  solution of the  Lyapunov  equa- 
tion (3); then 

Proof: See Appendix 3. 

becomes necessary and sufficient. The following is obtained. 

Theorem 3: Assume A is a  normal  matrix  and  that A A  is 
bounded  by  its  spectral norm; then A  +AA is stable if and 
only if 

For some special cases, the  condition in theorem 1 

$ A A )  < inf 4 j w Z - A )  = minj-Re X(A)] &pQw 
w > o  

Proof: See Appendix 4. 
This implies that  for  the special case when A is normal 

that  theorem 1 gives the  same  bounds as ppwl, p p w 2 ,  p Y w ,  
and p L w  which  in fact  are necessary. This  was  not recog- 
nized in 161, [8], [lo]. 

3.2 Structured  Perturbations 

ture 
Consider  the  system (1) and  assume AA has  the  struc- 

AA = SIAES,  (9) 

where S I E R n X P ,  AEERP'P, S , E R * X R ,  p s n ,  q s n ,  and 
S, ,  S, are  known  constant  matrices.  With  no loss of general- 
ity,  assume that  rank S,=p or/and  rank S,=q, and let the 
elements of the  perturbation  matrix be denoted  by {AE,,},  
and  assume  that 

I AE,i  1 5 C , ~ E  (10) 

where eij 2 0  are given, and c > O  is unknown. 
Such  a  structured class of perturbation  matrices includes 

those of [9], [lo] as a special case, and occurs  in the  analysis 
of control  systems. For example,  perturbations of 
sensors/actuators of a closed loop system can be represented 
in the  form of (9). 

The following bound on c such  that A + A A  remains 
stable for all perturbations AA of the  type (9) is given by 
the following theorem, whose proof is given in Appendix 5. 

Theorem 4: Given the class of perturbations AA described 
by (9), (lo), then A  +AA is stable if 

where U € R  x p  is a  matrix  with elements given by uil = e l j .  

Remarks 
1. As LJ-W, ~ ~ ( j w Z - A ) - l ~ ~ p + O ,  which implies the 

supremum  only needs to be considered over a  finite 
interval. 

2. The  computations required to  determine pQ are  numeri- 
cally well defined. 
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3. If the choice of Sl=Zn, Sz=Zn, ~ . . = 1 ,  V i , j  is made in 
(ll), then  this case may be consldered as an  unstruc- 
tured case with  a  norm defined to be equal to  the  max- 
imum  modulus of the  elements of AA . 

4. Theorem 4 is a generalization of the class of perturba- 
tions considered  in Result 4 [ l O j ,  and  the following 
examples  show that  the  bounds p Q  obtained  are less 
conservative  than  the  bounds  obtained  by using Result 
4. 

'I 

4. Numer ica l   Examples  

Example  1: The following matrix was  considered in [IO]: 

1-1 -0.251 
A = b.5  -1.2 1 

It is required to  compute  the  stability  robust  bound for 
unstructured  perturbations. ! l O j  gave ppwl=1.0025, 
pLw=1.0025,  prw=l.O.  Theorem 1 gives p w-1.0281 
which is a  tighter  bound  than  the previously reporjedones. 

Example  2: Patel  and  Toda '8) considered a  system 
obtained  by linear quadratic  optimal  control  theory  and 
examined  the  stability  robust  bound for unstructured  pertur- 
bations of the following matrix: 

-0.201 0.755  0.351 -0.075 0.033 
-0.149 -0.696 -0.160 0.110 -0.048 

A = 0.081 0.004 -0.189 -0.003 0.001 
-0.173 0.802  0.251 -0.804 0.056 

0.092 -0.467 -0.127 0.075 -1.162 

They  computed ppwl and  the result is p p ~ ~ = O . O 7 7 .  
Using theorem 1, we obtain pQ~=0.1116.   The  improvement 
is 45%. 

E x a m p l e  8:  Yedavalli j l O ]  considered the  structured  pertur- 
bation  problem  for  the  matrix: 

A = 1: 
Table 1 gives bounds of perturbations when the possible 

perturbed  elements of A have different combinations.  Table 
1 also gives exact bounds which provide necessary and 
sufficient conditions for stability  robustness.  These exact 
bounds  are difficult to  compute generally but in the 2x2 
case, they  can be obtained by observation.  Table 1 shows 
that  the new bounds  are  a significant improvement over the 
old o n e  and  are close to  the exact bounds. 

