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Abstract. A continuous-time linear periodic system has an operator-valued (lifted) 
transfer function, for which an entropy function can be defined. This paper relates 
thiH entropy to some linear-exponential-qlladrat.ic-Gaussia.n fundion defined in t.he 
t.ime domain. Also addressed is the problem of minimum entropy 11.00 sampled-data 
control: For a sampled-data control system, design a digital controller La achieve a 
cert.ain Ji x norm bound and minimize the entropy of the closed-loop syst.em. 
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I. INTRODUCTION 

Sampled .. data control systems have recently been viewed 
as periodic systeIIl~ in continuous time. This viewpoint 
allows analysis and synthesis to be accomplished, tak
ing into cOIltiiderat.ion of inter~ample behavior, Along 
this direction, optimal sampled-dat.a control design was 
studied in t.he H= framework (Ramieh and Pearsol1, 
1992b; Toivonen, 1992; Kabamba and Rara, 1993; Sun 
et al., 1993; Tadmor, 1992) and H, framework (Khar
gonekar and Sivashankar, 1991: Bamieh and Pearson, 
1992a) (among other references). For motivation of our 
work in this paper, let us observe the following two 
points from the recent sampled-data cont.rol Iiterat.ure. 
First, a powerful technique called lifting was developed 
in connection with the study of the 1loo sampled-data 
problem; this technique appliet; in general to linear pe
riodk continuous-time syst.ems and convert.s them into 
equivalent, linear time-invariant (LTI). discrete-time sys-
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t.erns, which have infinite-dimensional input and out.put 
spaces and thus can be described by operator-valued 
discrete-time transfer functions. Second, the solution of 
t.he sampled-data 1l ex") contrc,l problem is obtained by 
converting it into an equivaknt discrete-time 11.= con
trol problem, from which one can, for example: charac
terizc the set. of all sampled-data cont.rollers achieving a 
certain H(."Q norm bound. This set of controllers in gen
eral cont.ains infinite element;. The question arising is: 
How to ~elecL one controller which satisfies further good 
properties? 

In the LTI casc, the so-called central cont.roller further 
minimizes a certain entropy function of the closed-loop 
transfer function (Mustafa and Glover, 1991; 19lesias 
et al., 1990: Igle'ias and Mu,tara, 1993); thi, entropy 
fllllction has certain int.erpret ation in the time domain 
and is an upper bound for the H2 norm of the system. 
This paper is aimed at addressing these itiSueti for gell
eral continuous-Lime periodic :~ytitems, treating sampled
da.ta systems ru; specia.l ca.set;. In particular, wC'! answer 
the following questions: 
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• What is an entropy function for a general periodic 
system? 

• How to interpret this entropy in tlH~ time domain? 
• For sampled-data control systems, how to find the 

minimum entropy controller among the class of con
trollers that achieve a certain 1lrx; norm bound? 

Briefly, the paper is organized as follows. In the next 
section we define the entropy for a general periodic sys
tem and relat.e it to some linear-exponential-quadratk
Gaussian (LEQG) cost function in the time domain. 
In Section 3 we discuss minimum entropy 1loo control 
for sampled-data systems. Finally. some concluding re
marks are given in Section 4. 

2. ENTROPY AND LEQG FUNCTION OF 
PERIODIC SYSTEMS 

A sampled-data sy:-,;tem with an LT1 analog plant and 
LTI digita.l cont.roller with sampling period (f can be 
viewed as a continuous-time O'-periodic system. Such 
systems can be lifted to get. lifted transfer functions. In 
this section) we define an entropy for general periodic 
systems and then establish its stochastic interpretation 
in the t.ime domain. 

First, we introduce some definitions on operator-valued 
sequences and the associated A-transforms. Let .r and 
Y be Hilber! space, and 1 = {f(k) : k = 0, I, 2, ... ) be 
a ~equence of bounded operator.":' from .l' to y. Then 

F(}') = L I(k)>" 
k::::O 

1S an opcr?-tor-valucd function on some subset of C. \Ve 
say that F belongs to 1/~(,r,y) if F is analytic in IJ, 
the open unit disk, and 

,up 111'(.\)11 < = 
AEV 

In this case, the above left-hand side is defined to be the 
1/ 00 norm of F, denoted by 111'1100. the operator F(eiW

) 

it; bounded for aiIw)t;t every w E [-1r, 1r), and 

ess sup IlhJ")11 = 11F11oo. 
(.(E[-,",Jrj 

Let 1 = {f(k) : k = 1,2, .. ) be a sequence of Hilbert
Schmidt. operators frorn X to y. The set of Hilbert
Schmidt operators equipped with the Hilhert.-Schmidt 
norm, 11 '1IHs' is a Hilbert space (Gohberg and Krelll, 
1969). Then 

00 

F(}') = L f(k).k 
k=O 

is a Hilbert-space vector-valuEd function on some subset 
of C. We say that F belongs to 1/,(.1:', Y) if 

(~llf(k)ll~s) 1/' < 00, 

In this case, the left-hand side above is defined to be the 
1/, norm of F, denoted by Ilf'II" the operator F(eiW

) is 
Hilbert-Schmidt for almost e\ery w E [-11", 1\"), and 

, 

2~ J 11·i>(elW)II~sdw = 111>lIl 

Assume i~ E 1/00 (.1:', Y) n 1/,(.1:'. Y) and 1IFlloo < I. Ex
tending t.he ent.ropy definition for matrix valued analytic 
functions (Iglesias et al., 19!)Q: Iglesias and Mustafa. 
199~L we define the entropy of F as 

IT 

I(F) = -~ J Indet[! - F"(elW)F(elW)]dw. 
21f 

This entropy is well defined. Since F(~W) is a Hilbert
Schmidt operator at almost e\'ery w E (-IT, rr), its singu
lar values form a square-summable sequence {O'k(eiW

)}. 

Hence 

det[! - F'(el")F(el")] = IIII- <7~(el~)]. 
k=l 

which converges to some number in (0, 1) due to square
summability of {<Tdel")) and the fact that IIFII= < l. 
This also shows that T(F) iSlOnnegative. 

Lemma 1 .4»ume f E 1/,"(,r,Y) n 1/2(.r,Y) and 
IIFII= < 1. Then IIFlli <: I(h 

The proof of this lemma follows from exactly the same 
argument as for the finite-dinensionn..l ca..<;e (Iglesia..<; et 
al., 1990). 

Now let us turn back to our {:eriodic system. Let Fa be 
a continuous-time, O'-periodic, causal system described 
by the following iutegral opec:Ltor 

, 
(Faw)(t) = J fa(t, r)w(r) dr. 

o 

We assume that. fa. the matri:<-valued impulse response 
of Fa., is locally square-integrable, i.e., every element is 
square-integrable on any compact subset ofn2. The pe
riodicity of Fa implies la(t + <T, r + <7) = ta(t, r), and 
the causality implies that fa,(i, T) :;:: 0 if T > l. 

Lifting Fa. as in (Bamich and Pcarson, 1992b) we get 
an operat.or sequence {f(k)}, where every f(k) maps 
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£2[0, (1') to £2[0, (1'), and an operator-valued transfer func
tion j;'(),): 

00 
F(>.) = L f(k).\k. (I) 

k=O 

ltelated to 11.00 control, the C2-induced norm is used. 
It is a fact. that. th~ C2 -induced norm of Fa equals the 
1lo;:, norm of the lifted transfer function F. Similarly, 
the 112 measure for Fa defined in (Khargonekar and 
Sivashankar, 1991; Uamieh and Pearson, 1992a) equals 
the 112 norm of F defined earlier. This H_2 norm also has 
interpretat.ions in t.erms of impulse responses or white 
noise responses (Khargonekar and Sivashankar, 1991; 
Bamieh and Pearson, 1992a) of the system. VVhat is 
the interpretation of the entropy of t' in terms of the 
time-domain model F(I? This is what we look at. now. 

To avoid unnecessary technicality, we will concentrate 
on finite-dimensional periodic systems, i.e., those Fa with 
finite-dimensional realizations, or equivalently, the lifted 
transfer functions with only finite number of poles. 