Example  4: This  example shows t'hat it is possible for the 
new bound p Q  to reach infinity, whereas the previous bounds 
remain  finite.  Consider  the  matrix 

A = 1: -:] 
subject  to  structured  perturbations.  Then  Table 2 provides a 
comparison between the results of the new bound pQ and  the 
previous bound p y  1101. Note  that all the results obtained 
by  the new bound  are exact bounds. 

that I A k ,  I <L, 1 Ak,  1 <e.  It is desired to  determine  a 
value of E which guarantees closed loop stability. In this 
case, for  the closed loop sytem 

2 

= [ 0 -21412 14)( 0 -l)[-6 7 ) =  [ 0 -41 
-1 0 7 8 -1 0 7 - 8  -2 0 

the  application of theo;em 4'gives ;,=0.6816. Thus d e  
closed loop system  remains  stable d A k , ,  VAk2 such  that 

1 A k ,  I <0.0408, I Ak2 1 <0.0816, i.e. the closed loop system 
can tolerate 4% and 8% gain changes  respectively. This 
result is consistent  with  the  type of results obtained in 141, 
which  showed that  the  system (12) has  a very small  gain- 
margin  tolerance. 

4. Conclusions 
Two  improved  bounds on perturbations of asymptoti- 

cally stable linear time-invariant  systems  are  obtained;  both 
structured  and  unstructured  perturbations  are considered. 
The new bounds  are  shown  to be a significant improvement 
over  recent  ones reported,  and  apply  to  more general situa- 
tions. For some special  cases, e.g. when the  nominal  state 
matrix is normal,  the  bound for unstructured  perturbations is 
actually  an exact bound. 
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Appendix 1: Proof of Lemma 2 
If I IR- 'AA(s l -A) - 'R / lP<1 .  Then 

det[l-R-'AA ( s l - A ) - ' R ]  # 0 

which is equivalent to  
det [ I - A A   ( s l - A  )-'I # 0 

which  can be rewritten as 
det [ s l - A   - A A  ] # 0 

i.e., s is not  an eigenvalue of A + A A  . 
( I R - ~ ( ~ ~ - A ) - ' A A R ~ ~ < ~ .  

The  same proof can be applied  to  the case when 

Appendix 2: Proof of Lemma 2 
Lemma 2 can be proved by contradiction. 
The eigenvalues of a matrix  are  continuous in its ele- 

ments. So that as a goes from 0 to 1 continuously,  the eigen- 
values of A + a A A  will vary  from  the eigenvalues of A to  
those of A + A A  continuously.  In  the case of A being stable, 
suppose A + A A  has  an eigenvalue in the closed right half 
complex  plane; then  there exists  a a:O<as1, such  that 
A + a A A  has  an eigenvalue on  the  imaginary axis. By 
lemma 1, this  contradicts  the  condition in lemma 2. Also 
since A ,   A A ,  R are  real,  then  the  conditions of lemma 2 
only need to  be satisfied  for w 2 0 .  

Appendix 3: Proof of Theorem 2 
From  the  Lyapunov  equation (3), we obtain 

( - j w l - A ' ) P   + P ( j w l - A ) = 2 1  (14  
Pre- and  post-multiplying by ( - jwI -A'  )-' and (jwZ-A)-'  
respectively, ( la )  becomes: 
P( jwZ-A) - '+ ( - jw l -A ' ) - 'P   =2( - jw l -A ' ) - ' ( jwI -A) - '  (2a) 
Let ( j d - A ) - ' = G ( j w ) ,  then ( - j u Z - A ' ) - ' = G * ( j w ) ,  so that 
(2a) becomes: 

P G ( j w )  + G * ( j w ) P  = 2 G * ( j w ) G ( j w )  

2 2 ( G ( j w ) )  2 2 q P ) . d G ( j w ) ]  
which  implies that: 

or that  

. 7 G ( j 4 1  
Hence it is concluded that: 

inf d j w l - A )  = inf 1 1 
w20  w20 d G ( j w ) ]  ,7P)  2- 

Appendix 4: Proof of Theorem  3 
If A is normal, it  can be represented as 

A =T-'diag(X,,X,, . . . , X,)T where T is unitary  and X i ,  
; = I ,  . . , ,n are  the eigenvalues of A .  Then 
inf A j w l - A ]  = inf ~TT-'diag[jw-Xl,jw-Xz, ..., jw-X,]  T }  

w z  0 w>o 

w z o  
= inf ddiag[jw-Xl,jw-Az, ...,j w-X,]} 

= min 1 I Re X, 1 ] = min[-Re X(A )] 
i=l ,  ..,n 

which  proves sufficiency of the  result. 
If IIAA /Ip=yQW=mini-ReX(A)!, let A A  = 

min[-ReX(A)].I.  Then A + A A  = T-'[diag(X,,X,, . . . , X,,)+ 
min I Re X(A ) 1 . I ]  T which is unstable.  This proves necessity 
of the  result. 

Appendix 6: Proof of Theorem 4 
The following  definition and  preliminary  results  are 

required in order  to  prove  theorem 4. 
A matrix A ER x is called non-negative  (denoted  by 

A 2 0 )  if all the  elements of A are non-negative. The follow- 
ing result is obtained  from [ll]. 

Lemma Al :  A non-negative  matrix A ER x always  has a 
non-negative  eigenvalue  (denoted  by r ( A ) )  that is greater 
than or equal to  the  moduli of all  the  other eigenvalues of A .  
The  right  and left eigenvector of A corresponding to  " ( A )  
are  non-negative. 