Continuing with our discussion of O"-periodic, causal Fa 
and its lifted transfer function F('\). let w be a Gaussiall 
white noise with zero mean and unit covariance on the 
time interval [0,00) and z the corresponding response: 
z = r~ U!. Define an LEQG cost function for Fa as 

(IT = ~ In E {exp [~J Z'(t)Z(t)dt] } 

where E(.) means the expectat.ion. 

Theorem 1 Given a finite-dimensional a-periodic sys
tcm Fa, (JSSHmr: 1l.., liftr:d transfer function F p,atzsfic,,, 
F E lIx n 11, and 11F1100 < I. Then hmT .... oo IlT = 
T(F')/(J'. 

\Ve first need to establish the operator-valued Szego for
mula (Grenander and Szegii, 1984, pp. 64-65). The proof 
presented here resembles that suggested by (Brillinger, 
1981, pp. 81) for the scalar case but is much more tech
nical. 

Lemm.a 2 Let G be a selJadJoinl nuclear" operator-tJalued 
analytic fu.nction. on the unit Circle' satisfying 

max IIG(eW)11 < L 
wE[-7r,rr) 

L{:"t g(k), k = 0, ±.l, ±2, ... , be d ... FOllrier coefficients. 
Define the Toeplitz matrix 

[ 

g(O) g(-I) 
g(l) g(O) 

g(K:- I) g(f{:- 2) 

... g(-K + I) 
···g(-I<+2) 

g(O) 

Then 
, 

lim Indet(I - GK) = ~ f Indet]I - G(eW)]dw. 
K40 2rr 

-, 

Proof: Consider the circulant matrix 

[ 

.q(O) 9(-1) +q(I{ -I) 
g(-I(+I)+g(J) g(O) 

g(-I)+g(K-I) g(-2)+~(f{-2) 

.. g(-J(+I)+g(I)] 

.. g(-I( + 2) + g(2) 

. . 
.. g(O) 

Define the block VallderIllond~ mat.rix 

e2IK-~I'/K I ] 

eJ2 (J(-1)(K-I)7r!I< I 
[

I 
j e'</K j 

I cl 2(K-I)7r/I( [ 

I 

It. can be verified t.hat. 

Vi1CKVK 

=diag ( ~ g(k), ... , :[1 g(k)e2IK-llh/K). 
k=-K +1 k= -K+l 

For 1 = U, 1, ... , j{ - 1, denote by J1.1i, i = 1,2: ... , the 
eigenvalues of L::~-= g(k)ei2~k7r/K; then there is a way 

to order the eigenvalues of I::;_lK+l g(k)ei Z1h/ K . de
noted by Vii, i = 1. 2, ... , such that 

i=l 

-K ex: 

:s 11 L g(k)ei 2lkn
/

K + L g(k)e'21h/Klltr 
k=-O() k=K 

:s 2 L Ilg(k)lltr' 

where 11 . Iltr means the traCe! (or nuclear) norm. Fur
thermore, notice that 

[ 

0 
- g(-K + 

IIGK - OKlltr = 11 • 

g(-I) 

g(I{ - I) 
) 0 

g( 1). 
g(2) 

~ Iltr 

g( -2) 

:s L Iklllg(k)lltr 
k=-= 
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Hence there is a way to order the eigenvalues of G K , 

denoted by (",1 = 0, 1, , , " f{ - I, i = 1,2, , , " such that 

K-I 00 00 

{=O i= l k=-= 

Notice that the analyticity of (; implies that 

00 

G(eJ21·/K) = L g(k)eJ21k./K, 
k=-rx; 

L Ikl' Ilg(k)lltr < =, 
k=-rx, 

and 

= 
J~;, L Ilg(k)lltr = 0, 

k=K 

Consequently, 

I 
K-l I 

Indel(I - GK) - L Indet[I - 6(~21·/K)] 
l=n 

= I~l ~ln(1 _ Ch) _ ~' ~ln(1 -l<u)1 

I

K-l 00 -I I 
= L L ~((Ii -/-'Ii) 

/=0 i=! ~It 

for some E,1i E [-IIGlloo, 1161100]' This shows that 

I 

K-l I 
lndet{l - GK) - ~ Indet[1_6(eJ21rr/h')] 

1 K-l :x;, 

::; 1-1161100 ~ ~(]"i - Viii + Iv" -/-'lil) 

::; . L Iklllg(k)lltr + 2K L IIg(k)lltr ' 1 (00 00) 
I -IIGII", k~-= k~K 

Therefore 

hm ~ lndet(I - (h) 
K--+oc K 

1 2 K-L 

= - hm ~ L Illdet[I - 6(eJ2h/K)] 
211" K --+00 K 

k=O 

'rr 
= 2lrr J In det[I - G( eJ" )]dw 

u 

This completes the proof. 

Proof of Theorem 1: The pro)f follows from the idea in 
(Glover and Doyle, 1988) but has two complicalions: (I) 
operator-valued transfer fundions are treated, which re
quires dealing with random variables in Hilbert spaces 
(Vakhania et al., 1987); (2) slgnals are defined on time 
[0,00) instead of (-00, 'Xl), wlich requires treat.ing 11011-

stationary stoc:hastic procestcs. Since Fa is linear, it 
follows that z is a Gaussian process. Define ZT as the 
stochaslic proc,,", OlL [0, T] such that ZT(t) = z(t) for 
t E [0, T]. Then ZT ca.n be considered as a Gaussian 
random variable in the Hilbert space .c2 [0, T]. The co
variance operator VT : £2[0, T]-+ £2[0, T] is then given 
by (for I E [0, TJ) 

(Vrx)(l) 

= E [ZT(t) 1 Z~(i)X(i)di] = 1 E[ZT(t)zHti]x(i)di 

= J E [J fa(t,r)W(T)dT iW'(f)f~(i,T)df] x(i)di 
o u U 

T T T 

= J J J Mt,T)E[w(T)w'T)]f~(i,T)x(i)dTdfdf 
o (I 0 

T T T 

= J J J f,(t, 7)O(T - f)f;.(i,f)x(i)d7dfdi 

o 0 0 

T T 

= J J fa(t, T)f;(i, f)x(i)drdt = (FaF;x)(t), 

o 0 

This shows that 

Since rrL~2[0,TJFal£do,Tl is a cont.ractive Hilbert-Schmidt 
operator and Fa is causal, it follows that VT is a sel±"
adjoint contractive nuclear cperator. Let the Schmidt 
expansion of VT be 

liT = L 0",(-, Vi)Vi. 

i=l 

Then ZT can be expressed a'l 
00 
,~ 

ZT :::: > (tiVi 
,~ 

~l 

and ai, i = 1,2, ... , are independent scalar Gaussian 
random varia.bles with covari.tnce O'j. Hence 

E {exp [~l Z'(t)Z(t)dt] } = E {exp [~\ZI" ZT)l} 
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= E {exp [~~ ar]} = D E{exp(,,? /2)) 

00 

= II(1- ,,;)-'/2 = [det(J - I"l'W 1/ 2 

i=l 

Now lift w to get wand lift z to get (. Then z = Faw is 
equivalent to ( = Fw and F ha..;; Cl. matrix representation 

[

fI
O

) 0 1 fll) f(O) 0 

F = f(2) f(l) f(O) •.• . 

Let FK be the leading J{ by J{ submatrix of F. Then 

Since P has only finite number of poles, the infinite Han
kel matrix 

[

fll) f(2) f(3) ... ] 
f(2) f(3) f(4) .. . 