The following two  results  are  obtained  from  Bauer (121. 

Lemma  A2: Let B E R  X m  C E R  x be non-negative 
matrices  and let D,ER D,ER m X m  be  diagonal 
matrices.  Then 
inf { I J D ~ B D , J J , . J I D ; ~ c D , ~  I/,} = ~ ( B c )  = T(CB) (sa) 

Bauer  proved  this  result for the case when B >0, C > O  and 
"min" is used instead of "inf"; however his  proof  can be 
modified to allow B 20, C 20. 

Lemma  A3: Let A G m X n ;  then in  general [ ( A  ) I p  
6 I( 1 A I I t p ,  but  the  equality holds for  the following cases: 
i) %lECmXm, E Z E C n X n  with \ E l l = Z m ,  I E z I = I n  

such  that E I A E , =  I A I . Such a matrix A is called  a 
checkerboard  matrix. 

D1,Da 

ii) p =1 or p =w. 

is obtained: 

Corollary 1: Let B a r n ' " ,  CECnXm and D,, D ,  be diag- 
onal  matrices;  then 

From  lemma A2 and  lemma A3, the following corollary 

= " ( I C /  I B I )  ( 4 4  
The equalities  hold if B and C are  checkerboard 

matrices or if a 1-norm or m-norm is used. 

Proof of Theorem 4:  From  lemma 2, A + A A  is stable, if 
3 ( j w )  such that  
~ ~ R S l A E S z ( j w l - A ) - ' R - ' ~ ~ ,  <1, V A E E E ,  V u 2 0  ( 5 4  
where E 4 { A E  I I A E i j  1 5e i j~ } .  

Assume  initially  that S, is left-invertible; then  there 
exists  a nonsingular  matrix T such that  

Then (Sa) is true I f  k l ( j w )  such  that 
Let R =D1(Jw T where D l ( j w )  is a diagonal  matrix. 

which is true if B l ( j w ) , D z ( j w )  which are  diagonal  such 
that: 

V A E E E ,  VwJW20 
Since 3 E with I E ,  1 = I ,  I E ,  1 =I so that 

1 ' 2 .  _I 

then  from  lemma A3, we conclude that 

754 

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 14,2021 at 08:04:24 UTC from IEEE Xplore.  Restrictions apply. 



which  implies that: 

is true VAEEE. Thus  condition  (8a) is satisfied if 3 diagc- 
nal  matrices D l ( j w ) ,  D 2 ( j w )  such that 

L J  

which is true if 3 diagonal D,(ju), D , ( j w )  such  that: 

6. D1,Dn inf (ID, ~ ~ a ~ ~ p ~ ~ D ~ ' S 2 ( ~ w 1 - ~ ) ~ ' T ~ 1 D ; 1  / I p  <1,  (13a) 

v w 2 0  
which will be true,  from corollary 1, if the following condition 
is satisfied: 

exact 
bounds 0.3333 

Now let T-'=[ Vl,Vz];  then  this implies from  (6a)  that 
V,=Sl which  implies that 

I S , ( j w I - A  1 0 

= T [  I! I S 2 ( j w l - A ) - ' S ,  []=a[ 1 S z ( j w I - A ) - ' S ,  I V ]  
Thus  condition  (14a) is equivalent  to  the  condition 

€ < l /sup T [  1 S,(jwr-A)- 's ,  I V ]  L i p Q  
w> 0 (154  

which  proves theorem 4 for the case SI is left-invertible. 
Assume now that SI is not left invertible,  but  that S ,  is 
right-invertible;  then  the proof can be repeated in exactly the 
same  way,  on  noting  from  lemma  2,  that A + A A  is stable, if 
2 ( j w )  such  that: 

- 

Table 1: Comparison of Results  Obtained  for t h e  S t a b i l i t y  Robust Bound 

A = r ;  -g for-Structured  Perturbations  of Example 3 f o r  the Case  %hen 

3.0000  2.0000 1.0000 I I  
I I 

-. 

alla12 a12a21 alla21  alla12 
a22 aZ2 a22 a22 a21 a21a22 a12a22 "12a21 a11a21 a11a22 '11.~12 

~ ~ ~ ~ ~ ~ G ~ ~ ~ ~ J ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  5 i l 0 1  

i 

0.396 , 1.0 

0.3528 0.3714 0.4486 0.6848  0.4000 0.5000 0.8108  0.9150 0.5612 1.5201 0.6667 

-0.256 0.273 0.311  0.317  0.3027  0.324 0.5 0.48 0.382 

0.6667 0.3542 0.3723 0.4495 1 0.4 0.5 1 1 0.5616 2 

Table 2: Comparison of bounds for example 4 
Perturbed a21 Q 1 2  Q 2 2  011 Q 1 2 Q 2 1  Qlla22 Ql lQlZ 
elements a,,a,, 

P Y  2 16 1 8 1.777 1 0.784 
P q  0.889 1 2.8284 , co 00 1 8 
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