H = 1(3) f(4) 1(5) ••. 

has finite rank. Let HK be the first J{ block rows of H 
and define 

Notice that H'K is a. selfadjoint Toeplitz matrix 

[ "('I 
11'(-1) 

m(-H'i I 11'(1) 11'(0) ···11'(-1' + 2) 
WK= . . 

tJ)(l{:-I) 

. . 

wlK -2) ... 11'(0) 

and u:{i) is the i-th Fourier coefficient of P F"" 1 where 
fr-(>,) = fr(~-l)'. Denote by ",(WK) and ",(FKFk), 
i = 1,2, ... , the singular values of Y\-'K and FKFKl re
specti vely~ assuming nondecrea!:;ing order. Then 

L IU,(WK) - ",Ii"KFk)1 ::: trHKHk ::: trH W < 00. 

i=1 

Since O"i("YVK) and (ji(FK P;') are all contained in the 

interval [-IIFII"c, II FII~]' it follow" that 

Ilndet(J - FKFk) -lndel(I - WK)I 

= 1t,ln[l- (Ti(FKF;:)]- ~ln[l- ",(WKlll 

171 

for some ~i E [-IIFII~, IIFII~ . This shows that 

Ilndet(I - FKFk) -lndet(I - WK)I 
1 00 

< . Llu,(WK)-",(hF;:)1 
- 1 - IIFII;" ,=] 

< 1 trHH'. 
- 1 -IIFII;" 

Hence by using Lemma 2, 

I 
lim ilK" = - lim -.-lr det(1- FKFj.;) 

K-J-oo K-+=l\cr 

= - lim ~lr det(I - WK) 
K-+oo 1\/7 

" 
= --, 1- J Indd[I - F('hfr'(e'W)]dw 

2rru 

J\otice that for J{" < T < (A + l)u, 

J{ 0 0 K+IO 
K + 1 Ko ~ T:::; ~ (K+l)cr· 

Therefore, Iimr->= OT = I(j.')/". 

Thit:l re~;ulL e~t.a.bli8hcs a stod astic interpretation of the 
entropy introduced for periodic systems. Next, we shall 
consider a control application for sampled-data syst.ems. 

3. MINIMUM ENTROPY 1100 CONTROL 

The standard sampled-data srstem is shown in Figure L 
where G is an analog plant, Fd is a digital controller, .5 
and H are the periodic samplf r and zero-order hold both 
with period (]" The closed-Iocp system, w t-+ z, is given 
by the linear fractional Irarsformation F(G, H K,5). 
The sampled-data 'Hoc contro. problem is as follows: De
sign Kd to slabilize G and achieve IIF(G, H [{d5)11 < L 

z 11' 

G 

y 

Fig. 1. The sampled-data setllp 
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Here, the norm is ,Cl-induced and the bound is normal
ized. 

This problem is solved in, e.g.: (Bamieh and Pearsoll, 
1992b). Gnder sonu: mild conditions on G, the sampled
data problem is equivalent to a certain discrete-time 
Hx. control problem, which then admits solutions by 
standard methods, see, e.g., (Iglcsias and Glover, 1991; 
Green et a.l., [990). Briefly, the solutions of the problem, 
if solvable, can be characleri~ed by a linear fractional 
transformation with a free parameter: 

when' 1.. is in R.'H= and satisfies i0 22 (0) = O. 

The sampled-data '!loo problem we are interested is the 
minimum entropy one: Design f{d to stabilize G, achieve 
IIF(G, I1 KdS)11 < I, and minimizel[F(G, H I<dS)]. The 
entropy is well-defined because the sampled-data system 
is er-periodic. 

It was observed in (Qiu and Chen, 1994) that the re
duction process in (Bamieh and Pearson, 1992b) has the 
property that the entropy of the sampled-data system 
equals that of the equivalent discrete-time system plus 
some constant. In other word, the equivalent problem 
is now a discrete-time minimum entropy li= problem, 
which is studied in (Mllstafa and Glover, 1991; Iglesias 
et aI., 1990; Iglesias and Mustafa, 1993). Hence, under 
some mild assumptions, we reach the same conclusion: 
The minimum entropy ll.oo controller is the central con
troller in (2), obtained by tietting Q to zero. 

4 CONCLCSIONS 

In this paper we est.ahlished t.he conned,ion het.ween the 
entropy of periodic systems and some LEQG quantity 
in the time domain. This connection involves some in
t.eresting generalization of the Szego formula. With this, 
we can formulate and solve the minimum entropy 1le.::; 
problem for sampled-data control systems. 

Extension of this work to multi rate sampled-data sys
tems (Chen and qiu, 1991) is reported in (Qiu and 
Chen, 1994). 
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